

DoD Software Intensive Systems Development: A Hit and Miss Process

Brad R. Naegle

Software-Intensive System Development

Hits

- Tomahawk Missile
- Aegis
- Link 16
- F-22 Raptor

Misses

- Future Combat System
- B1 Bomber
- P8 Poseidon MMA
- F-35 Joint Strike Fighter

The Problem

 The Defense Acquisition System produces both successful and challenged softwareintensive systems

The Symptoms

- Development cost & schedule hyperinflation
- Systems fielded with less capability than desired
- Operational capability delayed years
- Costly and difficult software sustainment

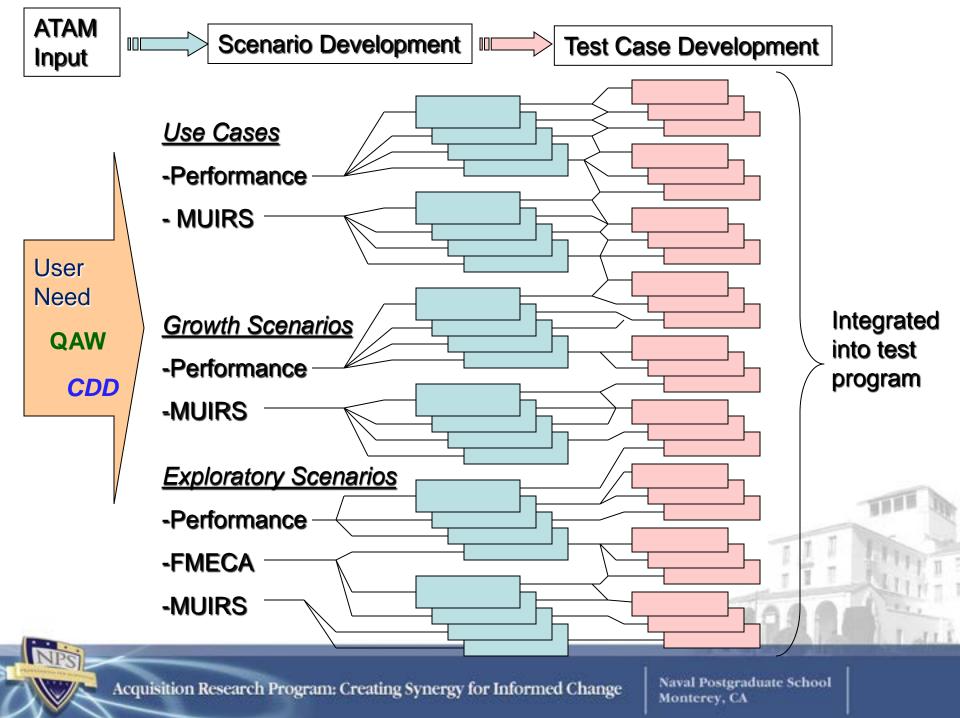
The Underlying Causes

- The DoD Requirements Generation System
 - Requires interpretation between Capabilities-Based terms (JCIDS) and Performance-Based terms (Performance Spec), and again to Detailed Specification
 - Purposely vague to garner maximum innovation
 - Dependent on the developer to correctly interpret and propose innovative solutions
 - Provides only a glimpse at the operational environment through the Operational Mode Summary/Mission Profile
 - Information Assurance/Cyber Security needs

Causes Continued

- Immature Software Engineering Environment
 - No industry-wide standards, protocols, formats, architectures, tools, or languages
 - No sustainability standards or architectures
 - Very limited capability for reuse
 - Totally dependent on clear, unambiguous, and complete requirements (Half or more of the software development effort occurs before PDR)
 - Requirements creep and late definition disastrous to the effort

Causes Continued


- The Defense Acquisition System
 - Pressure to reduce cycle time can impact front-end processes ('Get RFP on the street!')
 - No consistent methodologies for driving software architecture or sustainability design
 - Information Assurance/Cyber Security needs drives developers to typically build software from scratch
 - Software TRLs ineffective at reducing development risk
 - Contractor is assessed for risk (CMMI), but PM team has no 'maturity' requirements

Attacking the Causes

- Implementation of analyses, tools, and processes
 - SEI's Quality Attribute Workshop (QAW)
 - A more complete inventory of requirements
 - MUIRS Analysis
 - Analyses for sustainability and safety/security needs
 - SEI's Architectural Trade-off Analysis Methodology sm
 - Clarifies context and drives architectural design
 - Connects user needs to system design to test program
 - FMECA
 - Identifies critical and non-critical system attributes
 - SEI's Software Acquisition (SA)-CMM
 - Assesses the Government's PM team maturity

QAW & ATAM Integration into SW Lifecycle Management

Mgt		QAW	ATAM	Build, Test, & Production Mgt	Operations & Support Mgt
		Requirements Elicitation	Design Metrics	Development Metrics	
	ICD	CDD		CPD	
	User Needs	Explicit, Derived & Implied	Scenario Development & Prioritization	Prototype LUT & IOT&E EUTE	IOC
		Requirements	Design Reviews		
1	Activities	RFP Source Selection	Analysis	Rapid Prototyping, Code, Build, Integrate, Test	Accept, Field & Support
	Tech Reviews/ Audits	SSR		Case lopment DR CDR	PCA

SA-CMM

Level	Focus	Key Process Areas	
5	Optimizing	Continuous process improvement, Acquisition Innovation Management, Continuous Process Improvement	
4	Quantitative	Quantitative management, Quantitative Acquisition Management, Quantitative Process Management	
3	Defined	Process standardization, Training Program Management Acquisition Risk Management, Contract Performance Management, Project Performance Management User Requirements, Process Definition and Maintenance	
2	Repeatable	Basic project management, Transition to Support Evaluation, Contract Tracking and Oversight, Project Management, Requirements Development and Management, Solicitation, Software Acquisition Planning	
1	Initial	Competent people and heroics	

Summary

- Using these tools, analyses, and processes will help address the *causes* of software development problems.
- The PM team must mature beyond 'Competent People and Heroics' to manage the complex software development challenge
- A mature PM team effectively implementing the tools, analyses, and Processes will result in more consistently successful softwareintensive systems development