

The Changing Shape of the Defense Industry and Implications for Defense Acquisitions and Policy *Work in Progress*

Victoria A. Greenfield, Ph.D.

Crowe Chair Professor, U.S. Naval Academy

Table of Contents

Introduction

- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

Monterev, CA

Wave of Consolidation Hits Defense Industry in 1990s

- Cold War ends... less defense spending
- Top-tier and other defense firms merge
 - Lockheed and Martin Marietta
 - Boeing and McDonnell Douglas
- DOD provides institutional and some financial

 support for mergers
 - Antitrust policy process
 - Cost reimbursements

"Last Supper" (1993)

The "Eye Chart" Provides One Perspective

Research Goals

- Establish statistical facts
 - How has consolidation reshaped the defense industry?
 - How might it continue to reshape the industry?
 - What forces have promoted it?
- Consider implications for defense acquisitions using standard economic models and tools
 - Concentration and competition
 - Concentration, productivity, and innovation

Approach

- Define defense industry in terms of DOD "market" and suppliers of goods and services
- Draw data from DD350, DOD top 100 company reports, budget documents, DOL, DOC/BEA, FactSet Mergerstat, and AIA to establish facts and assess implications, using
 - Descriptive statistics
 - Time series and correlation analyses

Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

Data Sources and Use

- Mergerstat data show broad trends
- DD350 collects data on DOD contract actions
 - Can sort prime contracts and tally dollars by "Ultimate Parent Company" for 1984-2006 and supplement with "predigested" data from top-100 reports for 1958-1983
 - Rankings allow firm-level comparisons
 - 4-, 8-, 20-, 50-, and 100-firm industry CRs
 - indicate (proxy) consolidation
 - allow market-level and cross-industry comparisons
 - Changes in reporting methods and criteria, especially thresholds, pose substantial challenges

M&As Economy Wide and in Aerospace Defense

Source: Author based on data from FactSet Mergerstat, LLC, 2007 and 2008.

CRs Suggest Differences Across and Within Defense Industry Levels

- 4- and 8-firm CRs move together
- 50- and 100-firm CRs also move together
- 4/8- and 50/100-firm CRs do not move together uniformly (e.g., 1990s v. 2000s)
- 20-firm CR acts as "pivot"

4- and 8-Firm CRs Move Together

Source: Author based on data from DOD DD350 and top 100 reports (1958-2006).

4/8- and 50/100-Firm CRs Do Not Move Together Uniformly

Source: Author based on data from DOD DD350 and top 100 reports (1958-2006).

Alternative Data Presentations Shed Light on Market-Level Differences

- Market-level breakouts, i.e., 1-4, 5-8, 9-20, 21-50, and 51-100-firms, set top 4 apart.
- Comparisons of equally-ranked firms over time show transition at top-most levels and consequences for other levels
 - Firms 1-4 gain market share
 - Firms 5-8 and 9-20 lose market share
 - Firms 21-50 converge to "business as usual"

CR Rises for Very Top-Most Firms

Source: Author based on data from DOD DD350 and top 100 reports (1958-2006).

Comparisons of Equally Ranked Firms Show Transitions

Source: Author based on data from DOD DD350 (1984-2006).

Observations consistent with hollowing out of "5-to-20" market (Good, bad, indifferent?)

Trends abating in recent years

Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

What Drives Consolidation?

- Changes in DOD Spending
 - Declining expenditures in 1990s
 - End of cold war
 - Mounting federal deficits
 - Increasing expenditures in 2000s (Iraq)
- DOD policy decisions and interventions
- Conditions in larger economy

Given prominence of DOD as purchaser, market forces and policy actions not clearly separable

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School

Monterev, CA

Defense-Spending Cycles

Source: Author based on data from the DOD Green Book (2007 and 2008).

Industry Concentration v. Spending

Source: Author based on data from the DOD Green Book (2007 and 2008), DOD DD350 (1984-2006) and top 100 reports (1958-1983)

Empirical Model Considers Multiple Factors

 $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + B_4 X_4 + B_5 X_5$

Where:

- Y = 4-firm concentration ratio (in decimal terms, e.g., 0.18, 0.25, etc.) (CR4F)
- $X_1 = Lagged 4$ -firm concentration ratio (one period lag) (CR4F-L) +
- $X_2 = Lagged real DOD BA (in $2000 billions) (BA-L)$
- $X_3 = DOD policy (0, 1 dummy) (POL) +$
- $X_4 =$ Number of economy-wide <u>M&As</u> (MA) +
- $X_5 = Trend term (Linear, 1...N) (TR) +$

