
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-14-C11P13R01-051

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

bäÉîÉåíÜ=^ååì~ä=^Åèìáëáíáçå=
oÉëÉ~êÅÜ=póãéçëáìã=

qÜìêëÇ~ó=pÉëëáçåë=
sçäìãÉ=ff= =

The Decline and Fall of Joint Acquisition Programs

Andrew Moore, Carnegie Mellon University
William Novak, Carnegie Mellon University

Matthews Collins, Carnegie Mellon University
Jay Marchetti, Carnegie Mellon University
Julie Cohen, Carnegie Mellon University

Published April 30, 2014

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 64 -

Panel 13. Acquisition Jointness and Its Effects

Thursday, May 15, 2014

9:30 a.m. –
11:00 a.m.

Chair: LTG Joseph L. Yakovac Jr., USA (Ret.), Naval Postgraduate School,
former Military Deputy to the Assistant Secretary of the Army (Acquisition,
Logistics, & Technology)

The Decline and Fall of Joint Acquisition Programs

Andrew Moore, Carnegie Mellon University
William Novak, Carnegie Mellon University
Matthews Collins, Carnegie Mellon University
Jay Marchetti, Carnegie Mellon University
Julie Cohen, Carnegie Mellon University

The Cost Impacts of Jointness: Insights From the NPOESS Program

Morgan Dwyer, Massachusetts Institute of Technology
Zoe Szajnfarber, George Washington University
Bruce Cameron, Massachusetts Institute of Technology
Markus Bradford, Massachusetts Institute of Technology
Ed Crawley, Massachusetts Institute of Technology

Acquisition Risks in a World of Joint Capabilities: A Study of
Interdependency Complexity

Mary Maureen Brown, University of North Carolina Charlotte

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 65 -

The Decline and Fall of Joint Acquisition Programs

Andrew P. Moore—is a lead researcher in the CERT Insider Threat Center and a senior member of
the technical staff at Carnegie Mellon University’s Software Engineering Institute. He has over 20
years of experience developing and applying mission-critical system analysis methods and tools.
Moore has worked for the Naval Research Laboratory (NRL) investigating high-assurance system
development methods and has co-authored a book, two book chapters, and a wide variety of
technical journal and conference papers. Moore received an MA in computer science from Duke
University, a BA in mathematics from the College of Wooster, and a graduate certificate in system
dynamics from Worcester Polytechnic Institute. [apm@sei.cmu.edu]

William E. Novak—is a senior member of the engineering staff at the Carnegie Mellon University
Software Engineering Institute. He is a researcher, consultant, and instructor in the acquisition and
development of software-intensive systems. Novak has over 30 years of experience with government
acquisition, real-time embedded software and electronics product development, and business
management. Novak has held positions with GE Corporate Research and Development, GE
Aerospace, Texas Instruments, Tartan Laboratories, and GTE Automatic Electric Laboratories. Novak
received his MS in computer engineering from Rensselaer Polytechnic Institute and BS in computer
science from the University of Illinois at Urbana-Champaign. [wen@sei.cmu.edu]

Matthew L. Collins—is a current graduate student at the H. John Heinz III College at Carnegie
Mellon University and a graduate assistant in the CERT Insider Threat Center. In addition to
information security, Collins has focused his graduate studies on system dynamics, optimization, and
public policy. Collins received his BS in business management from the McKenna School of Business
at Saint Vincent College. [mlcollins@sei.cmu.edu]

Jay D. Marchetti—is a senior member of the technical staff at the Software Engineering Institute. Jay
received his BS in EE, magna cum laude, from the University of Pittsburgh and his MSEE from the
University of Rochester. Marchetti has worked in digital image processing at Eastman Kodak and in
digital control systems at Contraves USA. He has architected and led the development of control
system hardware, software, and systems for numerous real-time and embedded servo and
communications products in the motion simulator, rail vehicle, and power distribution industries.
Marchetti is the inventor on three U.S. patents, the most recent awarded in 2010.
[jaym@sei.cmu.edu]

Julie B. Cohen—is a member of the Acquisition Support Program at the Software Engineering
Institute (SEI), where she served for three years on the Transformational Communications System
program. Prior to the SEI, Cohen was a program manager at both Brashear and Marconi. In the Air
Force, Cohen worked in positions including the F-16 program office, the Flight Training program
office, the Air Force Operational Test and Evaluation Center, and the Air Force Research Laboratory.
She received her BS in EE from Carnegie Mellon University and an MS in EE from the Air Force
Institute of Technology. She is a certified program manager professional and attained a Level 3
Certification as a DoD program manager. [jcohen@sei.cmu.edu]

Abstract
Studies have shown that joint acquisition programs are prone to experience larger cost and
schedule overruns than single service programs, but that cost growth is not related to their
generally larger sizes. This paper explains the unique and substantial cost growth of joint
programs by describing an underlying causal mechanism that drives the observable schedule
delays and cost overruns.

Through analysis of actual joint program performance data and the use of that data in a
system dynamics model of acquisition program behavior, we characterize two primary
sources of joint program cost growth: (1) requirements growth and rework due to a social
dilemma that occurs for the Joint Program Office due to interactions among stakeholder
programs, and (2) rework driven by more traditional causes such as contract underbidding
and the resulting schedule pressure increasing defect levels, and then effectively depressing

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 66 -

productivity through the resultant rework. The combination of the two effects diminishes joint
program performance significantly, explaining the previously identified degree of severity.

In joint programs, the slowing performance manifests itself as a cascade of departing
stakeholder programs who are unwilling to accept the growing schedule and cost, ultimately
resulting in the cancellation of the program.

Introduction
Joint Department of Defense (DoD) acquisition programs intend to provide a system,

subsystem, or capability that will fulfill the needs of, and be funded or managed by, more
than one DoD service or component. Joint programs are appealing because they offer at
least two significant potential benefits: (1) reducing costs by developing one system as
opposed to several differing ones, and (2) improving interoperability by providing a single
system or capability that can be used for multiple purposes in multiple contexts.

