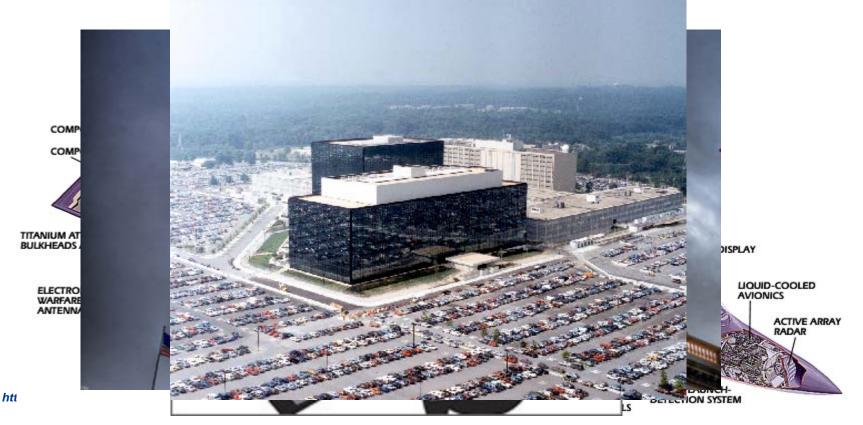


An Analysis of TRL-Based Cost and Schedule Models

Bernard El-Khoury and Bob Kenley Massachusetts Institute of Technology 17 May 2012

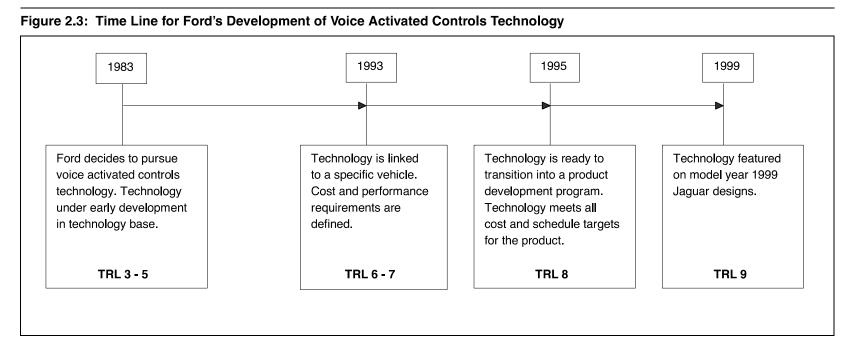
- Introduction
- Theoretical Framework and Currently Available
 Models
- A New Framework for Cost and Schedule Joint Modeling



Introduction

The Problem

- Technology Development under high uncertainty, with increasing cost/schedule/maturity constraints.
- Even more challenging for government agencies:


Technology Readiness Level Progression Example from GPS

US DoD R&D Budget Activity	TRL	Event Indicating Achievement of TRL	Cumulative Time to Reach TRL (yr)*
6.6 Operational	9	Actual application "mission proven" through successful operations:	
Systems		GPS achieves full operational capability with full constellation of 24	22.7
Development		Block II and Block IIA satellites.	
6.4 Engineering and	8	Actual application completed and "mission qualified" through test	
Manufacturing		and demonstration in an operational environment: DoD and	21.4
Development		Department of Transportation determines GPS system achieved the	21.4
		required assets available on orbit for initial operational capability.	
6.4 Engineering and	7	Prototype demonstration in high-fidelity environment (parallel or	
Manufacturing		shadow mode operation): Three GPS Block II satellites (required for	19.6
Development		triangulation) operational and tested with user equipment.	
6.3b Demonstration	6	Prototype demonstration in a relevant end-to-end environment: GPS	160
and Validation		Block I satellite launched and tested with user equipment.	16.3
6.3a Advanced	5	Module validation in relevant environment: Tests of GPS user	
Technology		equipment on simulated satellites.	14.1
Development			
6.2 Applied Research	4	Module validation in laboratory environment: successful research,	10.1
		development, and testing of initial Air Force and Navy satellites.	12.1
	3	Analytical and experimental critical function and/or characteristic	
		proof-of-concept: TIMATION, the first three-dimensional space-	11.0
		based navigation system.	
6.1 Basic Research	2	Technology concept and/or application formulated: TRANSIT, the	6.0
		first space-based navigation system.	6.0
	1	Basic principles observed and reported: Researchers at APL	
		discovered that measurements of Doppler shift as Sputnik passed by	
		were adequate to determine the entire satellite orbit. Frank McClure	N/A
		noted conversely, if the satellite orbit were known, position on the	
		earth could be determined using these same Doppler measurements.	

