

Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

David N. Ford Texas A&M University Thomas Housel Naval Postgraduate School

An IT Adoption Challenge

- Cost constrained DoD environment requires cost reduction
- Threats require US military to retain technological superiority
- Complex IT acquisition process
- Improved ship maintenance and revitalization has potential for successfully addressing these needs
 - SHIPMAIN-recommended new technologies
 - 3D Laser Scanning Technology (3D LST)
 - Collaborative Product Lifecycle Management
 - Additive Manufacturing (3D printing)

Naval Postgraduate School

Monterev, CA

Research Context

Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized. *Why?* **Hypothesis:** The right mix of new technologies

have not been adopted and widely used.

This research tests the impacts of technology adoption strategies on Navy maintenance cost savings.

Potential Technology: 3D Terrestrial Laser Scanning

- Laser scans space from highly articulated mount, often combined with 360° camera
- Software processes points into 3D image of the space. Processed into CADD format.
- Currently used in automotive, offshore construction and repair, civil and transportation, building construction, fossil fuel and nuclear power plants
- Recommended as part of SHIPMAIN
- Potential Navy uses: map spaces for ship retrofit & upgrades, existing conditions surveys as part of damage assessment, fitting requirements for repairs

Potential Technology:

Collaborative Product Lifecycle Management (CPLM)

- To "integrate people, processes, and information"
- Electronically integrates design documents, data bases, 3D LST, etc., for participant collaboration across physical distances and time.
- Common, shared sets of documents improves access, collaboration, coordination, communication
- Common platform for program change management
- Recommended as part of SHIPMAIN
- Potential Navy uses: configuration control, parts design libraries, cross-vessel and cross-platform coordination of revitalization

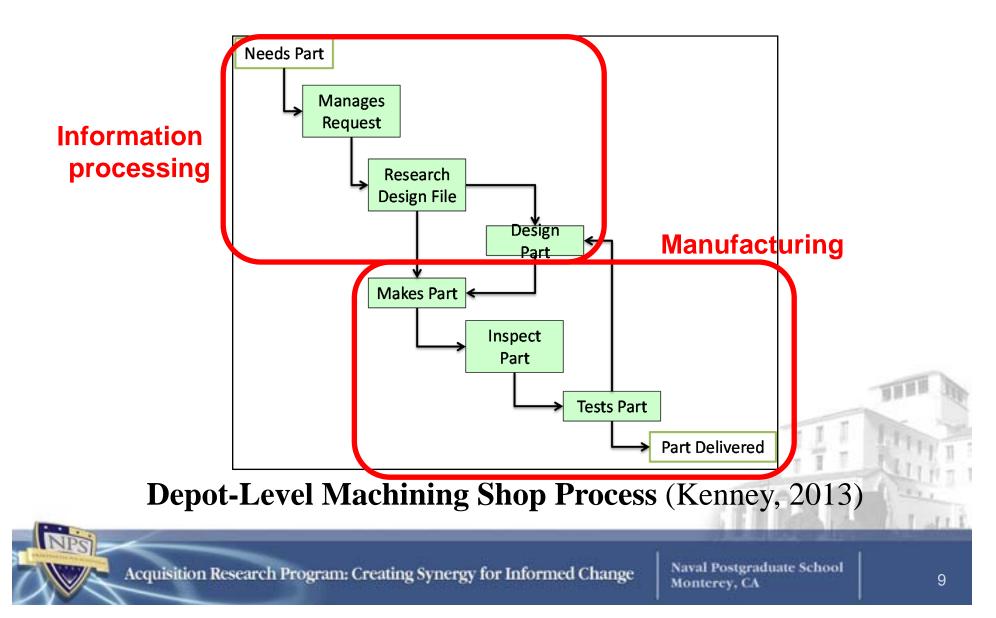
Potential Technology:

Additive Manufacturing

("3D Printing")

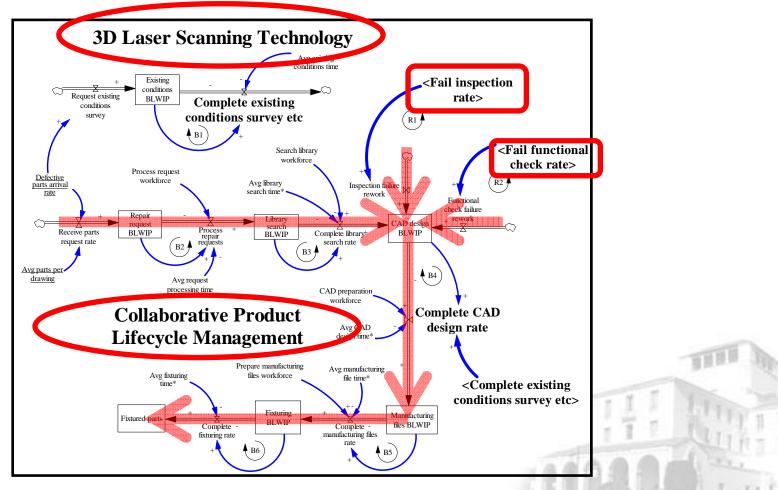
- 3D design/image of final part. Create net.
- Geometric slicing of image into horizontal layers for manufacturing
- Incrementally add small amounts of material in very thin layers of material to build-up part
- Variety of possible materials (plastic, titanium) & methods (e.g. for material bonding)
- No dominant method, materials, suppliers
- Developed since SHIPMAIN recommendations
- Potential Navy uses: fast parts manufacturing for repair, less expensive creation of few parts, improved designs (e.g. less weight)