Joint programs are noted for the unique challenges that they face organizationally
(Lindsay, 2006), due in part to the tension between the individual programs and services
needing to look out for their own interests, and the Goldwater-Nichols Act of 1986
(Goldwater-Nichols, 1986) that stresses the importance of all service branches working
together both effectively and efficiently. Because of this seeming paradox there is a
fundamental social dilemma at the heart of every joint program—a social dilemma known as
a “Tragedy of the Commons” in which the shared commons is the development resource of
the joint program office and the contractor. Both the joint program and its stakeholder
programs are collectively worse off if the stakeholder programs choose to exploit the
development resource for their individual gain by insisting on having custom requirements
developed1.

This paper describes research conducted to validate the nature of the joint
acquisition program social dilemma and provide insight into mitigations of that problem.
Through analysis of historical joint program performance data and the use of that data in a
system dynamics model of acquisition program behavior, we characterize two primary
sources of joint program cost growth: 1) requirements growth and rework due to a social
dilemma that occurs for the Joint Program Office (JPO) due to interactions among
stakeholder programs, and 2) rework driven by more traditional causes such as contract
underbidding and the resulting schedule pressure increasing defect levels, and then
effectively depressing productivity through the resultant rework. The combination of the two
effects diminishes joint program performance significantly, explaining the previously
identified degree of severity.

The work described here extends the model presented in the 2013 NPS Acquisition
Research Symposium proceedings (Moore, Novak, Cohen, Marchetti, & Collins, 2013). The
preliminary model presented in 2013 describes how the social dilemma was found to be
operating in joint acquisition programs. Evidence supporting the 2013 model was derived
from

1 It is important to note that a “Tragedy of the Commons” situation does not always occur in a joint program. It
may be the case that strong leadership from the joint program manager, or a highly cooperative culture within the
program, will prevent it from happening. However, given the fact that the incentives align to favor unilateral action
by the stakeholder programs and their services, unless specific preventative steps are taken, avoiding this social
dilemma is more likely to be the exception rather than the rule.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 67 -

 targeted workshops with the decision-makers and developers associated with
a particular acquisition program, and

 the SEI’s general understanding of the problem gained through the regular
conduct of Independent Technical Assessments (ITAs) on specific programs
to determine why they are experiencing difficulties.

This paper describes the results from a detailed analysis of operational data from the
same joint acquisition program including lessons learned from that data analysis, a
refinement of the development segment of the simulation model based on that analysis, and
a broadening of our data collection efforts necessary due to the limitations of the program
performance data. We also present options for mitigating the joint program dilemma based
on the modeling and analysis to date.

Program Data Collection and Analysis
We began our data collection by identifying data that was both captured by joint

programs and relevant to our system dynamics model. Our initial data collection came from
workshops with experts in the acquisition community. These workshops provided valuable
qualitative insights that guided the construction of the system dynamics model. The experts
were able to identify relationships between variables2 in the model and to show general
relationships between changes in variables. While the workshops identified relationships
between variables, additional data was required to identify the magnitude of a change in a
variable that had been caused by a change in another variable.

In order to obtain the quantitative data needed to improve our model, we looked at
documents from past joint programs. In addition to the qualitative insights we received from
the group modeling workshops, attendees also provided us with documents from past joint
programs. These documents included code sizing information, staffing rates, and earned
value metrics. In order to integrate this data into our model, we used a script to aggregate
values from files representing different points in time into a single file.

Though we were able to collect data that supported our model, we were limited by
the types of data that were recorded during joint programs, and further limited by the data
we were both able and allowed to access. Although this is an expected limitation of the data
collection process, it highlights an important aspect of our research: the social dilemmas
inherent in joint programs are not well documented, nor are there metrics that can be
universally applied to joint programs to determine a program’s “performance” or to predict a
program’s outcome. This has led to the development of variables in the system dynamics
model that reflect key social dynamics that we and other joint program professionals have
witnessed in joint programs. We believe that these social dynamics are as important to a
program’s success, if not more so, than the dynamics that play out in traditional software
development. Furthermore, these underlying social dynamics may be a significant
contributing cause of poor program performance that is reflected in traditionally recorded
program data.

2 See Appendix A for more information on system dynamics modeling and definitions of relevant terms.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 68 -

Broadened Scope

The limitations of acquisition program data that is available require us to broaden our
data collection efforts beyond that which is typically collected, recorded, or consciously
observed by the Program Management Office (PMO). Other sources of data include expert
opinion as collected through directed workshops, industry averages, and game-based
experiments. Figure 1 shows a high-level overview of our process for our broadened data
collection and analysis.

There are several explanatory theories in the literature related to the dynamics that
were discussed in the group modeling workshops including cooperation/negotiation theory
(Axelrod, 1997; Darling & Mumpower, 1990; Axelrod, 1984), social dilemmas (Kollock,
1998), the “Tragedy of the Commons” (Cross & Guyer, 1980; Hardin, 1968), and altruistic
punishment (Fehr & Gachter, 2002). These theories provide possible explanations and
potential causes of behavior observed in past joint programs. The research hypotheses
described in the next section were derived based on these theories and our experience
evaluating challenged programs. These hypotheses drive the collection of data to find
confirming or refuting evidence, and the development of a simulation problem model that
exhibits the problematic behaviors embodied by the data collected.

Evidence that runs counter to the subject hypotheses may require refinement of the
hypotheses or testing of alternate hypotheses in subsequent work. Once the problem is
accurately understood and modeled, the model structure and execution can help to
understand the benefits associated with various mitigations to the problem. This may require
refinement of the model into a more comprehensive simulation solution model that
embodies approaches ranging from mandates to economic incentives as described in the
literature. Any improved understanding and research results can be fed back into the
explanatory theory of the problem. The simulation solution model can also serve as a basis
for training or on-the-job decision support for joint program managers.

 Simulation Modeling as Theory Building

Acquisition
Program Data

Industry
Averages

Game‐Based
Experiments

Simulation
Problem Model

Explanatory
Theory

Research
Hypotheses

Simulation
Solution Model

Training and
Decision Aids

Workshops with
Experts

D
a
ta
 S
o
u
rc
es

drive data collection
and analysis

drive
refinement

of

drives elaboration of

drives refinement of

provides
leverage
points to
develop

Existing
Literature

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 69 -

Tracking Evidence

The task of tracking evidence regarding our research hypotheses becomes more
complex as we broaden the scope of our data collection and analysis activities. We used a
technique called assurance cases that helps document evidence that a software system
satisfies its non-functional requirements.3 In our case we are documenting the research
hypothesis validation case.