*Based on Smoker, R. and Smith, S. "Approach to Use of Selected Acquisition Reports for Measurement of TRLs and Associated System Cost Growth" 2008 http://lean.mit.edu © 2012 Massachusetts Institute of Technology, C. Robert Kenley and Bernard El-Khoury, 19 April 2012 - 5

Technology Readiness Level Progression for Commercial Product

Between 1993 and 1994, based on discussions with customers, Ford developed cost and performance requirements for the technology. Ford has

http://lean.mit.edu

© 2012 Massachusetts Institute of Technology, C. Robert Kenley and Bernard El-Khoury, 19 April 2012 - 6

Research questions

- Using historical data, is it feasible to use TRL for technology development cost/schedule models?
- If yes, can we use TRLs to develop a dynamic programming or real options approach to managing technology?

Theoretical Framework and Currently Available Models

Assumption Levels for the Framework

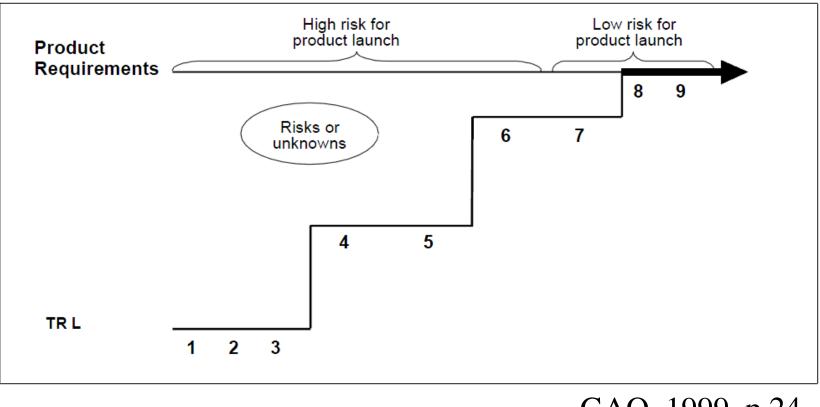
1. TRL scale is a measure of maturity and risk

2. Transition maturity variables are consistently related across technologies

3. Maturity variables are significantly different for different TRL transitions

4. TRL marks points of progression in technology development

Level 1 Assumption

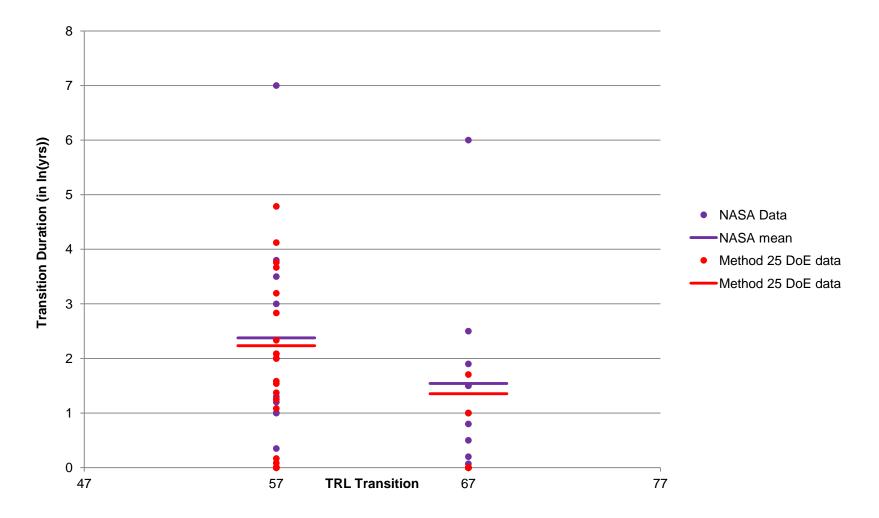

TRL marks points of progression in technology development

http://lean.mit.edu

© 2012 Massachusetts Institute of Technology, C. Robert Kenley and Bernard El-Khoury, 19 April 2012 - 10