Research Approach


- 1. Collect data on Navy use of Additive Manufacturing.
- 2. Build simulation model (system dynamics) of Naval parts manufacturing for ship maintenance.
- 3. Simulate steady-state technology adoption and use strategies.
- 4. Build Knowledge-Value-Added models of technology adoption and use strategies. Use simulated strategies to simulate Returns-on-Investment (ROI).
- Use Returns-on-Investment to estimate costs and thereby cost savings of technology adoption and use strategies.

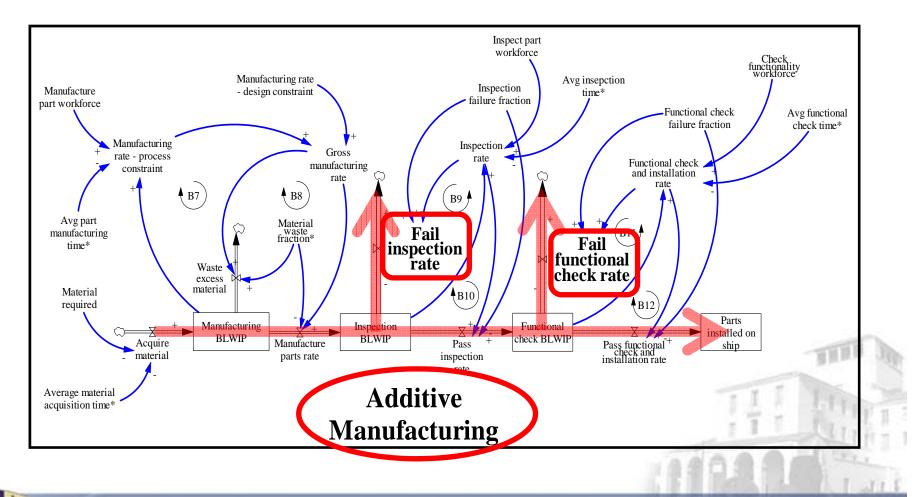
1) Data Collection

- Naval Surface Warfare Center Port Hueneme Division (NSWC PHD), May 10, 2013 - use of AM by that facility.
- Fleet Readiness Center Southwest, Naval Air maintenance Depot, San Diego July 17-18, 2013 – use of AM at North Island NAVAIR maintenance depot.
- Description and estimates for modeling.
 Ex: Repair parts process, Manufacturing process, manpower requirements, Avg. value of parts (\$), manufacturing rates



1) Data Collection Results Additive Manufacturing by the US Navy

2) System Dynamics Model


Information Processing for Additive Manufacturing

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Montercy, CA

2) System Dynamics Model Manufacturing Processing

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Montercy, CA

3) Simulate Technology Adoption & Use Strategies: Scenarios Modeled

- As-Is: Current processes used at the depot where data was collected
- To-Be#1: Immature AM AM used only to <u>create</u> <u>prototypes</u>
- To-Be#2: Immature AM <u>with CPLM</u> used only to create prototypes
- To-Be#3: Immature AM <u>with 3DLST</u>, CPLM used only to create prototypes
- Radical#1: <u>Mature AM with CPLM</u> used to create both prototypes and final parts
- Radical#2: Mature AM, <u>3DLST</u>, CPLM used to create both prototypes and final parts