Figure 2 provides an excerpt of the validation case tracking the evidence for
research hypothesis 3. We use a subset of the regular assurance case notation: squared
rectangles represent claims made, circles represent evidence provided that support (or
refute) claims, and rounded rectangles represent context for the argument being made.
Shapes with a triangle at the bottom indicate refinements that are yet to be made. In this
paper these aspects of the validation case were omitted due to space limitations.

The high-level proposition is that joint acquisition programs exhibit the behavior of a
“Tragedy of the Commons” social dilemma. This high-level proposition is comprised of the
following three main hypotheses, of which only Hypothesis 2 is refined in the figure:

1. Hypothesis 1—Stakeholder programs request custom requirements after the
baseline requirements are established, many of which the JPO accepts.

2. Hypothesis 2—Introducing additional requirements after the baseline
requirements are established decreases the overall developer productivity
during system development.

3. Hypothesis 3—Most stakeholder programs leave the joint program because
they do not get their custom requirements accepted by the JPO or, if they are
accepted, the development schedule, cost of implementing them, or the
resulting quality does not meet their needs.

These three hypotheses form the basis of the proposed Tragedy of the Commons.
The common resource being exploited is the JPO’s resources to develop a joint system. The
custom requirements accepted after the baseline is established (Hypothesis 1) sets up a
situation where developer productivity is lessened (Hypothesis 2). The JPO may feel that
they have little option but to accept the custom requirements since they need to keep the
stakeholder programs sufficiently satisfied that they do not leave the joint program
(Hypothesis 3). However, if they continue to accept the additional custom requirements,
overall developer productivity will be diminished to the point that cost and schedule will be
adversely impacted. If stakeholder programs are overly demanding, this will ultimately lead
to stakeholder programs leaving due to poor program execution, as indicated in Hypothesis
3. The joint program thus ultimately collapses when the stakeholder programs have little
motivation to constrain their demand for custom requirements.

The validation case helps track the evidence concerning the truth or falsity of the
hypotheses based on the current progress of the data collection, modeling, and analysis.
Figure 2 shows only the refinement of Hypothesis 2 (due to space limitations). In particular,
evidence is documented that supports the case that the model accurately reflects the
behavior of the acquisition program in terms of the diminishing returns on developer
productivity (Model Test Evidence). Note that the model validity requires both that the model

3 See http://www.sei.cmu.edu/dependability/tools/assurancecase.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 70 -

exhibit the right behavior of the joint acquisition program (Model Validity Evidence 2.1-2.3),
and that it must exhibit this behavior for the right reasons (Model Validity Evidence 2.4-2.5).
As we have mentioned, sources of evidence include program data, subject matter expert
workshops, industry data, and game-based experiments. Hypothesis 3 is the subject of a
game-based experiment that will be outlined in the section titled Game-Based
Experimentation.

Alternate Hypotheses

The discussion so far has focused on joint program problems arising from the late
introduction of custom requirements from stakeholder programs. This may not be the only
reason, or even the most prominent reason why joint programs fail. We continue to look for
evidence supporting or refuting this hypothesis. In addition, we have two alternate
hypotheses for the failure of joint acquisition programs: Underbidding the Contract and
Doing the Easier Work First:

Underbidding the Contract: When contractors bid a lower price or a shorter
duration in order to win a contract, they may make assumptions that all will go
well on the program, and that there will be no setbacks. In reality, setbacks
are inherent in the nature of large-scale development programs and, due to
the complexity of joint programs, one setback may have serious cascading
effects on schedule and cost. Underbidding the contract can lead to schedule
pressure and shortcuts in quality processes that in turn lead to increased
rework at a later date, increases in firefighting, and staff burnout.

Doing the Easier Work First: Developers have a strong motivation to show
good progress early in the development effort. The desire to increase
stakeholder support and buy-in fuels the motivation of the developer to show
substantial progress early in the program. This method of development,
however, can lead to the bow wave effect (Novak & Levine, 2010), which
occurs when a developer puts off the most difficult tasks and focuses
primarily on “quick wins” in order to show good progress. This results in the
early completion of lower risk, easier requirements. This naturally delays the
development of larger, higher-risk requirements until later in the project. Later
development of more difficult requirements has been shown to cause
additional schedule slips and increased costs.

In reality, joint programs fail for multiple reasons. Our analysis in the rest of the paper
investigates a particular combination of factors that may lead to program failure.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 71 -

 Excerpt From Validation Case for Research Hypothesis 2

Simulation Problem Model
This section extends and refines the Developer Segment of the model presented at

the 2013 NPS Acquisition Research Symposium (Moore, Novak, Cohen, Marchetti, &
Collins, 2013). Readers may find familiarity with that paper useful as a context for the work
reported here, but it is not necessary in order to understand the progress we have made
since then, as reported in this paper. We first describe the Development and Rework
segment of the model developed based on the program data available, and the
correspondence of the calibrated model to the acquisition program performance.

Development and Rework Model Segment

Figure 3 shows the basic stock and flow structure of the portion of the model that is
focused on software/system development activities. The stock of Development Work
Remaining starts out with the full scope of the software artifacts to be developed according
to the initial baseline requirements. As new custom requirements are generated, it adds to
the work to be done. Once developed, the artifacts that need to be tested accumulate in the
Test Work Remaining stock. Artifacts either pass their tests and go to Work Completed, or
fail their tests and go to Failed Work Remaining. Upon fixing the artifacts they must pass
their conformance tests before being released. Work released that needs to undergo
rework, possibly based on the introduction of new requirements, accumulates in the Rework
Remaining stock. Reworked artifacts must pass their conformance tests as well.

Hypothesis 2

Introducing additional requirements
after the baseline requirements are
established decreases the overall
developer productivity during system
development.

Hypothesis 3

Most Stakeholder Programs leave the joint
program because they do not get their
(perceived fair share of) custom requirements
accepted by the JPO, or if they are accepted,
the development schedule or cost of
implementing them does not meet their needs.

Hypothesis 2.1

Introducing additional requirements
after the baseline requirements are
established increases the rework that
wil be required of previously
developed software.

