
1

Valdis Berzins
Professor – Department of Computer Science (NPS)

E-mail: berzins@nps.edu, Phone: 831-656-2610

Which Unchanged Components to Retest 
after a Technology Upgrade



2

Context
• The Navy is moving towards an Open Architecture paradigm 

– Joint interoperable systems that adapt and are built using open 
interfaces, open design principles, and open architectures

• Expected long term benefits from Navy Open Architecture 
– Business benefits: 

o Flexible acquisition strategies and contracts that enable software 
reuse, easy systems upgrade, and shared data throughout the Navy 

– Technical benefits: 
o Modular open architectures facilitate portability, maintainability, 

interoperability, upgrade-ability and long-term supportability

• The Achilles Heel - Test and Evaluation
– Current practices require retesting unchanged components in 

each new deployment context, typically every two years
– Substantial budget and schedule are currently devoted to retesting
– New technology, processes, and policies are needed to safely 

reduce this effort and free resources for testing new functionality



Objectives
• Safely reduce software system testing cost

• Software system testing cost consists of
– Up-front testing cost

PLUS
– Cost attributed to missed errors

o I.e., cost of future system failures

• We seek to reduce both parts of the cost

3



4

Problem Statement
• According to Navy and other experience, traditional approaches 

to testing are not well suited to open environments
– They are too expensive, take too long and lack agility to react to 

changes during acquisition or missions
– Have to be repeated after every change

• Typical testing assumptions are not valid for Open Architectures
– Conventional testing methods require the system environment to 

be fixed and known in detail at test and evaluation time
o Effectiveness of testing is very sensitive to the expected operating 

environment, which is unknown for reusable components
– Current test and evaluation methods check conformance to 

specifications
o The majority of failures in software systems are due to requirements 

and specification errors, and commonly show up after a subsystem 
has been moved to a different environment

o Commonly called “system integration problems”



5

Approaches
• Reduce testing cost (this paper)

– Methods to identify components that do not need to be retested
– Methods to limit scope of retesting when it is needed
– Methods to completely automate testing and analysis

• Maintain safety (this paper)
– Program slicing to confirm unchanged behavior of unchanged code
– Automated testing to confirm unchanged behavior of modified code

• Enable Plug-and-Fight (long term vision)
– Eventually eliminate integration test after every reconfiguration
– A technology roadmap to accomplish this was presented last year

o Proceedings of the Fourth Annual Research Symposium—Acquisition 
Research: Creating Synergy for Informed Change (May 16-17 2007, 
pp. 285-312).

– This paper addresses a simplified sub-problem of the vision



Retesting Unchanged Components?
• Retesting is necessary but not always
• Did component behavior change?

– Does it depend on modified code?
– Does the modified code have different behavior?

• Did component requirements change?
– Is the old behavior still appropriate?

• Did component workload change?
– Did the range of valid inputs change?
– Did the range of expected inputs change?
– Did the set of reachable states change?

• Did available resources change?
– Memory, processor, network bandwidth,…
– Do other modified components use more resources?

6



7

Example



Approach: Program Slicing [Weiser 84]

• What is a slice?
– A self-contained subset of a program

o Contains all of the code that affects its observable behavior 
– Determined by an observation point

o Example: behavior of a single service
– Contains only the relevant parts

• Why do slices matter?
– Behavior invariance property:

o If a service has the same slice in two different versions of a program, it 
has the same behavior in both versions

– If two slices are the same, the service does not have to be retested
– Slices can be computed on a large scale

o Involves dependency tracing, data flow analysis, and control flow 
analysis

8



Invariance Testing Extends Program Slicing
• Used to check that behavior of modified code remains the same

– Candidates: Open Architectures and higher level middleware
o Enables effective slicing cutoff boundaries

– Example: operating system interface
– Example: upgrade from a deprecated interface
– Example: baseline specific interfaces used by common 

components
• Enhances slicing to identify more components that do not need 

retesting
• Relies on a statistical inference with a very high confidence level

– Needs large numbers of test cases
– Economically feasible because this kind of test and analysis can be 

completely automated
o Test cases - generate inputs by random sampling
o Data analysis - compare outputs from two different software versions

9



How Much Invariance Testing
is Enough?

• How many tests are needed to reach high confidence?
– Stakeholder defines the acceptable risk threshold k

o The mean time between observations of a behavioral difference in a 
given operating system service is k-times longer than a mission.

• Number of test cases is computed for each service in the 
middleware interface to the operating system
– It is determined by the following formula

Ts = (k es) log2 (k es)
o Where s is a service, es is the mean number of executions of s per 

mission, k reflects stakeholder’s tolerance for risk as above

• Test cases are independently drawn from the probability 
distribution characterizing the mission, a.k.a. operational profile
– Statistical confidence level is 1 – 1/(k es)

o Probability of making a false positive conclusion matches the 
stakeholder’s risk tolerance

10



Testing Efforts vs. Acceptable Risk

11

Ns = k es C Ts
103 .999 1.0 x 104

104 .9999 1.3 x 105

105 .99999 1.7 x 106

106 .999999 2.0 x 107

107 .9999999 2.3 x 108

108 .99999999 2.7 x 109

109 .999999999 3.0 x 1010

Number of test 
cases required for 
different levels of 
risk tolerance

Number of Test Cases

C
os

t

Automated Statistical TestingM
an

ua
l T

es
tin

g

Semi- Automated Testing
Testing cost 
characteristics



Why Do We Need Operational Profiles
• Can be used to automate selection of test cases

• Reliability of a system is determined by the operational profile
– Real systems have bugs, coding errors, requirement omission, etc.
– System reliability varies from 0 (always fails) to 1 (never fails) in 

different environments

• Operational profiles have proved useful in practice
– Example: reliability testing of telephone-switching software

• It takes human effort to produce an operational profile
– Measure the frequency distributions of operating system calls and 

associated input parameters
o Can be collected on- or off- line

12



When Retesting a Service is Necessary
• When its slice or behavior has changed

• When requirements have changed
– New functionality needs to be tested
– Test all affected components

• When the range of expected operating conditions has expanded
– Even if there was no other change, new test scenarios are needed
– Indicated by a modified operational profile

• When computing speeds or timing constraints have changed
– Changed hardware processing rates can adversely affect 

scheduling algorithms and cause missed deadlines

13



14

Conclusions

• The slicing and automated testing approach has a potential to 
reduce testing duration and costs
– More research is recommended to substantiate the applicability of 

our approach to DoD systems
– Experimental evaluation of slicing method needed

• Automated testing techniques can alleviate concerns about 
system risks due to technology innovations

• Measurement and analysis of the operational profiles of 
reusable components can be used to support analysis of 
changes in the operating environments
– Hence determining whether additional testing is necessary



15

Backup Slides



16

Related Work
• Navy systems are designed with open architecture in mind

– Hence encapsulating all system calls
• Program Slicing has been used in a wide variety of applications:

testing, debugging, program understanding, reverse 
engineering, software maintenance, change merging, software 
metrics.
– See paper for extended list of citations.

• Automate testing has been used to automatically generate open 
sets of test cases based on random samplings from 
implementations of operational profile distributions [Berzins and 
Chaki 2002]

• Prior work on quality assurance for flexible systems at the level:
– Of requirements [Luqi, Zhang, Berzins & Qiao 2004] [Luqi & Lange 2006]

– Of architectures [Berzins & Luqi 2006] ][Luqi & Zhang 2006]