Results Support Multiple Factors

	Intercept	CR4F-L	BA-L	POL	MA	TR		
(1)	B ₀	B ₁	N/A	N/A	N/A	N/A		
Coefficient	0.18	0.913						
(t-stat)	(1.297)	(13.110)						
Test results	R ² (adj.) = 0.795; F = 171.878; DW = 2.082							
(2)	B ₀	B ₁	N/A	N/A	N/A	B ₅		
Coefficient	0.034	0.753				0.001		
(t-stat)	(2.337)	(8.452)				(2.626)		
Test results	R ² (adj.) = 0.820; F = 101.169; DW = 2.060							
(3)	B ₀	B ₁	B ₂	N/A	N/A	B ₅		
Coefficient	0.059	0.710	-7.976E-5			.001		
(t-stat)	(2.693)	(7.685)	(-1.515)			(3.024)		
Test results	$R^{2}(adj.) = 0.825; F = 70.291; DW = 2.133$							
(4)	B ₀	B ₁	B ₂	B ₃	N/A	B ₅		
Coefficient	0.051	0.736	-6.315E-5	.007		.001		
(t-stat)	(2.099)	(7.336)	(-1.086)	(0.694)		(2.165)		
Test results	$R^2(adj.) = 0.823$; F = 52.172; DW = 2.153							
(5)	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅		
Coefficient	0.069	0.609	-6.653E-5	0.008	2.628E-6	0.001		
(t-stat)	(2.709)	(5.144)	(-1.180)	(0.885)	(1.883)	(1.817)		
Test results	R ² (adj.) = 0.834; F = 45.103; DW = 2.109							

	Intercept	CR4F-L	BA-L	POL	MA	TR	
(6)	B ₀	B ₁	B ₂	N/A	B ₄	B 5	
Coefficient	0.077	0.582	-8.682E-5		2.516E-6	0.001	
(t-stat)	(3.283)	(5.101)	(-1.690)		(1.815)	(2.737)	
Test results R ² (adj.) = 0.835; F = 56.490; DW = 2.081							

DOD Influences but Does not Control Defense Industry

- Autoregressive "Black Box" explains most of the variation in 4-firm CR, but...
- Defense budgets and economy-wide conditions matter too, while...
- DOD policy actions—e.g., the "Last Supper"—are not statistically significant

Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

Naval Postgraduate School

Monterev, CA

Concentration and Competition

- Preliminary assessment of "Extent of Competition" in DD350 for 1989-1994, 1999, and 2004 yields inconclusive results
 - Competition decreases among the very top-most firms, in aggregate, i.e. top 4
 - Competitive share drops from 61% to 48%
 - Competition has not increased—or decreased—uniformly at other market levels or even among top 4
 - Correlation between concentration and competition is +/- at different market levels

Concentration, Productivity, and Innovation

- Cursory look at data on labor productivity and R&D suggests areas of concern
 - Correlation between aircraft labor productivity and 4-firm CR is negative, after accounting for rise in manufacturing productivity
 - Correlation between company-funded applied R&D and 4firm CR is also negative

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Montercy, CA

Table of Contents

- Introduction
- Trends in Consolidation
- Possible Explanations
- Implications for Defense Acquisitions
- Conclusions and Future Research

Conclusions

- In some sense, the "eye chart" is right
 - The top 4 firms, in aggregate, have become more concentrated and less competitive since the 1990s, albeit with a modest reversal post-2003
- But, the eye chart tells only part of the story
 - Differences across/within market levels, even within top 4
 - Market dynamism, including new, global entrants
 - Competition, productivity, and innovation?
- Moreover, DOD may have less control than it thinks
 - The Black Box suggests potential for additional consolidation in the not-too-distant future

Future Research

- Address structural breaks in time series
- Flesh out competition model, data, and results
- Pursue interest in relationship between competition, productivity, and innovation, especially innovation
 - Using R&D and patent data
 - Conducting cross-industry comparisons
 - Controlling for other economic forces
- Consider feasibility of analysis by product lines

Naval Postgraduate School

Monterev, CA

In progress for

WEAI meetings

Contact Information

- Victoria A. Greenfield Crowe Chair Professor Department of Economics U.S. Naval Academy 589 McNair Road Annapolis, MD 21402 Phone: 410 293 6896 Cell: 571 239 8467 vag@usna.edu
- Ryan R. Brady
 Assistant Professor
 Department of Economics
 U.S. Naval Academy
 589 McNair Road
 Annapolis, MD 21402
 rbrady@usna.edu