Hypothesis 2.2

More rework lowers overall
developer productivity, leading
to greater overall effort needed to
develop each unit of software.

Hypothesis 1

Stakeholder Programs (or their
services) request custom
requirements after the baseline
requirements are established, many of
which the JPO accepts .

Previously Published Model

See attachment for research
paper on previous model
published at 2013 NPS
Acquisition Research
Symposium

Current Simulation
Model

The current simulation
model developed using
VenSim

High-Level Proposition

Joint acquisition programs
exhibit the essential behavior
of a Tragedy of the
Commons.

Model Test

Introducing additional requirements
after the baseline requirements are
established decreases the overall
developer productivity during system
development.

Model Validity Evidence
2.1

The model approximates
the actual program
behavior involving
developer staffing when
using the program levels of
baseline and custom
requirements.

Model Validity

The model approximates
actual program behavior with
respect to code development
activities.

Model Validity Evidence
2.2

The model approximates
the actual program
behavior involving code
development when using
the program levels of
baseline and custom
requirements.

Model Test Evidence

Simulation results show
that introducing additional
requirements after the
baseline requirements are
established decreases the
overall developer
productivity during system
development.

Model Validity

The model approximates actual
program behavior with respect to
code development activities for
the right reasons.

Model Validity
Evidence 2.5

METHOD: Identify
industry metrics to
support. Intensive review
for face validity by
internal and external
subject matter experts.

Model Validity

The model causal structure for the
generation of rework into the software
development process is representative
of the causal structure operating in the
program.

Model Validity

The model causal structure regarding
quality factors in the software
development process is representative
of the causal structure operating in the
program.

Model Validity

The model causal structure regarding
developer productivity factors in the
software development process is
representative of the causal structure
operating in the program.

Model Validity Evidence 2.4

We used data from Boehm's
Software Engineering
Economics (Boehm 1981) to
reflect decreased productivity
in fixing defects based on
when the defect was found in
the development lifecycle.

Program Context

Acquisition Program
Event Timeline

Model Validity Evidence
2.3

The model approximates
the actual program
behavior involving defect
discovery and fixing when
using the program levels of
baseline and custom
requirements. Differences
remain to be examined.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 72 -

 Development and Rework Stocks and Flows

Figure 4 extends the stock and flow structure shown in Figure 3 and provides
connection points with the overall model shown in Appendix B. We focus here on the
productivity factors that regulate the flow of artifacts between stocks. The rate of accepting
custom requirements influences the generation of new work, as shown. Three productivity
factors are represented: development, rework, and test. Average measures are calculated
based on the development and test staff available. Development staff are split between
initial development work and rework. Productivity measures start at a normal value, but are
adjusted based on other factors that will be shown later in this section.

 Productivity Factors

As shown in the lower right of the figure, rework of previously completed work is
generated based on the rate at which new custom requirements generate new work to be
done. The new requirements were not previously considered, and so have the general effect
of undermining previously completed work. This effect becomes worse the later that the new
requirements are introduced into the development process. Our model assumes three
stages of rework generation. Up to the point of the Critical Design Review (CDR), no rework
is generated. After CDR, but before the Test Readiness Review (TRR), the amount of
rework generated is a fraction of the generating new work rate given by the variable post
CDR rework fraction for new work. Any new requirements introduced after TRR are given by
the product of the generating new work rate and the variable post TRR rework fraction for

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 73 -

new work. Similarly, post CDR PDY fraction and post TRR PDY fraction describe reductions
in defect repair productivity based on when the defect was found in the development
lifecycle, as indicated in past research (Boehm, 1981).

Figure 5 refines the development and rework model segment to the next level
showing the negative effects of complexity on productivity and defect introduction (shown in
blue) and the additional reinforcing negative effects off schedule pressure on defect
introduction (shown in red). Complexity is measured relative to the baseline, i.e., as a ratio
of the total work (baseline development work + total custom work) and the baseline
development work, as illustrated in the upper left corner of the figure. The greater the
relative complexity, the lower the productivity and the higher the defect rates are for artifacts
developed. There are two effect functions4 that determine the impact of complexity on
productivity and defect injection: effect of complexity on PDY and effect of complexity on
quality issues, respectively. This is an admittedly simple view of how complexity could
impact software and system development. We continue to evaluate whether it is adequate
for the purposes of our modeling efforts.

Another significant factor that affects defect injection is schedule pressure. Figure 5
shows a reinforcing feedback loop in red named Pressure-Induced Defects. As shown in the
bottom middle of the figure, the fraction of artifacts requiring change determines the failing
or passing of software tests. As the fraction increases, more test work remains, and the
Perceived Completion Date may need to be extended. In accordance with the extent to
which the perception of time needed does not match the time officially available to complete
the development, schedule pressure rises. Greater schedule pressure then leads to even
higher defect rates. The hidden assumption here is that overall schedule pressure puts
pressure on the software developers, who then try to develop the software faster, and as a
result are less careful with their work, and may even deliberately reduce or omit altogether
some quality assurance processes.

4 An effect function is a device used in system dynamics modeling that explicitly describes the mathematical
relationship between two specific model variables over time.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 74 -

 Development and Rework Model Segment

Model Correspondence With Program Data

Figure 6 shows the level of Work Completed as determined from model execution
and as compared with the actual performance of the acquisition program with which we
collaborated. Certain irregularities in the data were smoothed out through discussion with
our program collaborators. In addition, the model execution is based on the specific values
used to instantiate the variables discussed in the development and rework model segment
discussed in the last section. While these underlying variables are not explicitly known in the
case of the acquisition program, we have derived values which, when used in the
simulation, allow a relatively close correspondence with other (known) program performance
variables.

The correspondence of program and model work completed shown is generated
using the program requirements introduction shown in Figure 7a. The baseline requirements
are those generated up to PDR at month 8. Any new requirements introduced after PDR are
assumed to be custom requirements demanded by stakeholder programs. Figure 7b shows
the level of development staff over time for the acquisition program and for the model
simulation. In this case, we did not use the program data as input to the model, but instead
developed a staffing segment of the model to reflect actual staffing. This allows us to
regulate staffing for testing the model under different operational conditions in the next
section.

