

A FRAMEWORK TO DETERMINE NEW SYSTEM REQUIREMENTS UNDER DESIGN PARAMETER AND DEMAND UNCERTAINTIES

Parithi Govindaraju, Navindran Davendralingam and William A. Crossley

Purdue University

Acquisition Research Symposium 2015 Wednesday, May 13, 2015

Overview

- Use an optimization-based approach to identify design requirements of new systems
 - Address issue that new systems operate along with existing systems
 - Seek fleet-level performance and capabilities
- Development of a decision-support framework
 - Determine requirements for and suggest design of a new system that will optimize fleet-level objectives to support acquisition
 - Fleet-level objectives are functions of new system requirements
 - Account for design parameter and demand uncertainties
- Used the framework to generate tradeoffs between fleetlevel productivity and cost
 - Motivated by energy and fuel consumption, reflected via operating cost
 - Route network extracted from Air Mobility Command (AMC) operations
 - New aircraft design change across range of best tradeoff solutions

INTRODUCTION AND MOTIVATION

Motivation

- Fleet-level energy efficiency poses significant risks and operational constraints on military operational flexibility¹
- Growing emphasis on reducing fuel usage in military systems
 - Streamline operations of existing fleet
 - Acquire efficient platforms and platforms that lead to fleet-level efficiency
- Lack of a framework that captures the effect that fuel-saving measures can have on fleet-level performance metrics²
 - Do not accurately explore tradeoff opportunities
- Determining design requirements of 'yet-to-be-designed' systems to improve fleet-level metrics is difficult
 - Couples operation decisions with new system design
 - Non-deterministic nature of fleet operations
 - Assumptions in deterministic models leads to sub-optimal performance

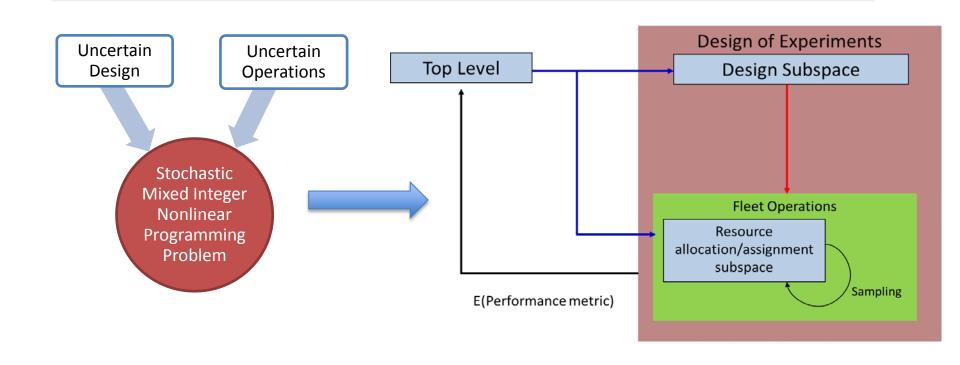
Air Mobility Command

- AMC: One of the major command centers of the U.S. Air Force
- AMC is the DoD's single largest aviation fuel consumer (28 % of total aviation fuel use)*.
- Non-deterministic nature of AMC operations
 - Demand is highly asymmetric
 - Demand fluctuation on a day to day basis
 - Routes flown vary based on demand
 - Limited aircraft types: C-5, C-17, C-130, Boeing 747-F,
 KC-135, etc.
- AMC's mission profile includes
 - Worldwide cargo and passenger transport**
 - Aerial refueling and aeromedical evacuations
- Used Global Air Transportation Execution System (GATES) dataset
 - Large route network (1804 routes)

