

Acquiring Enterprise Systems as a Portfolio of Real Options

Ronald E. Giachetti, Ph.D.

Professor Systems Engineering Naval Postgraduate School Monterey, CA regiache@nps.edu

Motivation

- Enterprise architecture (EA) is designed and acquired in an evolutionary manner over a long period of time
 - Complex systems
 - High uncertainty and project risk
 - Changing needs, technology, resources (budgets), and priorities
- Researching Two Approaches:
 - analyze architectures before constructing them -- reduce uncertainty
 - 2. Structure system architecture to support flexible acquisition coupled with decision tools *to react* to new information as project unfolds

Enterprise Systems in a Large Beverage Co. Do you think it was architected like this?

Ronald E. Giachetti May 18, 2012 NTIA PER SCIENTI

Today's Shipboard Environment (Direct interfaces, unique solutions, weak cross-domain integration)

Source: "Surface Navy Combat Systems Engineering Strategy" Briefing to NPS. Kathy Emery, Chief Architect, PEO Integrated Warfare Systems, 4 March 2010

Architecture & Engineering

Architecture defines the — parameters and overall constraints

- Holistic
- Satisficing
- Heuristic
- Ambiguous 'fuzzy' needs
- High uncertainty

Engineering optimizes the parameters subject to the constraints

- Reductionist
- Optimizing
- Algorithms
- Requirements
- Less uncertainty

Enterprise Systems Engineering Process

May 18, 2012

PRAESTANTIA PER SCIENTIA

EA Design Evolution

- EA does not start with a blank sheet of paper
 - it is the transformation of existing architecture (As-Is) to a target architecture (To-Be)
 - In large organizations, it is hierarchical, involving many levels of planning and system design

Enterprise Architecture

Tech Authority Approach for Controlling Navy IT

Flexible Realization of EA

- Define projects as portfolio of real options
 - Modularization of EA into projects breadth and time dimensions
 - Active management of systems engineering project via real options
- Incorporate alternatives into planning process
- Defer some decisions until uncertainty can be resolved

Phased modular deployment

Ronald E. Giachetti May 18, 2012

Converting Project to RO

Global Combat Support System Marine Corps (GCSS-MC) – Technology enabler for Logistics Modernization strategy; An Oracle 11i ebusiness suite to replace multiple legacy systems.

Binomial Tree

A <u>single</u> project *p* whose associated random variable has two possible outcomes: Improvement (UP) or Worse (DOWN)

Requires 15 calculations for option value by **time period** and **scenario**

Ronald E. Giachetti May 18, 2012 Interrim,

4

In 2011, Navy has 36 active enterprise system projects

Provides a capability(ies)

.egacy,

Core, 31

Model

Net present value of costs and benefits for project *p* in time period *t*

i denotes state of project (e.g., *i* = 1 for delay/abandon; *i*=2 for pilot; *i*=3 for expand)

Denotes the decision for project p and time period t, whether to switch from state a to state a'

1 denotes switch from a to a'

x_{ptaa}′

0 otherwise

Converting Project to RO

Global Combat Support System Marine Corps (GCSS-MC) – Technology enabler for Logistics Modernization strategy; An Oracle 11i ebusiness suite to replace multiple legacy systems.

Correlation – Portfolio Effects

In a portfolio of projects, it is likely that some project benefits/costs are correlated

	Correlation	Value
	Correlated	1 (-1)
Estimate	High	0.75 (-0.75)
correlation	Moderate	0.5 (-0.5)
	Minor	0.25 (-0.25)
	Not	0

	P1	P2	Р3	Ρ4	P5
P1	1	0	0.25	-0.25	0.25
P2		1	0.5	-0.25	0.5
Р3			1	0.5	0.5
P4				1	0.5
P5					1

$$\max Z = \sum_{p \in P} \sum_{a' \in A} V_{p,1,1} x_{p,1,1,a'} \tag{1}$$

$$c_{p,t,a} = f_{p,a} + \lambda_{p,a}\theta_{p,t} \lor p \in P, t \in T, a \in A$$

$$(2)$$

$$V_{p,T,a} = \sum_{a' \in A} x_{p,T,a,a'} (c_{p,T,a'} - I_{p,T,a,a'}) \qquad (3)$$
$$\forall p \in P, t = T, a \in A$$

$$V_{p,t,a} = \sum_{a' \in A} x_{p,t,a,a'} (c_{p,t,a'} - I_{p,t,a,a'})$$
(4)
+ $\frac{(V_{p,t+1,a'})}{e^{r\Delta t}}$
 $\lor p \in P, t = 1..T - 1, a \in A$