4) Knowledge Value Added Models: Sample Results

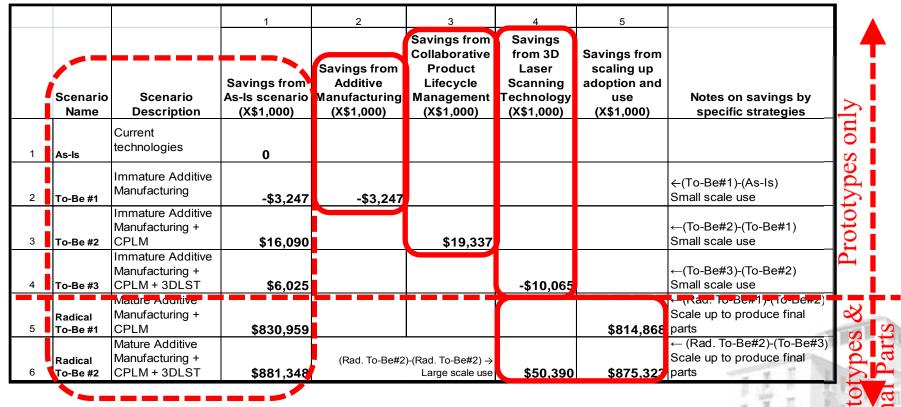
TO-BE#1- Immature	AM		
	Benefit: ROI		
Processes	Cost ratio (%)		
Process request	RADICAL TO-BE#1- Mat	ture $\Delta M + C$	PIM
Search Library			
Prepare CAD & Add r		Benefit:	ROI
Fixturing	D	Contratio	(0/)
Manufacture part	Processes	Cost ratio	(%)
Inspect part	Process request	3.13	213%
Check functionalit	Search Library	1.27	27%
Totals:	Prepare CAD & Add Manuf	26.01	2501%
	Inspect part	3.08	208%
	Check functionality	0.48	-52%
	Totals:	8.87	787%

5) Estimate Costs and Savings

	Prototype parts produced	Final parts produced
<u>Old</u> technologies	Prototype cost using old technologies	Final parts cost using old technologies
<u>New</u> technologies	Prototype cost using new technologies	Final parts cost using new technologies

The Four Cost Components of Each Technology Adoption and Use Strategy

5) Estimate Costs and Savings: Results


Annual Production Costs and Savings

ROI = (Benefits-Costs) / Costs

Scenario Simulation Name	Scenario Description	Old techn. prototypes / year	New techn. prototypes / year	Old techn. final parts / year	New techn. final parts / year	ROI - old techn.	ROI - new techn.	Prototype cost (X\$1,000)	Final parts cost (X\$1,000)	Total Cost (X\$1,000	Cost Savings from As-Is scenario (X\$1,000)		
As-Is	Current technologies	3,000	2,000	25,000	0	15%	30%	\$43,469	\$911,801	\$955,27	\$0	only	
To-Be #1	Immature Additive Manufacturing	0	5,000	25,000	0	15%	12%	\$46,716	\$911,801	\$958,51	-\$3,247		
To-Be #2	Immature Additive Manufacturing + CPLM	0	5,000	25,000	0	15%	92%	\$27,379	\$911,801	\$939,18	\$16,090	Prototypes	
To-Be #3	Immature Additive Manufacturing + CPLM + 3DLST	0	5,000	25,000	0	15%	40%	\$37,444	\$911,801	\$949,24	\$6,025	Pr	
Radical To-Be #1	Mature Additive Manufacturing + CPLM	0	5,000	0	25,000	15%	787%	\$5,920	\$118,392	\$124,31	\$830,959	es &	arts
Radical To-Be #2	Mature Additive Manufacturing + CPLM + 3DLST	0	5,000	0	25,000	15%	1391%	\$3,520	\$70,401	\$73,92	\$881,348	ototypes	na Pa

<u>Result</u>: Very large cost savings are possible <u>*IF*</u> scale-up adoption and use.

5) Estimate Costs and Savings: Results Annual Cost Savings of AM, CPLM, 3DLST, and Scaling Up Use

Conclusions & Implications

- Integrated new technology adoption and use can generate large savings (>\$800m/yr). The US Navy should plan for and adopt these new technologies. {Practice}
- Different technologies can save/cost more or less. An adoption strategy and plan based on analysis is needed. {Research}
- Capturing very large savings requires large scale use.
 The strategy and plan should go beyond testing and trials to full scale use of new technologies. {Research & Practice}

Issues for Future Research

- How much of what types of parts should the Navy make versus buy from industry?
- Requires changes in procurement regulations
- Transitions to steady –state use
 - Short term costs for adoption
 - Speed of adoption
 - Adoption locations

Questions Comments Discussion

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

19

5) Estimate Costs and Savings

Example Calculation of the Surrogate Revenue Streams for the Four-Part/Technology Types

		Prototypes			Final Parts			
	Production (parts/yr)	MarketSurrogatecomparablerevenuevaluestream(\$1,000/part)(\$1,000/yr)		Production (parts/yr)	Market comparable value (\$1,000/part)	Surrogate revenue stream (\$1,000/yr)		
Old technologies		\$10.5	\$31,500	25,000	\$42.0	\$1,050,000		
New technologies	2,000	\$10.5	\$21,000	0	\$42.0	\$0		

As-Is Scenario