Development and rework productivity variables are based on a normal average
developer productivity of 100 source lines of code (SLOC) per person-month. This normal
value is adjusted based on the complexity relative to baseline variable and the effect of
complexity on PDY effect function shown in Appendix C. Similarly, the fraction of artifacts
requiring change variable is based on a normal value of 1/5th. This normal value is again
adjusted based on the complexity relative to baseline variable, but here the effect of
complexity on quality issues effect function (as shown in Appendix C) is used. The variable
schedule pressure also modifies the fraction requiring change based on the effect of
pressure on quality issues effect function. These two factors have a multiplicative effect on
the quality issues.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 75 -

 Acquisition Program vs. Model Cumulative Work Completed5

Rework generation is based on the two multipliers of the generating new work
variable:

post CDR rework fraction for new work = 0.6

post TRR rework fraction for new work = 0.9

CDR occurs at month 12 and TRR occurs at month 28. As an example, after CDR
but before TRR for a period of 16 months, the rate of requiring rework is 0.6 of that of
generating new work. From month 28 until project completion at about month 90, the rate
changes to 0.9. Before month 12, no rework is generated.

 Assumed Values for a) the Program Requirements Introduction; b)
Development Staffing Levels

5 This and subsequent graphs were generated using the Vensim® modeling tool. These are all behavior-over-
time graphs and, as such, the X-axis for these graphs is specified in months (120 months—10 years—is the
duration of this simulation). Each simulation run is specified as individual graphs distinguished with a number
label (1 and 2 in Error! Reference source not found.) as specified in the legend below the graph.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 76 -

The correspondence shown in Figure 6 is clearly not perfect. The initial slope of the
accumulated developed code is about the same for both the model and the program through
month 24, and again from month 24 to the software development completion at
approximately month 90. The change in slope for the model, and presumably for the actual
program as well, is due to a shift from artifact development to artifact test and rework. At
month 24 the model rises to a higher level before the inflection point than indicated in the
program data. In addition, there is a significant rise in additional requirements at month 74
(seen in Figure 7a), which leads to rapid development in the actual program data, but the
same rate of increase in the model. One explanation for this latter effect is that there was a
surge of developer overtime and effort in the last months in the acquisition program that is
not reflected in the model. We will continue to try to resolve these differences through
discussions with our collaborator.

Even if the above model correspondence were more precisely aligned, this would not
in and of itself indicate that the model is correct. Other, different models could generate
essentially this same behavior. More points of conformance are necessary to gain greater
confidence that our model is sufficiently accurate to predict program response to alternate
mitigation approaches. While it is useful to explore the significance of the simulation outputs
at this intermediate stage, we are working to further analyze program data particularly in the
areas of defect/fix rates and rework.

Preliminary Observations
Hypothesis 3 in the validation case described previously states that the more time

that passes between the establishment of baseline requirements and the introduction of
additional requirements, the lower the overall developer productivity will be during system
development. We measure developer productivity, i.e., KSLOC developed per person-month
of effort, over the lifetime of the development effort. We normalize developer productivity by
dividing actual developer productivity by the developer productivity seen in the model for
increasing levels of custom requirements introduced after the baseline. As shown in Figure
8, since the baseline requirements are those established before PDR, custom requirements
are those introduced after PDR. We test our simulation by increasing the levels of these
requirements.

 Increasing Levels of Custom Requirements

total reqs (program and model)

2,000

1,500

1,000

500

0
1

1
1 1 1 1 1 1 1 1

1 1 1 1 1

0 12 24 36 48 60 72 84 96 108 120
Time (Month)

re
qs

total reqs (program and model) 1 1 1 1 1 1 1 1 1 1

Multiples of the
custom

requirements

PDR

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 77 -

Figure 9 shows the results of executing the model for increasing levels of custom
requirements, where the custom requirements introduced after PDR are measured as a
percentage of the total program requirements. The three-dimensional surface in the graph
simultaneously shows how developer productivity varies as the realism of schedule setting
varies from low to high. The program that we considered had just over 20% of the custom
requirements introduced after PDR and was assessed to have a medium level of schedule
realism. The developer productivity for the actual program was used as the baseline for
normalizing developer productivity and therefore intersects at a productivity level 1.

 Tipping Point of Developer Productivity

The precipitous drop in developer productivity as schedule realism declines and the
level of custom requirements increase is consistent with our Hypothesis 3, since multiplying
the actual program custom requirements has the effect of increasing the requirements
introduced after the baseline requirements are established. The requirements growth
increases the complexity of the system under development which decreases the developer
productivity and increases the defect injection rate as noted in the model description in the
section titled Simulation Problem Model. We included the realism of schedule setting as a
variable in the simulation to test the impact on developer productivity of contract
underbidding and the aggressive initial development schedule that results. Interestingly, as
shown in Figure 9, schedule realism does not play a large role in diminishing developer
productivity where the percentage of custom requirements is low, say below 10 or 20%.
However, with larger percentages of custom requirements, lack of schedule realism
dramatically exacerbates the drop of developer productivity. The combination of a high level
of custom requirements and lack of schedule realism (again, potentially due to initial
contract underbidding) is the most deadly. Note also that high levels of schedule realism can
buffer programs from the most severe drops of developer productivity due to high levels of
custom requirements.

Figure 10 shows that average developer productivity can be improved by decreasing
custom requirements or increasing realism of the development schedule. While this may
seem to be an intuitive conclusion, the graph suggests that there is dramatic improvement
possible in these areas.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 78 -

 Directions for Improved Performance

Three potential mitigation strategies that address the basic goals of decreasing
custom requirements and increasing schedule realism are: Authority Mandate, Altruistic
Punishment, and Incentivize Schedule Accuracy. Authority Mandate refers to the use of an
overarching authority that manages and enforces the sensible use of the shared resource,
thus avoiding the risk of exploitation and overuse. Altruistic Punishment enables participants
to punish perceived uncooperative (i.e., exploitative) participants through a mechanism such
as a financial penalty. The Incentivize Schedule Accuracy approach provides incentives for
accurate estimates so as to prevent the onset of significant schedule pressure that drives
many of the subsequent problems leading to poor program performance and loss of
stakeholder confidence. These approaches are elaborated in Table 1 with the primary
benefits and some of the possible adverse side effects.