Programmatic Risk as a Function of TRL

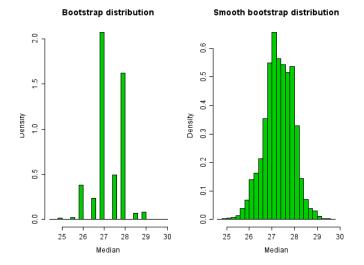
GAO, 1999, p.24


Level 2 Assumption

Maturity variables are significantly different for different TRL transitions

http://lean.mit.edu

NASA and Department of Energy Data Show Statistically Similar TRL Transition Times


The NASA Dataset

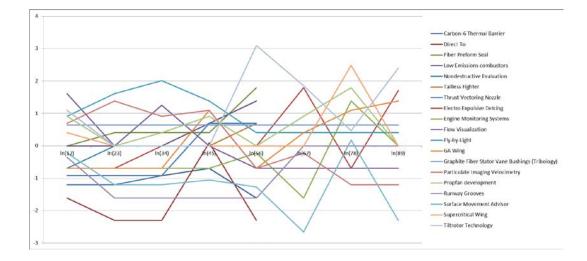
Transition	Carbon-6 Thermal Barrier	Direct To	Fiber Preform Seal	Low Emissions combustors	Nondestructive Evaluation	Tailless Fighter	Thrust Vectoring Nozzle	Electro Expulsive Delcing	Engine Monitoring Systems	Flow Visualization	Fly-by-Light	GA Wing	Graphite Fiber Stator Vane Bushings (Tribology)	Particulate Imaging Velocimetry	Propfan development	Runway Grooves	Surface Movement Advisor	Supercritical Wing	Tiltrotor Technology
12	0.4	0.2	1	1	0.5	3	0.3	0.5	0.5	5	2.5	0.5	1.9	2	2.5	0.7	0.8	1.5	3
23	0.4	0.1	1.5	1	1	1	0.3	0.5	0.5	1	5	0.5	1.9	4	1	0.2	0.3	1	1
34	0.4	0.1	1.5	1	1	1	0.4	1	0.5	3.5	7.5	0.5	1.9	2.5	1.5	0.2	0.3	1	1
45	0.5	1.1	1.5	2	1	1	2	1	0.5	1	4	3	1.9	3	2.5	0.2	0.35	1	1
56	0.2	0.1	6	4	1	2	2	1	1	0.5	1.5	0.5	1.9	0.5	1	0.2	0.35	1	22
67								6	0	0.5	1.5	1.5	1.9	0.8	2.5	1	0	1	8
78								0.5	5	0.5	1.5	3	1.9	0.3	6	1	1.2	12	0
89								5.5	0	0.5	1.5	4	1.9	0.3	1	1	0.1	1	11
Criteria A	4	3	4	4	1	2	2	2	2	2	2	1	4	4	4	3	3	1	2
Criteria B	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	1	0	1
Criteria C	2	3	3	3	2	6	6	3	2	3	1	3	3	3	1	2	1	3	3
Criteria D	0	0	1	1	1	1	1	0	0	0	1	0	0	0	1	0	1	0	1
Criteria E	0	0	0	1	1	1	1	1	0	1	0	1	0	1	1	1	0	1	1
Criteria F	0	0	0	0	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1

Bootstrapping Used to Generate Median

- Iterated smoothed bootstrapping
- *Iterated*: to eliminate bias
- Smoothed: to look nice for the program managers

Excel function

	TYPE		× √ ƒ;	=Trans	=TransTime(B4,C4,3)							
	А	В	C D		E	F	G					
1		Starting TRL	Ending TRI	L	Transition Time	Std error						
2		1	3		2.15645	1.56741						
3		4	9		7.2546121	4.85642						
4		2	5		=TransTime(B4,C	4,3)						
5												
6												
7												