$$\sum_{a \in A} \sum_{a' \in A} x_{p,t,a,a'} = 1 \quad \forall p \in P, t \in T$$
(5)

$$x_{p,1,a,a'} = 0 \forall p \in P, a \neq 1, a' \in A$$
 (6)

$$\sum_{a' \in A} x_{p,t,\hat{a},a} = \sum_{a \in A} x_{p,t-1,a,\hat{a}} \quad \forall \ p \in P, t \in [2,T] \,, \hat{a} \in A \tag{7}$$

$$B_{p,1,s,a'} = \beta_1 - \sum_{p \in P, a' \in A} \left(x_{p,1,1,a'} - I_{p,1,1,a'} \right)$$
(8)

$$B_t = B_{t-1} + \beta_t - \sum_{p \in P, a, a' \in A} x_{p,t,a,a'} I_{p,t,a,a'} \quad \forall t \in [2..T]$$
(9)

$$B_t \ge 0 \forall t \in T$$
 (10)

$$x_{p,t,a,a'} \in [0,1] \lor p \in P, t \in T, a \in A, a' \in A$$
 (11)

$$x_{p,t,a,a'} + x_{p',t,a,a'} \le 1$$

$$\forall t \in T, \ a \in A$$
(12)

Ronald E. Giachetti May 18, 2012

Slide 18

Monte Carlo Simulation

Algorithm generates random scenario and find optimal solution for that scenario

Do this for many scenarios – aggregate into a distribution

Given distribution, use a heuristic to select "best" option

Input Data

Small Defense Contractor – low-volume, high-mix manufacturer of electro-mechanical systems

				Ipaa'		Random Variable			
			a1	a2	a3	θp,1,1	F	VC	σр
		Maintain current organization of functional							
Ρ1	a1	departments (i.e., delay)	0	0.8	1.2	4	0	0.9	0.7
	a2	Reorganize into program groups	0.2	0	0.2	4	0.2	1	
		Expand reorganization to marketing and other							
	a3	departments	0.3	0.1	0	4	0.3	1.2	
Ρ2	a1	delay	0	0.6	0.7	0.35	0	0	0.15
	a2	COTS local	0	0	0.1	0.35	0	1	
	a3	Option for HR, CRM, and ERP (growth)	0	0	0	0.35	0	1.1	
Р3	a1	delay	0	0.45	0.55	0.3	0	0	0.3
	a2	SolidWorks upgrade to SW Simulation Premium for	0.05	0	0.08	0.3	0	1	
	a3	Pro-E	0.05	0.05	0	0.3	0	1.1	
Ρ4	a1	delay	0	0.76	1	0.6	0	0	0.25
	a2	ADP-EZ Payroll (Payroll)	0.1	0	0.15	0.6	0	1	
	a3	ADP EZ Labor (labor hr tracking)	0.1	0.1	0	0.6	0	1.2	
Ρ5	a1	delay	0	0.2	0.45	0.1	0	0	0.08
	a2	DOORS or Requirement Mgmt Tool	0	0	0.22	0.1	0	0.8	
	a3	CORE Requirement Mgmt Tool	0	0	0	0.1	0	0.9	

(notional cost and benefit data)

Results – Best First Heuristic

Ronald E. Giachetti May 18, 2012

Time Horizon Results

Expected Value, assuming optimal decisions

Each year, as uncertainty is resolved (what happened during the past year?) – redo plan going forward and revise plans according to new information.

Future Work

- Applicability to the warfighter side of DoD that is nonfinancial and driven more by *acquisition of capabilities* via evolutionary acquisition process
- Model is intractable for realistic size problems, opportunity for improvement in algorithm over the heuristic approach, or experiment with different heuristics
- Opportunities to investigate real options *designed IN* the architecture versus real options ON the project

Conclusions

- Motivation: Flexibility is being left on the table rethink projects and system architectures in terms of "options" can help recapture and use this flexibility
 - Decision makers do think about these types of options, but the informal approach may miss options, is not based on valuation, and human cognitive limits in evaluating multiple projects/options concurrently

Broad-based Method

- Need flexible methods
- Need means to predict enterprise architecture performance
- Need means to plan EA evolution as series of projects / real options
- Model goes hand-in-hand with evolutionary acquisition of capabilities
- Design EA in terms of modules to implement real options in planning
- Consider a project portfolio because decisions are inter-related