Sample route network from GATES

^{**}This work only addresses cargo transport

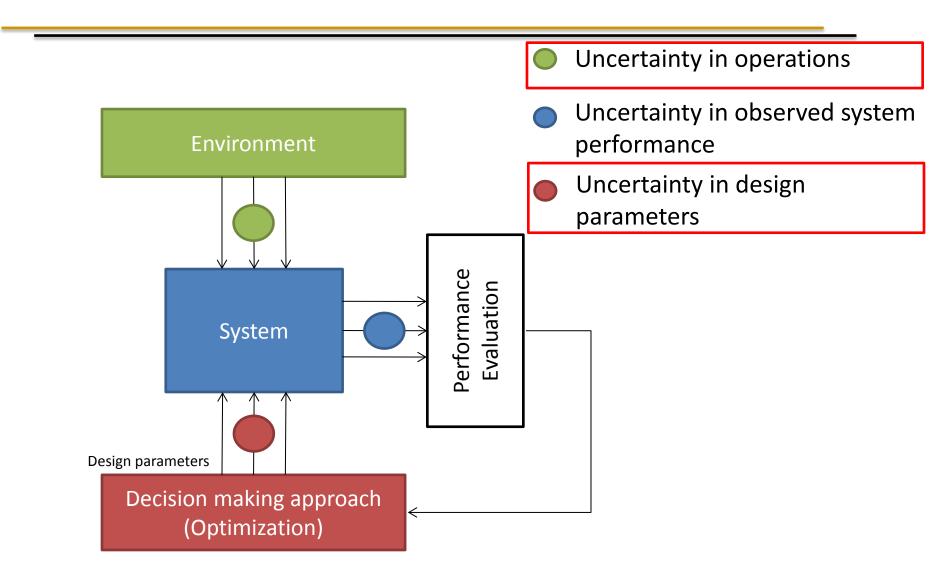
SCOPE AND METHOD OF APPROACH

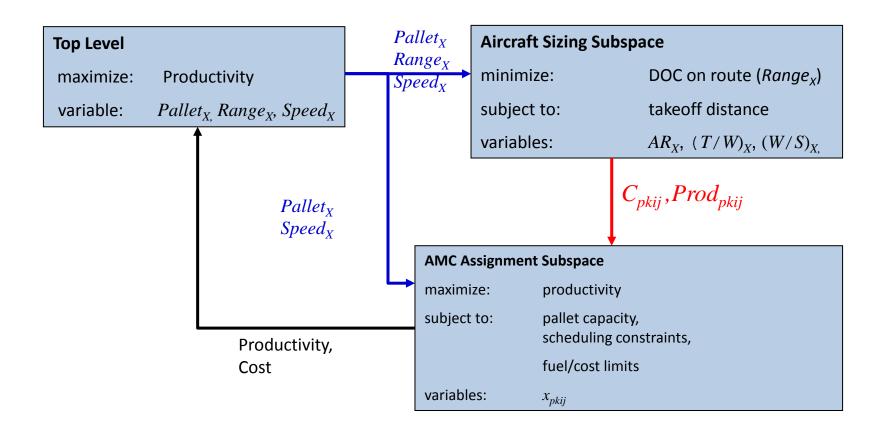

How can our approach help?

- Our methodology
 - Helps determine the requirements for and describe the design of – a new aircraft for use in the AMC fleet
 - Optimize fleet-level metrics that address performance and fuel use
- Describe how design requirements of the new aircraft would change for different tradeoff opportunities between productivity and cost

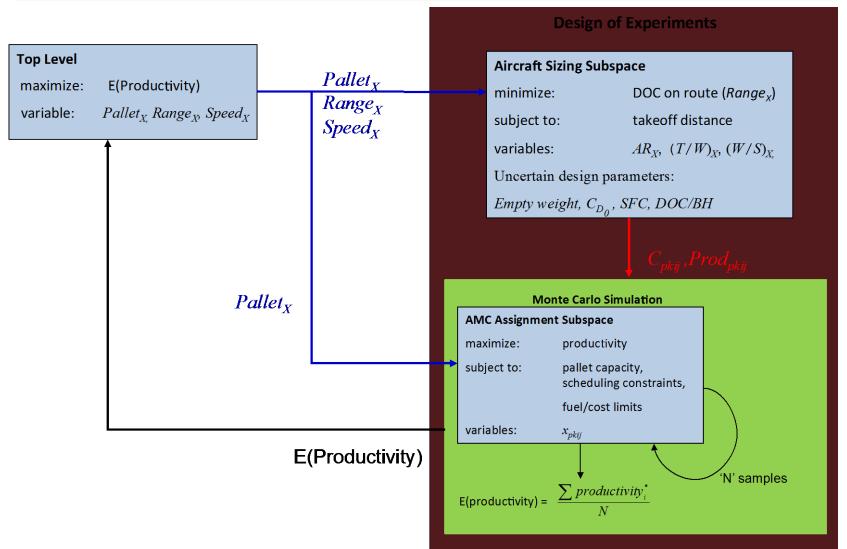
Method of Approach (1)

- Consider this as an optimization problem
 - Objectives
 - Fleet Productivity (speed of payload delivery)
 - Fleet Direct Operating Cost (strongly driven by fuel use)
 - Variables
 - New aircraft requirements (pallet capacity, range, speed)
 - New aircraft design variables (AR, W/S, T/W)
 - Assignment variables (flight on a particular route)
 - Constraints
 - Cargo demand
 - Aircraft performance (takeoff distance)
 - Fleet Operations (maximum operational hours)