Table 1. Mitigation Areas Based on Simulation Behavior

Goal
Mitigation
Strategies

Benefits Possible Side Effects

Decrease
Custom
Requirements
(CRs)

Authority
Mandate

Joint Program Office has ability
to deny CRs without risking
defection

Forced participation increases
Stakeholder Program (SP)
animosity and SP collusion to
sabotage the Joint Program

Decrease
CRs

Altruistic
Punishment

Limits CR growth by penalizing
excessive CR demands (at
cost to all)

Conflict may escalate and cause
SPs to retaliate against each other

Increase
Schedule
Realism

Incentivize
Schedule
Accuracy

Limits likelihood of developer
getting behind schedule

Taking shortcuts that reduce
quality in order to achieve
schedule

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 79 -

While there are many other potential mitigation strategies that can be applied to
address this problem, these three are sufficient to give a sense of the range of possible
options.

Game-Based Experimentation
The incorporation of real-world data into any model will benefit the model’s ability to

track actual historical behavior, as well as potentially predict future behavior, with increased
fidelity. In our research program performance data acquired from several past joint programs
was critical in calibrating certain aspects of the model. Specifically, cost, schedule,
requirement additions, and KSLOC trends over the course of the programs were utilized to
fine-tune effect functions within the model relating to development efficiency and rework.
This utilization of real program data helped to provide higher correlation of the model to
actual program performance data for a variety of outputs as shown, such as in Figures 6
and 7b.

However, due to the relative scarcity of actual joint program data, our dependence
on program metrics data for calibrating the model was recognized early on as an issue that
we needed to address. Furthermore, areas of the model other than cost, schedule, and
development progress—for example the social dimensions such as the stakeholder’s intent
to remain engaged or, conversely, to defect from the joint program in favor of a “go it alone”
approach—are not represented in the metrics normally collected by a joint program. There
are good reasons for this. While professionals are expected to exhibit integrity in their
professional actions and decisions, they are subject to the effects of incentives, especially
when those incentives are strong, such as in matters of salary, attractive work opportunities,
and promotions. As the workshops that were conducted with the JPOs and their
development teams showed, not all of the behaviors exhibited by joint program stakeholders
are socially admirable—and may not be willingly revealed. As a result, in order to gain
insight about relevant feelings of fairness, cooperation, and confidence among stakeholders
and the JPO we needed another vehicle to provide real-world data. Specifically, we wanted
to answer the question: What is the likelihood of joint program stakeholder program
defection as a function of:

 custom requirement acceptance rates?

 joint program schedule performance?

 perceived fairness of treatment?

The game-based experiment is intended to provide empirical data upon which we
can test Hypothesis 3 described in the validation: Most Stakeholder Programs leave the joint
program because they do not get their (perceived fair share of) custom requirements
accepted by the JPO, or if they are accepted, the development schedule or cost of
implementing them does not meet their needs.

Experiment Design

The game is intended to exemplify aspects of the “Tragedy of the Commons” nature
of a joint acquisition program, where the lesson is that “Individually optimal decisions lead to
collectively inferior solutions.” It shows that, left unchecked, the collective custom feature
demands of the stakeholder programs can require levels of effort and produce complexity
and risk that can overwhelm the development capability of the JPO. It can also impact its
ability to maintain its initial rate of development, causing the schedule to slip and miss the
critical “need dates” of stakeholders, making them want to leave the program. Unfortunately,
refusing to accept these demands can also cause stakeholders to become disenchanted
and try to leave the program (in favor of developing a custom, “siloed” system), thus

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 80 -

undermining the joint program viability. When enough stakeholder programs leave,
eventually the program becomes irrelevant as a joint effort, or is cancelled outright.

The game is computer-based, with the human subject (hereinafter “the player”)
interacting with the JPO and N other joint program stakeholders, where N, an experimenter
setting, will normally be in the range [2, 5]. Figure 11 shows the game interface for N = 3
stakeholder programs. The JPO and all other stakeholders may be other players in the
game, or computer-implemented automata. The game is hosted on a web server to
accommodate players from any geographic locale; all that is required to play is a web
browser and an Internet connection.

The game proceeds through rounds of play, where each stakeholder, having a set of
custom requirements that they want to have accepted for implementation as part of the joint
program, requests some number of them to be accepted by the JPO. The JPO and
automaton stakeholder behaviors are deterministic, though aspects of their behavior are
tunable via experimenter settings. In each round, the JPO may accept or reject the player’s
custom requirements requests, as it will for the other stakeholder requests. As the game
proceeds the acceptance and rejection of requests by all stakeholders is displayed via bar
charts, permitting the human subject to assess their perceived fairness of the JPO’s
decisions. As more and more custom requirements are accepted by the JPO, the expected
delivery schedule, presented with some degree of uncertainty on a timeline, will (as in an
actual joint program) generally slip. To simplify the game, the degree of this schedule slip is
the sole measure of program “performance” for the player (i.e., cost growth is not considered
in the game, but the viability of the estimated delivery date may be determined by comparing
it to the player’s assigned “need date” for the system).

The schedule slip and the JPO’s unpredictability present a tension for the human
subject in that the game instructions make clear that their score can be maximized by
getting as many of their custom requirements accepted as possible, while also having the
system deliver within their need date. As the JPO accepts more custom requirements, the
risk of missing essential deadlines escalates. During each round of play the human subject
has two options: request the number of custom requirements they deem appropriate, or
“defect” from (i.e., leave) the joint program. If they elect to defect, the player must specify the
reason as either “too many requests denied” or “schedule slips.” Data on all player,
stakeholder, and JPO actions, along with the experimenter settings, and post-game
questionnaire answers, are recorded for each game. Subsequent reports on aggregated
data will be used to assess data trends so that they may be utilized within the joint program
system dynamics model.

While no experimental design can guarantee the replication of “real-world” behavior,
by conducting the experiments with actual acquisition program staff, and designing the
experiment as a competitive game with a financial incentive to win, this experiment attempts
to reproduce as many of the key aspects of the joint acquisition context as possible.

