
1

Use of Automated Testing to Facilitate
Affordable Design of Military Systems

V. Berzins, P. Van Benthem, C. Johnson, B. Womble

The views presented is this paper are those of the authors
and do not necessarily represent the views of DoD or its Components.

The Naval Testing Challenge –
Infinity is a Big Place

• Size and Complexity
– The environment is harsh and boundless
– There are hundreds of systems on warships
– Huge state spaces and many system configurations

• Risks
– Lives are at stake

• Participants rely on simultaneous correct execution
• All systems/variants must interoperate seamlessly

– Software vulnerabilities can be deliberately placed
• Statistically invisible: enormous amount of room to hide back doors

– Software can be compromised at runtime
• Injected faults not present in the version under test, need runtime monitoring

• Testing is necessarily sparse relative to the entire space
– Exhaustive testing is physically and economically impossible

 2

Emerging Solutions

• Testing Technologies, Processes & Policies
– Safely Reduce Testing Required (2007-2014)1

– Make testing more effective
• Risk-based testing (2012-2014)1
• Safe test result reuse (2009)1

– Reduce System Integration problems
• Continuous automated end-to-end testing (2015)
• Architecture QA aimed at system interference (2014)1

• Practices and guidance are being developed
– OSA Technical Reference Frameworks (2015)
– Affordable Design and Test Guidelines (2015)

1See prior year ARP Symposium Proceedings

3

Some Bugs are Must Fix

• Risk analysis to identify critical services
– Hazards: what can go wrong
– Severity: how bad would it be
– Risk Budget: how often can we accept it
– Prevent worst hazards: one failure is too much

• Dependency analysis
– To identify internal functions affecting critical services

• Automated test samples from risk tolerance
– Test sets large enough for high confidence
– Sampling error less than acceptable failure rate

4

Critical Faults

• Finding critical faults
may require cheating
– Statistically invisible =

impossible to detect by
black box testing

– Clear box testing can do
better

• Use constraint solvers
to synthesize test
inputs for majority of
cases

5

Testing is a Design Requirement

6

 Level Testability Level Description
0 inadequate Does not meet requirements for any of the higher levels
1 syntactic All services and data elements provided by each procurable component

have published interfaces/data models that provide names and type
signatures.

2 semantic Published interfaces include precise definitions of the meaning of the
services/data, including units, connection to real world objects, and
requirements on outputs and final states resulting from all services

3 robust Published interfaces include all assumptions and restrictions on inputs
and states, triggering conditions for all exceptions, and expected results
after exceptions

4 observable All system attributes relevant to checking the requirements are
observable either via the published operational interfaces or published
augmented testing interfaces

5 measurable All properties needed to check the requirements have clearly defined
measurement and evaluation procedures

6 decidable Pass/fail decisions for all test cases can be made entirely by automated
procedures, without need for subjective human judgment

7 unbounded Any number of random test inputs can be automatically generated and
corresponding test results can be automatically checked for all services

Testing is a Design Requirement
• QA for architectures should assess their

testability levels
– Levels 5-7 appropriate for reliable architectures

• Testability levels 6 and 7 can be
augmented with Built-in-Test capabilities
– Enables checking system readiness in the field
– Prognostics: e.g. replace battery soon
– Reconfiguration: e.g. new load-out for aircraft
– Device failure: e.g. replace hard drive
– Corrupted software: e.g. re-image OS

7

Automation Can Improve Testing

• Faster development time
• Stable and consistent

quality systems
• Lower costs
• Allow fast regression

testing
• Changes in approach are

required

8

Testing Infrastructure

• Programs approach testing differently
• Common instrumentation of SW could

allow formalization of automated testing
• Adopting similar Technical Reference

Frameworks enables use of common tools
• DoN is considering sponsoring standards

for testing

9

Hardware Testing

• Easier than software testing
– Uniform state representation
– Known expected outputs
– Effective error models

10

Software Testing
• More complex failure patterns
• Complete test sets not algorithmically

computable in the general case

11

Integration and Architecture Faults

• Hypothesis: many system integration
problems are due to architecture faults and
imperfections in test and evaluation.
– Examples of integration problems due to

architecture faults are in the backup slides.
– Testing imperfection example:

• Code faults in which components fail to conform to
architecture standards are missed by test cases.

• When two components are connected, one triggers such
a fault in the other, by exercising an untested situation.

• Incidence can be reduced by automated statistical
testing, with enough test cases for high confidence.