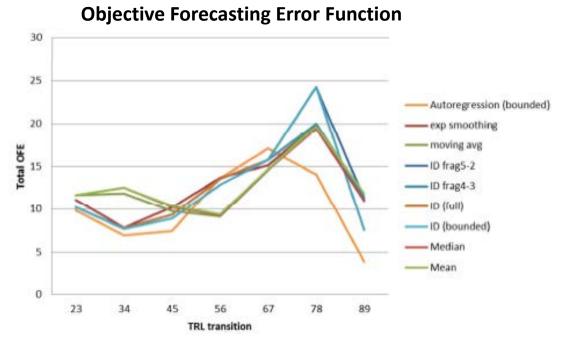

Level 3 Assumption

Transition maturity variables are consistently related across technologies

http://lean.mit.edu

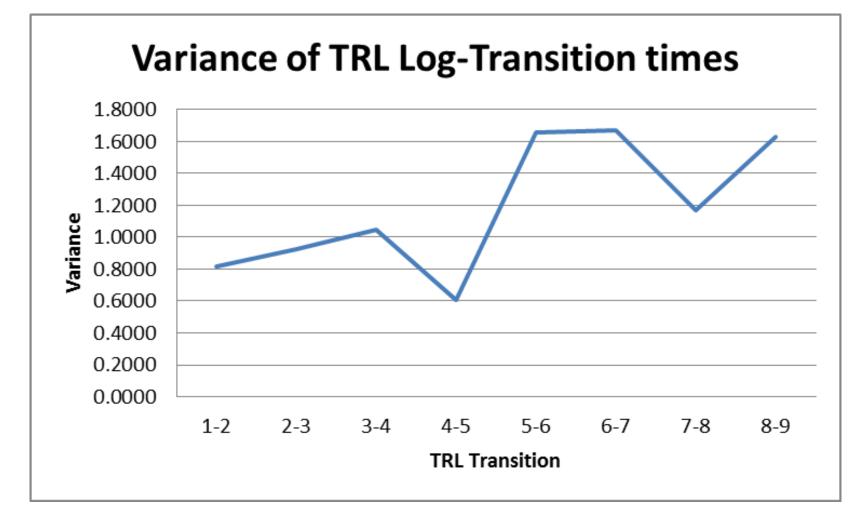
Correlation Analysis of the NASA Dataset (log)

	ln(12)	ln(23)	ln(34)	ln(45)	ln(56)	ln(67)	ln(78)	ln(89)
Correlation Table	log data							
ln(12)	1.000	0.660	0.752	0.312	0.149	-0.074	-0.135	-0.606
ln(23)	0.660	1.000	0.905	0.673	0.385	0.043	-0.170	-0.350
ln(34)	0.752	0.905	1.000	0.639	0.351	0.113	-0.256	-0.265
ln(45)	0.312	0.673	0.639	1.000	0.490	0.344	0.006	0.073
ln(56)	0.149	0.385	0.351	0.490	1.000	0.325	0.331	0.307
ln(67)	-0.074	0.043	0.113	0.344	0.325	1.000	-0.092	0.633
ln(78)	-0.135	-0.170	-0.256	0.006	0.331	-0.092	1.000	0.180
ln(89)	-0.606	-0.350	-0.265	0.073	0.307	0.633	0.180	1.000