Method of Approach (2)


Monolithic Formulation

Subspace Decomposition


Classes of Uncertainties

Subspace Decomposition Approach (Deterministic)

Subspace Decomposition Approach

Top Level Subspace

Maximize

Fleet-level Productivity

Productivity = Speed x Capacity

Subject to

$$14 \le Pallet_x \le 38$$

Pallet Capacity Bounds

$$350 \le Speed_X \le 550$$

Cruise speed bounds (knots)

$$2400 \le Range_x \le 3800$$

Range at maximum payload bounds (nm)

$$Speed_X, Range_X \in R^+$$

$$Pallet_X \in Z^+$$

Design variables

 Pallet capacity, Range and Speed bounds are set by strategic air lift aircraft description

Aircraft Sizing Subspace

Minimize

Minimize
$$(DOC_{Pallet,Range,Speed})_X$$
 Direct Operating Cost Subject to $6.0 \le (AR)_X \le 9.5$ Wing aspect ratio bounds $65 \le (W/S)_X \le 161$ Wing loading bounds (lb/ft²) $0.18 \le (T/W)_X \le 0.35$ Thrust-to-weight ratio bounds

$$S_{TO}\left(Pallet_X, (AR)_X, (W/S)_X, (T/W)_X\right) \le D_{takeoff}$$
 Aircraft takeoff distance
$$\left(AR\right)_Y, \left(W/S\right)_Y, \left(T/W\right)_Y \in R^+$$
 Design variables

Bounds for aircraft design variables based on current military cargo aircraft

Direct Operating Cost

Uncertainty in Aircraft Design Parameters

Uncertain design parameter	Range of values
ΔW_E (lbs) – empty weight	±10%
ΔC_{D_0} – drag coefficient	±10%
ΔDOC/BH (\$/hr) – direct operating cost / block hour	±10%
Δ SFC (1/hr) – specific fuel consumption	±10% (Baseline value: 0.5)

- Four-factor, three-level full factorial design of experiments (DOE)
 - Levels: 90%, 100%, and 110% of baseline or empirically-predicted value
 - 81 experiments = 81 sizing + allocation under uncertainty
- Best aircraft design based on mean from DOE trials
 - Our approach to account for uncertainty with low computational cost

Fleet Assignment Subspace

Maximize

$$\sum_{p=1}^{P} \sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot \left(Speed_{p,k,i,j} \cdot Pallet_{p,k,i,j} \right)$$

Productivity = Speed × Capacity

Subject to

$$\sum_{p=1}^{P} \sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot C_{p,k,i,j} \le M$$

$$\sum_{i=1}^{N} x_{p,k,i,j} \ge \sum_{i=1}^{N} x_{p,k+1,i,j} \quad \forall k = 1, 2, 3...K,$$

$$\forall p = 1, 2, 3...P, \forall j = 1, 2, 3...N$$

Fleet-level DOC limits

Node balance constraints

Fleet Assignment Subspace

Subject to

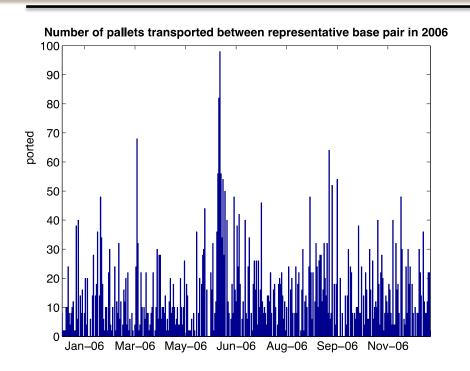
$$\sum_{p=1}^{P} \sum_{k=1}^{K} Cap_{p,k,i,j} \cdot x_{p,k,i,j} \ge dem_{i,j}$$