12

Experience with Automated Testing

• Rapid Integration and Test Environment
(RITE)
– SPAWAR initiative
– Fundamental change to DoD integration

activities
– Graduated set of tests

• Focused testing in three phases
is a fundamental aspect

• Continuous integration process
• Black box and clear box testing

13

Agile vs Traditional1

1 Slide courtesy of IDT Corp.

14

RITE Continuous Integration Process

15

16

Conclusions
• Clear box testing can expose statistically

invisible faults, including malware.

• Incremental development with continuous
testing can reduce integration problems.

• System integration problems can be caused

by architecture faults.

• QA procedures for architectures should be
part of OSA processes.

Recommendations
 • Early and continuing automated end-to-end

testing should be used to reduce/mitigate
system integration risks.

• Source code should be a required deliverable
to enable clear box testing and static analysis
thereby reducing risk of malware.

• Runtime infrastructure for detecting/undoing
unauthorized changes to code should be part
of any OSA/TRF, to reduce cyber risks.

17

Thank you

18

Backup Slides

19

OS
S2S1

C2 C3C1

Code and specs unchanged

Code and specs changed
Code changed, specs unchanged

C5 C4

OS
S2S1

C2 C3C1

Code and specs unchanged

Code and specs changed
Code changed, specs unchanged

C5 C4

 = No retest due to slicing

Test Avoidance Approach

20

C4 depends on C3

Program Slicing

• Program slicing is a kind of automated
dependency analysis
– Same slice implies same behavior
– Can be computed for large programs
– Depends on the source code, language specific
– Some tools exist, but are not in widespread use
– No tools spanning boundaries between languages (yet)

• Slicing tools must handle the full programming
language(s) correctly to support safe reduction
of testing.

21

Test Reduction Process (1)
• Check that the slice of each service is the same in

both versions (automated)
• Check that the requirements and workload of each

service are the same in both versions
• Must recheck timing and resource constraints
• Must certify absence of memory corrupting bugs

– Popular tools exist: Valgrind, Insure++, Coverity, etc.
• Must ensure absence of runtime code modifications

due to cyber attacks or physical faults
– Cannot be detected by testing because modifications

are not present in software versions under test
– Need runtime certification

• Can be done using cryptographic signatures (Berzins, 2009)
 22

Test Reduction Process (2)
• The test reduction process in the previous slide is for

new releases with the same operating environment.
– This is a significant constraint because reliability depends

strongly on operating environment
– The same system can have 0% reliability in one environment

and 100% in another

• Components reused in different contexts need a
different approach
– Can reuse some previous test results and focus new tests

on unexplored parts via differences in operational profiles
• See (Berzins 2009) for details.

– Risk-based testing can determine number of test cases
needed

23

Risk Based Testing

1. Whole-system operational risk analysis identify
potential mishaps / mission failures

2. Identify which software service failures would
lead to identified mishaps

3. Use slicing to identify which software modules
affect the critical services

4. Associate maximum risk level of affected
services with each software module (2012)

5. Set number of test cases using risk level (2008)

24

Architecture Fault Example (1)

• Kitchen plan calls out a Miele microwave
oven and an electric outlet.
1. Electrical contractor installs a 110 volt outlet.
2. Oven delivered, installation guide requires a 220

volt power supply, installation fails.

• Architecture left out constraints needed to
ensure the subsystems will work together.
– In this case: power supply voltage.

25

Architecture Fault Example (2)

• Laundry plan calls out an outlet, water supply,
and drain (washer), an outlet, gas supply, and
air vent (drier), and a big window on top.
1. Plumber installs the pipes below the structural

members supporting the window.
2. Electrical contractor finds space for the electrical

outlets completely obstructed by the pipes.
• Architecture left out constraints to deconflict

resource requirements for the subsystems.
– In this case: volumes of physical space.

26

	Use of Automated Testing to Facilitate Affordable Design of Military Systems
	The Naval Testing Challenge –�Infinity is a Big Place
	Emerging Solutions
	Some Bugs are Must Fix
	Critical Faults
	Testing is a Design Requirement
	Testing is a Design Requirement
	Automation Can Improve Testing
	Testing Infrastructure
	Hardware Testing
	Software Testing
	Integration and Architecture Faults
	Experience with Automated Testing
	Agile vs Traditional1
	RITE Continuous Integration Process
	Conclusions
	Recommendations�
	Slide Number 18
	Slide Number 19
	Test Avoidance Approach
	Program Slicing
	Test Reduction Process (1)
	Test Reduction Process (2)
	Risk Based Testing
	Architecture Fault Example (1)
	Architecture Fault Example (2)