Summary and Conclusions
This paper presents research that is being conducted to investigate whether a social

dilemma, known as a “Tragedy of the Commons,” is the cause of the observable schedule
delays and cost overruns that are common to joint programs. Three main hypotheses are
described that form the basis of the proposed social dilemma, as well as two alternative
hypotheses that describe other potential causes of joint program failure. We test these
hypotheses through data analysis, subject matter expert workshops, linkage to past
research, and game-based experiments.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 81 -

The focus of the paper is the presentation of a simulation model as the embodiment
of our current understanding of the problem, and as a means to test potential mitigations.
The model described extends the model presented in the 2013 NPS Acquisition Research
Symposium proceedings (Moore, Novak, Cohen, Marchetti, & Collins, 2013). The 2013
model is updated to reflect our analysis of quantitative data from an actual joint acquisition
program. The model includes the rework cycle and the relevant productivity and defect
injection factors that influence software development rework in joint programs, and
contribute to the social dilemma with which joint program managers are faced. In the section
titled Model Correspondence with Program Data, we compare the results from our model to
the actual program data.

While we need additional data to further validate the model, this correspondence
between actual program data and our model shows the increasing realism of the model at
this stage of development. Our preliminary observations from the model show a potential
tipping point in developer productivity related to custom requirements demanded by
stakeholders and realism of schedule setting. We provide initial strategies that aim to
address increasing custom requirements and to improve schedule realism. After analyzing
and modeling the initial data, we found a need for additional information that is not typically
recorded in the course of joint programs. In the section titled Game-Based Experimentation,
we describe the design of a game-based experiment to collect data related to stakeholder
defection from joint programs.

There are many areas of potential future work in using these techniques to analyze
acquisition program behavior. One area where new analysis will be needed is an
increasingly common type of joint program that is developing a capability that is to be
integrated into existing systems, rather than developing a new stand-alone system. The
“capability” approach is becoming more prevalent as funding dictates that systems will have
longer lifetimes in the field, and will thus require more upgrades to remain current. There are
important differences between developing capabilities and developing systems, focusing on
the fact that capabilities must be integrated into existing systems, and may not be able to be
extracted from those systems once they’ve been integrated—increasing the level of risk to
the receiving system. This in turn undermines the level of trust that the receiving system
program may have in the joint program, exacerbating the social dilemma that is already at
work, and which requires trust to be overcome. This trend is becoming significant because
of the natural role that software plays in providing upgraded capabilities in fielded systems—
and thus understanding how to more successfully develop and deploy those software
capabilities will be essential.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 82 -

 Prototypical Experimental Game Screen for 3 Stakeholders (N = 2)

Another area of potential future work is the development of educational tools based
on the simulation model that would help joint program professionals recognize the social
dilemma that is almost ubiquitous in joint programs. Training based on these results would
provide insight into the dynamic organizational behavior present in joint programs, and
better prepare acquisition professionals to manage joint programs. Looking beyond
traditional classroom education, the system dynamics model also offers the opportunity to
create a “management flight simulator” for acquisition that can provide experiential learning
from a hands-on simulation to give acquisition staff a deeper and more intuitive
understanding of these acquisition dynamics. These are important avenues to pursue given
the challenges of both quantity and experience that continue to face the acquisition
workforce.

Finally, one of the most advanced applications of the technology would be to forecast
likely future acquisition program performance for different “what if?” scenarios using a
parameterized system dynamics model that can be adapted to emulate specific programs.
The development of a management decision support tool would require a high fidelity model
of software acquisition, and the intensive application of detailed measurement data from
software development efforts in order to provide sufficient predictive value to be of value.
This type of capability would allow for the comparison and analysis of the likely outcomes of
different decision alternatives when a critical decision must be made. It could also be used
to predict the likely impacts (as well as the potential unanticipated side-effects) of new or

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 83 -

modified policies on the performance and outcomes of the acquisition programs they are
intended to regulate.

We see significant potential for the application of this technology to improve the
effectiveness of the acquisition system from the level of individual acquisition staff members,
to program managers, to that of acquisition executives and policy makers. It is only through
a detailed analysis and understanding of the inner workings of the mechanisms of
acquisition that we will be able to make real progress in making them operate more
efficiently.

References
Axelrod, R. (1984). The Evolution of Cooperation. New York: Basic Books, Inc.

Axelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of Competition
and Collaboration. Princeton: Princeton University Press.

Boehm, B. (1981). Software Engineering Economics. Saddle River: Prentice Hall.

Cross, J. G., & Guyer, M. J. (1980). Social Traps. Ann Arbor: University of Michigan Press.

Darling, T. A., & Mumpower, J. L. (1990). Modeling Cognitive Influences on the Dynamics of
Negotiations. In R. H. Sprague (Ed.), Proceedings of the 23rd Hawaii International
Conference on System Sciences. IV, pp. 22-33. Washington, DC: IEEE Computer
Society Press.

Darling, T. A., & Richardson, G. P. (1990). A Behavioral Simulation Model of Single and
Iterative Negotiations. Proceedings of the 1990 International System Dynamics
Conference (pp. 228-241). Chestnut Hill: System Dynamics Society.

de Jong, S., & Tuyls, K. (2011). Human-Inspired Computational Fairness. Autonomous
Agent Multi-Agent Systems, 103-126.

Fehr, E., & Gachter, S. (2002, January). Altruistic Punishment in Humans. Nature, 415, 137-
140.

Goldwater-Nichols. (1986). Department of Defense Reorganization Act of 1986, PL 99-433.
United States Statutes.

Hardin, G. (1968, December). Tragedy of the Commons. Science, 162, 1243-1248.

Kollock, P. (1998, August). Social Dilemmas: The Anatomy of Cooperation. Annual Review
of Sociology, 24, 183-214.

Lindsay, J. R. (2006). War Upon the Map: The Politics of Military User Innovation. Political
Science. Cambridge: Massachusetts Institute of Technology.

Meadows, D. (2008). Thinking in Systems: A Primer. White River Junction, VT: Chelsea
Green Publishing.

Moore, A. P., Novak, W. E., Cohen, J. B., Marchetti, J. D., & Collins, M. L. (2013). The Joint
Program Dillemma: Analyzing the Pervasive Role that Social Dilemmas Play in
Undermining Acquisition Success. Proceedings of the NPS Acquisition Research
Symposium. Naval Postgraduate School.