Forecasting Methods

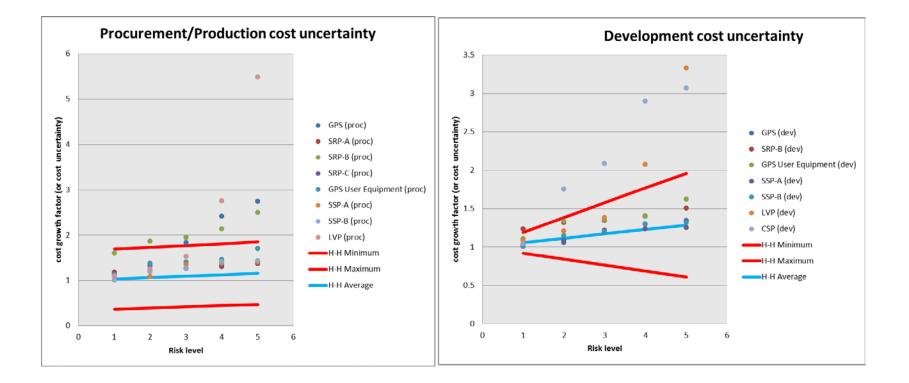
- Fixed Estimates
 - Mean
 - Median
 - Regression
- Influence Diagrams
 - ID (full)
 - ID (frag 4-3)
 - ID (frag 5-2)
 - ID bounded

- Extrapolation
 - Moving average
 - Exponential smoothing
 - Exponential smoothing with trend
- Regression
 - Full autoregression
 - Full autoregression (bounded)
- Other
 - Closest neighbor


Forecasting results

- Some "smart" methods performed better than fixed estimates both in total error and in robustness
- Smart models might have "overlearned" this particular dataset

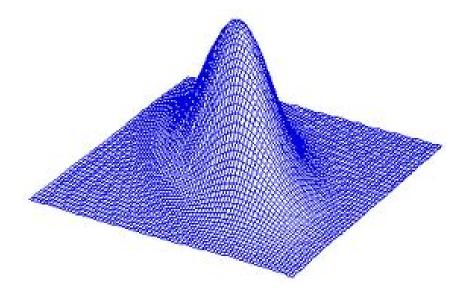
Increase in Schedule Uncertainty vs. TRL



Level 4 Assumption

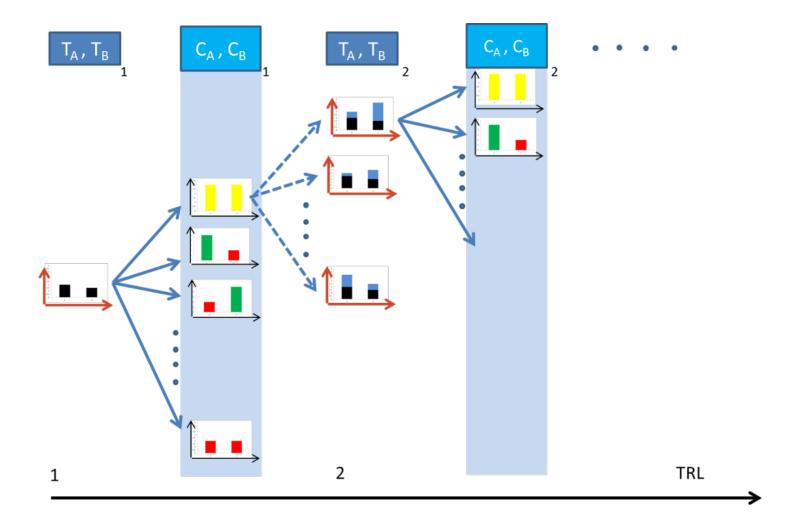
TRL scale is a measure of maturity and risk

