

Michael W. Boudreau COL (ret), Senior Lecturer, NPS Brad R. Naegle LTC (ret), Senior Lecturer, NPS

### 2003 – Where We Were

- Positive
  - Encouraged experimentation
  - Come up with new approaches
- Negative
  - Leadership wasn't heavily involved in affordability not speaking with one voice
  - Lack of Discipline (e.g., technological maturity)
  - Lacked risk assessment tools (TRLs, MRLs, SMLs)

Acquisition Research Program: Creating Synergy for Informed Change

#### **Today – Where We Are**

- Cost estimating
  - Certifications
  - Nunn-McCurdy
  - Cost Databases
  - Affordability Slices of Mission Areas
- Collaborative IT
- Mandated reviews MS B (KP-1), CDR-A (KP-2), MS C (KP-3)
- Navy Gate Reviews (affordability)
- Configuration Steering Boards (counter to requirements creep)
- Product Support Manager Performance Based Logistics (affordable logistics)

Acquisition Research Program: Creating Synergy for Informed Change

#### **Opportunities**

- Cost estimating impediments
  - Statistical Confidence Levels
  - Useful Cost Databases support early cost estimates?
  - Nunn-McCurdy Breaches using the wrong metrics
  - Cost vs. Affordability
- Collaborative IT
  - Are the right stakeholders involved in the conversation?

Acquisition Research Program: Creating Synergy for Informed Change

#### **Summary**

- Mandated discipline
- Bureaucracy
- Selective lack of tools
- Need to move to self-motivated discipline





## **Software Intensive Systems & TOC**

- Poor SW size & complexity estimates lead to understated SW O&S cost estimates
- Requirements progression from user 'Capability Need' through PM 'Performance Spec' to contractor 'System Design' invites requirements interpretation
- Interpretation leads to vague or missed requirements
- Vague/missing requirements lead to poor SW size & complexity estimates
- Repeat as necessary!



Acquisition Research Program: Creating Synergy for Informed Change

## **Bridging the SW Requirements Gap**

- The immature SW engineering environment is incapable of satisfying unstated requirements – especially supportability performance gaps
- Requirements gap analysis essential for attaining SW supportability performance – MUIRS Analysis: Maintainability, Upgradability, Interoperability, Reliability, Safety & Security
- Goal: Develop complete, well defined inventory of requirements, including stated, derived, and implied
- Tools: MUIRS Analysis & SEI's Quality Attribute Workshop (QAW)

Acquisition Research Program: Creating Synergy for Informed Change

## SW Design – The Key to O&S Performance

- Must drive the design for supportability performance
- Starts with a complete inventory of requirements, including supportability requirements resulting from a Logistics Supportability Analysis – MUIRS
- SW developer needs to know requirements in context How will system be used & maintained? In what environments? What is the priority of essential functions & enhancing functions? How should it operate when stressed? What is the expected exception handling, fault tolerance, and recovery techniques? How will performance be verified?



## **SW Design continued**

- User involvement in the SW design process is critical they must develop scenarios for:
  - Use Cases: Including MUIRS focus for supportability
  - Growth: Anticipated changes over the life cycle
  - Exploratory: Expected performance when stressed, including FMECA prioritization of functionality/recovery
- Goal: Ensure SW developer understands warfighter expectations *before* system is designed
- Tools: SEI's Architectural Tradeoff Analysis Methodology (ATAM <sup>sm</sup>)





Acquisition Research Program: Creating Synergy for Informed Change

#### **QAW & ATAM Integration into SW Lifecycle Management**

| Mgt         |                           | QAW                                               | ΑΤΑΜ                                                          | Build, Test, & Production Mgt                            | Operations &<br>Support Mgt |
|-------------|---------------------------|---------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-----------------------------|
|             |                           | Requirements<br>Elicitation                       | Design Metrics                                                | Development Metrics                                      |                             |
|             |                           | CDD                                               |                                                               | CPD                                                      |                             |
|             | ICD<br>User<br>Needs      | Explicit,<br>Derived &<br>Implied<br>Requirements | Scenario<br>Development &<br>Prioritization<br>Design Reviews | Prototype<br>LUT & IOT&I<br>EUTE                         | IOC                         |
| A           | ctivities                 | RFP<br>Source<br>Selectic                         | System &<br>Software<br>Design &<br>n Analysis<br>Test (      | Rapid<br>Prototyping,<br>Code, Build,<br>Integrate, Test | Accept, Field<br>& Support  |
| T<br>R<br>A | ech<br>Reviews/<br>Judits | SSR                                               | Deve<br>SRR SFR P                                             | lopment<br>DR CDR                                        | PCA                         |
| NPS         |                           |                                                   |                                                               |                                                          |                             |

Acquisition Research Program: Creating Synergy for Informed Change

## Summary: Improving SW TOC Performance

- Break the cycle: Poor requirements/designs = difficult and costly SW sustainment
- Complete the inventory of derived and implied SW supportability requirements with MUIRS analysis
  - Tools: MUIRS Analysis technique and SEI's QAW
- Drive the system design for improved supportability performance, critical for Software

- Tool: SEI's ATAM <sup>sm</sup>

- Ensure test program includes supportability performance testing, stress testing, fault handling, and recovery techniques
  - Tool: SEI's ATAM <sup>sm</sup>

Acquisition Research Program: Creating Synergy for Informed Change