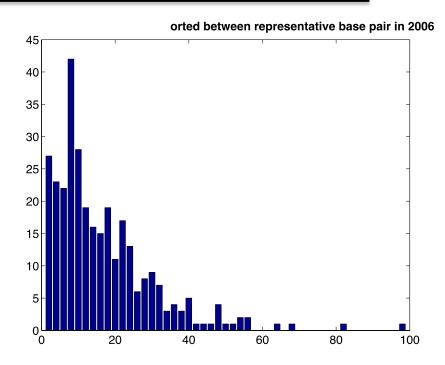
$$\forall i = 1, 2, 3...N, \forall j = 1, 2, 3...N$$

$$\sum_{i=1}^{N} x_{p,1,i,j} \le O_{p,i} \quad \forall p = 1,2,3...P, \forall i = 1,2,3...N$$

$$\sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot BH_{p,k,i,j} \le B_{p} \quad \forall p = 1, 2, 3...P$$

$$x_{p,k,i,j} \in \{0,1\}$$


Demand constraints

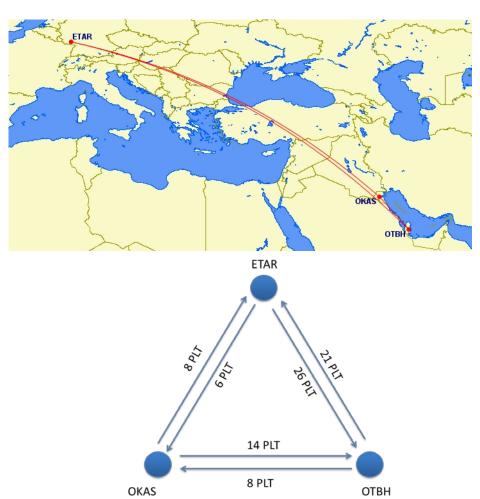

Starting location of aircraft constraints

Trip constraints

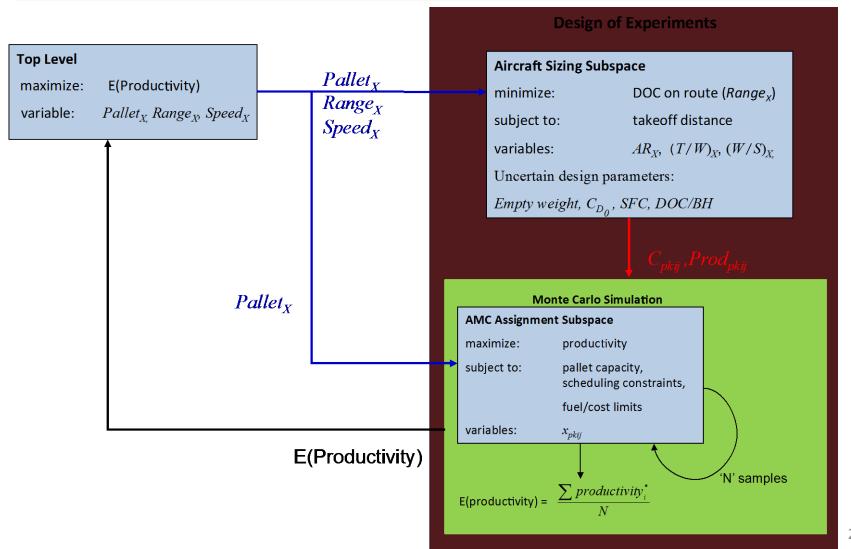
Binary decision variable

Uncertainty in Pallet Cargo Demand

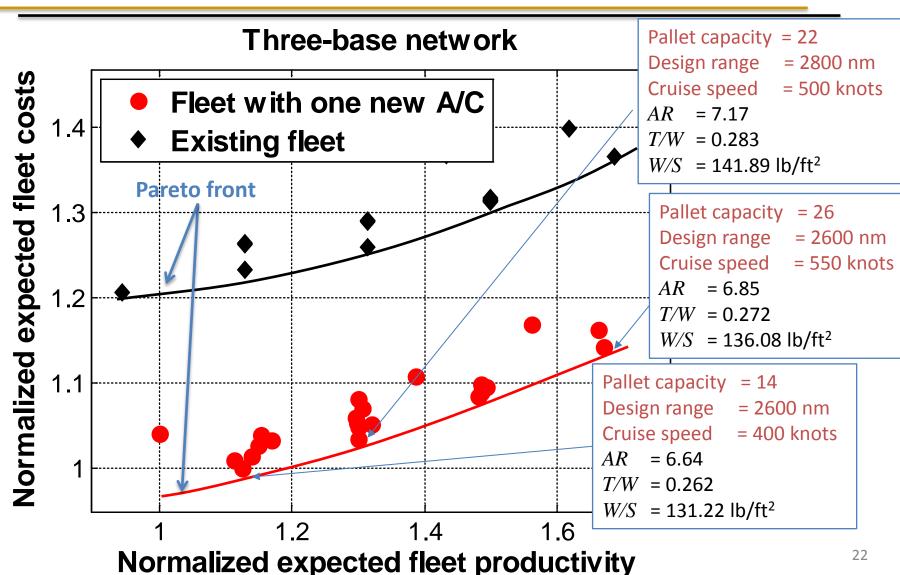
- Highly uncertain cargo demand
- Monte Carlo sampling (MCS) methods
 - Repeated deterministic calculations for statistical distribution of input random parameters