Cost modeling comparison

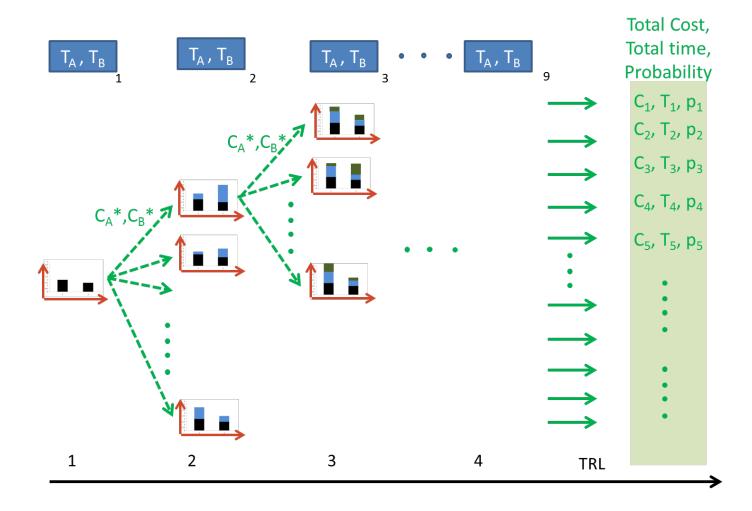


A New Framework for Cost and Schedule Joint Modeling

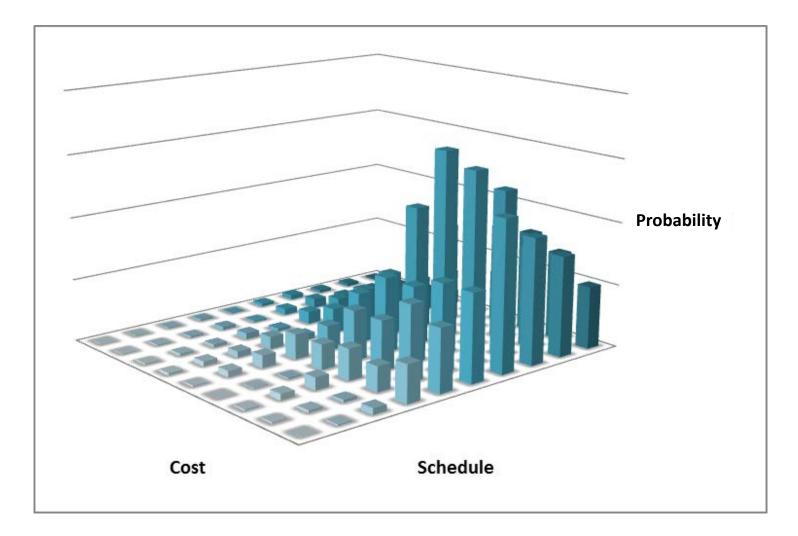
Multivariate distributions


Classic multivariate distributions do not work

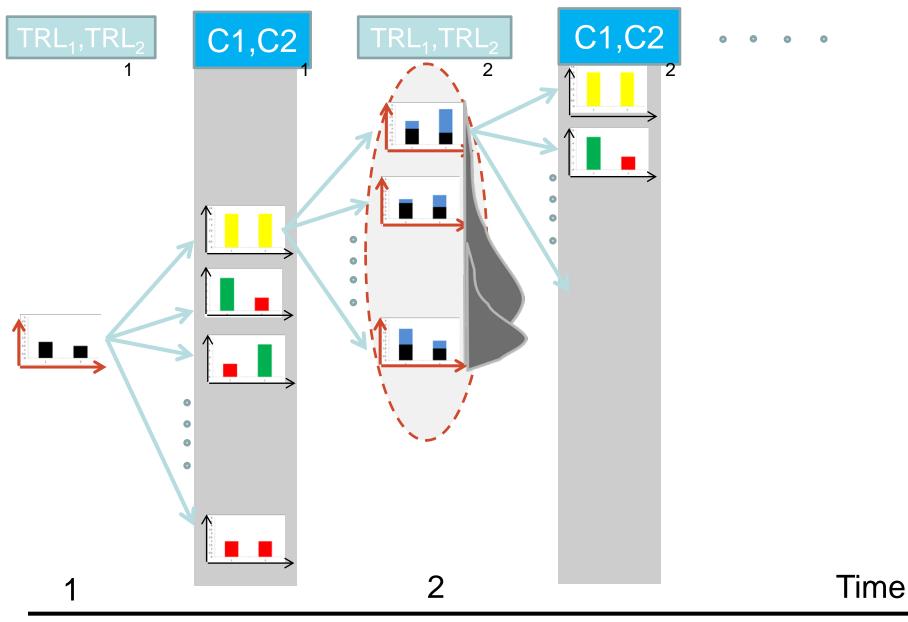
• We need to include decision



Dynamic Programming Approach with TRL as Period Variable



The Policy Diagram With Optimal Decisions and All Possible Outcomes



The Policy Diagram With Optimal Decisions and All Possible Outcomes

Dynamic Programming Approach with Time as Period Variable

• Questions ?