M

g;[s.ri.- :

cqmmtmn Research Program:
~ Creating Synergy for Informed Change

- “"ITTT

Which Unchanged Components to Retest
after a Technology Upgrade

Valdis Berzins
Professor — Department of Computer Science (NPS)
E-mail: , Phone: 831-656-2610




Context

 The Navy is moving towards an Open Architecture paradigm
— Joint interoperable systems that adapt and are built using open
interfaces, open design principles, and open architectures
» Expected long term benefits from Navy Open Architecture

— Business benefits:

o Flexible acquisition strategies and contracts that enable software
reuse, easy systems upgrade, and shared data throughout the Navy

— Technical benefits:

o Modular open architectures facilitate portability, maintainability,
interoperability, upgrade-ability and long-term supportability

« The Achilles Heel - Test and Evaluation

— Current practices require retesting unchanged components in
each new deployment context, typically every two years

— Substantial budget and schedule are currently devoted to retesting

— New technology, processes, and policies are needed to safely
reduce this effort and free resources for testing new functionality

Maval Postgradwate Schoal
Montercy, CA

:trqﬁisiﬁcnn Rescarch Program: Creating Synergy for Informed Change




Objectives

o Safely reduce software system testing cost

o Software system testing cost consists of
— Up-front testing cost
PLUS

— Cost attributed to missed errors
o l.e., cost of future system failures

 We seek to reduce both parts of the cost

Maval Postgradwate Schoal
Monterey, OA

Acquisition Rescarch Program: Creating Synergy for Informed Change




Problem Statement

» According to Navy and other experience, traditional approaches
to testing are not well suited to open environments

— They are too expensive, take too long and lack agility to react to
changes during acquisition or missions

— Have to be repeated after every change

» Typical testing assumptions are not valid for Open Architectures
— Conventional testing methods require the system environment to
be fixed and known in detail at test and evaluation time

o Effectiveness of testing is very sensitive to the expected operating
environment, which is unknown for reusable components
— Current test and evaluation methods check conformance to
specifications
o The majority of failures in software systems are due to requirements

and specification errors, and commonly show up after a subsystem
has been moved to a different environment

o Commonly called “system integration problems”

Maval Postgradwate Schoal
Montercy, CA

:trqﬁisiﬁcnn Rescarch Program: Creating Synergy for Informed Change




Approaches

* Reduce testing cost (this paper)
— Methods to identify components that do not need to be retested
— Methods to limit scope of retesting when it is needed
— Methods to completely automate testing and analysis

* Maintain safety (this paper)
— Program slicing to confirm unchanged behavior of unchanged code
— Automated testing to confirm unchanged behavior of modified code

« Enable Plug-and-Fight (long term vision)
— Eventually eliminate integration test after every reconfiguration

— A technology roadmap to accomplish this was presented last year

o Proceedings of the Fourth Annual Research Symposium—Acquisition
Research: Creating Synergy for Informed Change (May 16-17 2007,
pp. 285-312).

— This paper addresses a simplified sub-problem of the vision

Maval Postgradwate Schoal
Montercy, CA

:trqﬁlsiﬁcrn Rescarch Program: Creating Synergy for Informed Change




Retesting Unchanged Components?

Retesting is necessary but not always
Did component behavior change?
— Does it depend on modified code?
— Does the modified code have different behavior?
Did component requirements change?
— Is the old behavior still appropriate?
Did component workload change?
— Did the range of valid inputs change?
— Did the range of expected inputs change?
— Did the set of reachable states change?
Did available resources change?
— Memory, processor, network bandwidth,...
— Do other modified components use more resources?

Maval Postgradwate Schoal
Monterey, OA

Acquisition Rescarch Program: Creating Synergy for Informed Change



Example

= No retest due to slicing and invariance testing

cb

S2

v Auto test confirms
" behavior unchanged

Code and specs unchanged

Acquisition Rescarch Program: Creating Synergy for Informed Change

Code changed, specs unchaged

Maval Postgradwate Schoal
Monterey, OA




Approach: Program Slicing [weiser 84]

« Whatis a slice?
— A self-contained subset of a program
o Contains all of the code that affects its observable behavior
— Determined by an observation point
o Example: behavior of a single service
— Contains only the relevant parts

 Why do slices matter?