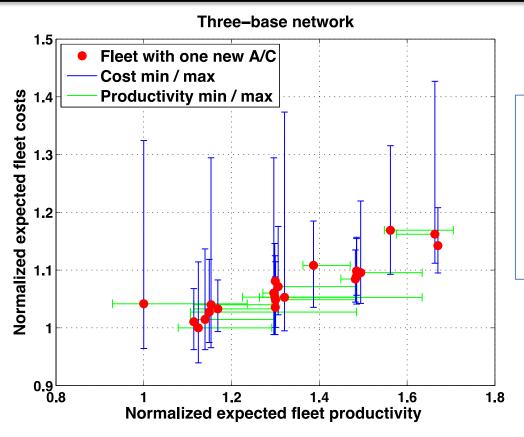

Palletized and Oversized Cargo Transport for Military Airlift Operations

SCENARIOS & STUDIES



Three-base Problem


- Simple three-base problem consisting of 6 directional routes
 - Extracted from the GATES dataset
 - Most flown routes in May 2006
- Existing fleet for AMC
 - Three C-5: 36 pallet capacity
 - Three C-17: 18 pallet capacity
 - Three B747-F: 29 pallet capacity
- 1 new aircraft of type X is introduced


Subspace Decomposition Approach

Three-base Results

Three-base Results

Error bars show minmax variation in fleetlevel metrics due to uncertainties in demand and in the new aircraft design

- Degree of dispersion for some results are smaller than for others
- For the same productivity, some maximum fleet costs values on this plot still lower than costs of using existing fleet

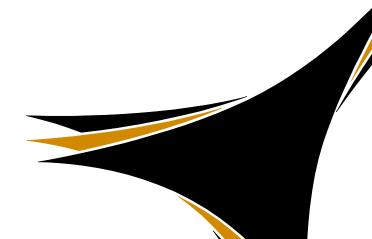
CONCLUDING STATEMENTS AND FUTURE WORK

Concluding Statements

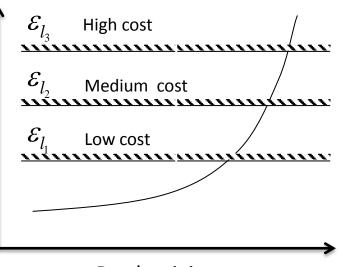
- We felt there was a need for an efficient decisionsupport tool to determine design requirements for new, to-be-acquired systems
- We developed a framework that identifies the tradeoffs between fleet-level metrics
 - Each tradeoff solution describes the design requirements, and optimal design of the new aircraft
 - MCS techniques to address uncertainty in demand
 - DOE to explore uncertainty in system design
 - Framework appears domain agnostic, should apply to many different applications, vehicles, etc.

Future Work

- Robust/Reliability-based problem formulations
- Reduce computational expense
 - Metamodeling or response surfaces
 - Improved sampling techniques

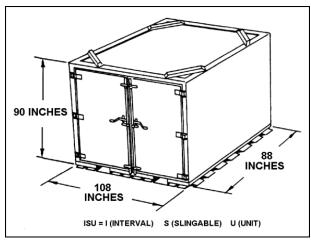


Thank You


BACKUP SLIDES

Multi-Objective Formulation

- Two objectives
 - Maximize fleet-level productivity
 - Minimize fleet-level cost
- Epsilon (Gaming) constraint formulation
 - Converts multi-objective to single objective
 - Identify a primary objective
 - Place limits on other objectives (inequality constraints)


Maximize
$$f_p(x)$$

Subject to $f_l(x) \le \varepsilon_l$ $l = 1... n_{obj} (l \ne p)$
 $g_j(x) \le 0$
 $h_k(x) = 0$

Air Mobility Command

- Used Global Air Transportation Execution System (GATES) dataset
- Filtered route network from GATES dataset
 - Demand for subset served by C-5, C-17 and 747-F (~75% of total demand)
 - Fixed density and dimension of pallet (463 L)
- Our aircraft fleet consists of only the C-5, C-17 and 747-F.

Source: www.amc.af.mil