Back Up Slides

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

31

Summary of Regression Results

- If BA decreases by one billion dollars in one year, CR4F increases by about 0.00009 in next year
 - Actual decrease in real BA in 2005 would have been associated with increase of about 0.0002 in CR4F in 2006*
- If economy-wide M&As increase by 1 in one year, CR4F increases by about 2.52E-06 in same year
 - Actual increase in economy-wide M&As in 2006, would have been associated with increase of about 0.002 in CR4F in 2006*
- Lagged industry concentration and economy-wide M&As are significantly correlated, but collinearity neither eliminates statistical significance nor confounds signage

*Actual increase in CR4F in 2006 was about 0.0213

Correlations Among Variables

		CR4	CR4Lag	DODBA\$2000 Lag_BEAGDP	AIIMA#	Trend
CR4	Pearson Correlation	1	.891‴	.158	.799"	.582''
	Sig. (2-tailed)		.000	.279	.000	.000
	N	49	48	49	45	49
CR4Lag	Pearson Correlation	.891‴	1	.163	.794"	.561"
	Sig. (2-tailed)	.000		.267	.000	.000
	N	48	48	48	45	48
DODBA\$2000Lag_ BEAGDP	Pearson Correlation	.158	.163	1	.324	.693''
	Sig. (2-tailed)	.279	.267		.030	.000
	N	49	48	49	45	49
AIIMA#	Pearson Correlation	.799"	.794''	.324	1	.666''
	Sig. (2-tailed)	.000	.000	.030		.000
	N	45	45	45	45	45
Trend	Pearson Correlation	.582''	.561''	.693''	.666''	1
	Sig. (2-tailed)	.000	.000	.000	.000	
	N	49	48	49	45	49

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Consolidation and Competition

- The "simple market model"
 - Static bilateral monopoly
 - Prices higher*
 - Quantity indeterminant*
 - Net surplus indeterminant*
 - Bilateral monopoly with economies of scale
- Preliminary assessment of DD350 data on "Extent of Competition"...

Compared with pure monopsony or quasi-monopsony

Preliminary Data Assessment

- DD350 reports on "Extent of Competition" for each award from 1989*-2006
 - A = "Competed"
 - C = "Follow on to Competed Action"
- Can tally sum of dollars awarded "A" or "C" for each ultimate parent company
 - Share of DOD contract dollars competitively awarded, direct or indirectly, provides measure of competition for firms and industry

Is the Market Less—or More— Competitive?

- Competition has decreased among the very top-most firms, in aggregate, i.e., the top 4
 - Competitive share in 1989 = about 61%
 - Competitive share in 2004 = about 48%
- Competition has not decreased—or increased—uniformly at other market levels...
- Or even among the top 1-4
 - the first-ranked firm was more competitive in 2004 (55% "A" or "C") than in 1989 (49% "A" or "C")

Naval Postgraduate School

Monterev, CA

How Does Competition Relate to Concentration?

• Correlations between competition and concentration do not tell a consistent story across or within market levels

Top 4	Top 8	Тор 20	Тор 50	Тор 100	
-0.5599	-0.3211	0.5675	0.8261	0.7834	
Top 1-4*	Top 5-8	Тор 9-20	Top 21-50 T	op 51-100	101+
-0 5599	0 4420	-0 /021	0 0027	0 5513	0 0800

*The correlation is positive for the first-ranked firm.

Consolidation, Productivity, and Innovation

- If industry is more consolidated, hence less competitive, will it also become less productive and less innovative?
- Less competition may imply
 - Less incentive to raise productivity/innovate
 - More resources to raise productivity/innovate
 - And some incentive to preserve market position

Has industry, particularly at the top-most levels, become less productive or innovative?

Naval Postgraduate School

Monterev, CA

Aircraft Labor Productivity and Defense Industry Concentration

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Montercy, CA

Correlations and Partial Correlations

Correlations

		Aircraft Labor Productivity (2000=1)	U.S. Manufacturing Labor Productivity (2000=1)	CR4F
Aircraft Labor Productivity	Pearson Correlation	1	.947**	.753**
(2000=1)	Sig. (2-tailed)		.000	.000
	Ν	17	17	17
U.S. Manufacturing Labor	Pearson Correlation	.947**	1	.885**
Productivity (2000=1)	Sig. (2-tailed)	.000		.000
	Ν	17	17	17
CR4F	Pearson Correlation	.753**	.885**	1
	Sig. (2-tailed)	.000	.000	
	Ν	17	17	17

** \cdot Correlation is significant at the 0.01 level (2-tailed).

But... the partial correlation between aircraft labor productivity and the 4-firm concentration ratio, after controlling for the contemporaneous rise in manufacturing labor productivity, is actually -0.572 and moderately significant

Innovation and Industry Concentration