— Behavior invariance property:

o If a service has the same slice in two different versions of a program, it
has the same behavior in both versions

— If two slices are the same, the service does not have to be retested

— Slices can be computed on a large scale

o Involves dependency tracing, data flow analysis, and control flow
analysis

Maval Postgradwate Schoal

Montercy, CA




Invariance Testing Extends Program Slicing

Used to check that behavior of modified code remains the same

— Candidates: Open Architectures and higher level middleware
o Enables effective slicing cutoff boundaries
— Example: operating system interface
— Example: upgrade from a deprecated interface
— Example: baseline specific interfaces used by common
components

Enhances slicing to identify more components that do not need
retesting

Relies on a statistical inference with a very high confidence level
— Needs large numbers of test cases

— Economically feasible because this kind of test and analysis can be
completely automated
0 Test cases - generate inputs by random sampling
o Data analysis - compare outputs from two different software versions

;trqﬁ]shic-n Research Program: Creating Synergy for Informed Change Stave. TOstgracusre Scu0o)

Montercy, CA




How Much Invariance Testing
IS Enough?

How many tests are needed to reach high confidence?

— Stakeholder defines the acceptable risk threshold k

o The mean time between observations of a behavioral difference in a
given operating system service is k-times longer than a mission.

Number of test cases is computed for each service in the
middleware interface to the operating system
— It is determined by the following formula
T,=(key)log, (key

o Where s is a service, e, is the mean number of executions of s per
mission, k reflects stakeholder’s tolerance for risk as above

Test cases are independently drawn from the probability
distribution characterizing the mission, a.k.a. operational profile

— Statistical confidence level is 1 — 1/(k e,)

o Probability of making a false positive conclusion matches the
stakeholder’s risk tolerance

Maval Postgradwate Schoal
Montercy, CA

:trqﬁisiﬁcnn Rescarch Program: Creating Synergy for Informed Change




Testing Efforts vs. Acceptable Risk

N.=Ke, C T,
10° 999 1.0 x 10°
10° 9999 1.3 x 10° Number of .test
105 99999 1.7 x 10° cases required for
10° 999999 2.0 x 107 -
o 995559 108 o!lfferent levels of
10° 99999999 2.7 x 10° risk tolerance
10° 999999999 3.0 x 1000
A
5
2/7 e\(\g 1
o Az 5 Testing cost
Sl 3 & haracteristi
O 3 P cnaracteristcs
< &
< -
Automated Statistical Testing
>

Number of Test Cases

Maval Postgradwate Schoal

Montercy, CA




Why Do We Need Operational Profiles

e Can be used to automate selection of test cases

» Reliability of a system is determined by the operational profile
— Real systems have bugs, coding errors, requirement omission, etc.

— System reliability varies from 0 (always fails) to 1 (never fails) in
different environments

» Operational profiles have proved useful in practice
— Example: reliability testing of telephone-switching software

« |t takes human effort to produce an operational profile

— Measure the frequency distributions of operating system calls and
associated input parameters

o Can be collected on- or off- line

Acquisition Rescarch Program: Creating Synergy for Informed Change | Noval Postgraduate School

Montercy, CA




When Retesting a Service Is Necessary

 When its slice or behavior has changed

 When requirements have changed
— New functionality needs to be tested
— Test all affected components

 When the range of expected operating conditions has expanded
— Even if there was no other change, new test scenarios are needed
— Indicated by a modified operational profile

 When computing speeds or timing constraints have changed

— Changed hardware processing rates can adversely affect
scheduling algorithms and cause missed deadlines

Ao " . : _ " . et oy e P ] ’ . Maval Postgradwate Schoal
Acquisition Rescarch Program: Creating Synergy for Informed Change Monterey, CA




Conclusions

* The slicing and automated testing approach has a potential to
reduce testing duration and costs

— More research is recommended to substantiate the applicability of
our approach to DoD systems

— Experimental evaluation of slicing method needed

« Automated testing techniques can alleviate concerns about
system risks due to technology innovations

 Measurement and analysis of the operational profiles of
reusable components can be used to support analysis of
changes in the operating environments

— Hence determining whether additional testing is necessary

Maval Postgradwate Schoal
Montercy, CA

:trqﬁlsiﬁcrn Rescarch Program: Creating Synergy for Informed Change




Backup Slides

Maval Postgradwate Schoal
Monterey, OA

Acquisition Rescarch Program: Creating Synergy for Informed Change




Related Work

* Navy systems are designed with open architecture in mind
— Hence encapsulating all system calls
 Program Slicing has been used in a wide variety of applications:
testing, debugging, program understanding, reverse

engineering, software maintenance, change merging, software
metrics.

— See paper for extended list of citations.
* Automate testing has been used to automatically generate open

sets of test cases based on random samplings from

Implementations of operational profile distributions [Berzins and
Chaki 2002]

* Prior work on quality assurance for flexible systems at the level:
— Of requirements [Lugi, Zhang, Berzins & Qiao 2004] [Lugi & Lange 2006]
— Of architectures [Berzins & Lugi 2006] ][Lugi & Zhang 2006]

Maval Postgradwate Schoal
Montercy, CA

A‘::qﬁ]shiun Rescarch Program: Creating Synergy for Informed Change