Novak, W. E., & Levine, L. (2010). Success in Acquisition: Using Archetypes to Beat the
Odds. Technical Report, Software Engineering Institute, Pittsburgh, PA. Retrieved from
http://www.sei.cmu.edu/library/abstracts/reports/10tr016.cfm

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex
World. McGraw-Hill.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 84 -

Appendix A: System Dynamics Background
The system dynamics method helps analysts model and analyze critical behavior as

it evolves over time within complex socio-technical domains. A key tenet of this method is
that the dynamic complexity of critical behavior can be captured by the underlying feedback
structure of that behavior. The boundaries of a system dynamics model are drawn so that all
of the enterprise elements necessary to generate and understand problematic behavior are
contained within them. The method has a long history, as described in (Sterman, 2000) and
(Meadows, 2008).

System dynamics and the related area of systems thinking encourage the inclusion
of “soft” factors in the model such as policy, procedural, administrative, and cultural aspects.
The exclusion of soft factors in other modeling techniques effectively treats their influence as
negligible, which is often an inappropriate assumption. This holistic modeling perspective
helps identify mitigations to problematic behaviors that are often overlooked by other
approaches.

Figure 12 summarizes the notation used by system dynamics modeling. The primary
elements are variables of interest, stocks (which represent collection points of resources),
and flows (which represent the transition of resources between stocks). Signed arrows
represent causal relationships, where the sign indicates how the variable at the arrow’s
source influences the variable at the arrow’s target. A positive (S) influence indicates that
the values of the variables move in the same direction, whereas a negative (O) influence
indicates that they move in opposite directions. A connected group of variables, stocks, and
flows can create a path that is referred to as a feedback loop. There are two types of
feedback loops: balancing and reinforcing. The type of feedback loop is determined by
counting the number of negative influences along the path of the loop. An odd number of
negative influences indicates a balancing loop; an even (or zero) number of negative
influences indicates a reinforcing loop.

Significant feedback loops identified within the model described here are indicated by
a loop symbol and a loop name in italics. Balancing loops—indicated with the label B
followed by an identifying number in the loop symbol—describe aspects of the system that
oppose change, seeking to drive variables to some equilibrium goal state. Balancing loops
often represent actions that an organization takes to manage, or mitigate a problem.
Reinforcing loops—indicated with a label R followed by a number in the loop symbol—
describe system aspects that tend to drive variable values consistently either upward or
downward. Reinforcing loops often represent the escalation of problems, but may include
problem mitigation behaviors.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 85 -

 System Dynamics Notation

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 86 -

Appendix B: Overview of Joint Acquisition Program Model

Development
Work

Remaining

Work
Completed

developing
artifacts

Announced
Completion

Dateextending
schedule

fraction requiring
change

schedule
pressure

complexity relative
to baseline

S

Stakeholder
Pgm's Custom

Reqs Accepted

accepting
custom reqs

baseline
development

work

S

S

S

stakeholder pgm's
satisfaction with

custom reqs

stakeholder
pgm's

cooperation
S

O

fraction custom
reqs accepted

S

stakeholder pgm's
defection

S

O DoD program
buy-in

O

generating
new work

Stakeholder
Pgm's Custom
Reqs Desired

processing
custom reqs

Stakeholder
Pgm's Custom
Reqs Rejected

rejecting
custom reqs

O

total custom
work

S

S

S

defection
threshold

O

Stakeholder
Pgm's Buy-In

O

Pressure-Induced
Defects

Stakeholder Custom
Reqs Acceptance

Complexity-Induced
Slow Downs

DoD Buy-In
to Expand

the Program

S

ratio indicated to
available

S

effect of pressure
on quality issues

effect of
complexity on
quality issues

normal
requiring
change

O

program's inherent value
to stakeholder pgm

total number of
stakeholders

avg
development

PDY

normal
staff PDY

S

B

initializing
schedule

<baseline
development

work>

realism of
schedule
setting

O

effect of
complexity

on PDY

<accepting
custom reqs>

S

stakeholder
pgm's gain

stakeholder pgm's
perception of

others' relative
gain

O

O

stakeholder
pgm's problem

potential

O

recent
perception of
Stkhldr's gainchanging Stkhldr's

perception

new perception
Stkhldr's gain

S
S

S

O

Test Work
Remaining passing tests

O

failing
tests

total known
work remaining

S

S

avg rework
PDY

O S

Perceived
Completion

Dateadjusting
perception S

S

authority
mandate

S

S

S

Rework
Remaining

reworking
artifacts

avg test
PDY
S

S

requiring
rework

post CDR
rework fraction

for new work

S

<generating new
work>S

post TRR
rework fraction

for new work

S

<Rework
Remaining> S

test staff
S

<development
staff>

R

S

S

Failed
Work

Remaining

fixing
artifacts

post CDR
PDY fraction

post TRR
PDY fraction

<Failed Work
Remaining>S

S

S

SS

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 87 -

Appendix C: Development and Rework Effect Functions

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= = - 88 -

Acknowledgements
Many people have worked to sponsor and improve this paper and the work it

describes, and it would not have been possible without their support, help, and expertise.
First and foremost, we would like to thank our sponsor, the office of the United States
Assistant Secretary of Defense (Research and Engineering) for the funding and opportunity
to perform this work. Next, we would like to thank our group modeling workshop participants
- the acquisition professionals who generously gave their time and expertise to help us to
better understand the problem and improve the model formulation. We would also like to
thank Linda Northrop, Chief Scientist of the SEI’s Software Solutions Division, for her
support, encouragement, and insights. We are grateful to James McCurley, Senior Member
of Technical Staff at the SEI, who provided useful guidance and direction throughout our
data analysis and modeling efforts. Finally, the authors owe a debt of gratitude to our editor,
Gerald Miller.

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and
development center.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties of
any kind, either expressed or implied, as to any matter including, but not limited to, warranty
of fitness for purpose or merchantability, exclusivity, or results obtained from use of the
material. Carnegie Mellon University does not make any warranty of any kind with respect to
freedom from patent, trademark, or copyright infringement.

This material has been approved for public release and unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

DM-0001081

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net

