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Preface & Acknowledgements 

Welcome to our Ninth Annual Acquisition Research Symposium! This event is the 
highlight of the year for the Acquisition Research Program (ARP) here at the Naval 
Postgraduate School (NPS) because it showcases the findings of recently completed 
research projects—and that research activity has been prolific! Since the ARP’s founding in 
2003, over 800 original research reports have been added to the acquisition body of 
knowledge. We continue to add to that library, located online at 
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has 
engaged researchers at over 60 universities and other institutions, greatly enhancing the 
diversity of thought brought to bear on the business activities of the DoD.  

We generate this level of activity in three ways. First, we solicit research topics from 
academia and other institutions through an annual Broad Agency Announcement, 
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to 
seek NPS faculty research supporting the interests of our program sponsors. Finally, we 
serve as a “broker” to market specific research topics identified by our sponsors to NPS 
graduate students. This three-pronged approach provides for a rich and broad diversity of 
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition. 
We are grateful to those of you who have contributed to our research program in the past 
and hope this symposium will spark even more participation. 

We encourage you to be active participants at the symposium. Indeed, active 
participation has been the hallmark of previous symposia. We purposely limit attendance to 
350 people to encourage just that. In addition, this forum is unique in its effort to bring 
scholars and practitioners together around acquisition research that is both relevant in 
application and rigorous in method. Seldom will you get the opportunity to interact with so 
many top DoD acquisition officials and acquisition researchers. We encourage dialogue both 
in the formal panel sessions and in the many opportunities we make available at meals, 
breaks, and the day-ending socials. Many of our researchers use these occasions to 
establish new teaming arrangements for future research work. In the words of one senior 
government official, “I would not miss this symposium for the world as it is the best forum 
I’ve found for catching up on acquisition issues and learning from the great presenters.” 

We expect affordability to be a major focus at this year’s event. It is a central tenet of 
the DoD’s Better Buying Power initiatives, and budget projections indicate it will continue to 
be important as the nation works its way out of the recession. This suggests that research 
with a focus on affordability will be of great interest to the DoD leadership in the year to 
come. Whether you’re a practitioner or scholar, we invite you to participate in that research. 

We gratefully acknowledge the ongoing support and leadership of our sponsors, 
whose foresight and vision have assured the continuing success of the ARP:  

 Office of the Under Secretary of Defense (Acquisition, Technology, & 
Logistics) 

 Director, Acquisition Career Management, ASN (RD&A) 

 Program Executive Officer, SHIPS 

 Commander, Naval Sea Systems Command 

 Program Executive Officer, Integrated Warfare Systems 

 Army Contracting Command, U.S. Army Materiel Command 
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 Office of the Assistant Secretary of the Air Force (Acquisition) 

 Office of the Assistant Secretary of the Army (Acquisition, Logistics, & 
Technology) 

 Deputy Director, Acquisition Career Management, U.S. Army 

 Office of Procurement and Assistance Management Headquarters, 
Department of Energy 

 Director, Defense Security Cooperation Agency 

 Deputy Assistant Secretary of the Navy, Research, Development, Test & 
Evaluation 

 Program Executive Officer, Tactical Aircraft  

 Director, Office of Small Business Programs, Department of the Navy 

 Director, Office of Acquisition Resources and Analysis (ARA) 

 Deputy Assistant Secretary of the Navy, Acquisition & Procurement 

 Director of Open Architecture, DASN (RDT&E) 

 Program Executive Officer, Littoral Combat Ships 

We also thank the Naval Postgraduate School Foundation and acknowledge its 
generous contributions in support of this symposium. 

James B. Greene Jr. Keith F. Snider, PhD 
Rear Admiral, U.S. Navy (Ret.) Associate Professor 
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Panel 21. Innovative Approaches to Controlling 
Costs in Systems Acquisition 

Thursday, May 17, 2012  

1:45 p.m. – 
3:15 p.m. 

Chair: Rear Admiral David H. Lewis, USN, Program Executive Officer, Ships 

Ship Maintenance Processes With Collaborative Product Lifecycle 
Management and 3D Terrestrial Laser Scanning Tools: Reducing Costs and 
Increasing Productivity 

David Ford, Texas A&M University 
Thomas J. Housel and Johnathan C. Mun, Naval Postgraduate School 

Unit Cost as a Contract Requirement 

Jacques Gansler, William Lucyshyn, and David Ziman 
University of Maryland 

An Analysis of TRL-Based Cost and Schedule Models 

C. Robert Kenley and Bernard El-Khoury 
Massachusetts Institute of Technology 

David H. Lewis—As a program executive officer, Ships, Rear Admiral Lewis is responsible for Navy 
shipbuilding for surface combatants, amphibious ships, logistics support ships, support craft, and 
related foreign military sales. 

Born at Misawa Air Force Base, Japan, Lewis was commissioned in 1979 through the Navy 
ROTC program at the University of Nebraska–Lincoln with a Bachelor of Science degree in computer 
science. 

At sea, Lewis served as a communications officer aboard the USS Spruance (DD 963), where he 
earned his surface warfare qualification; the USS Biddle (CG 34) as a fire control officer and missile 
battery officer; and the USS Ticonderoga (CG 47) as a combat systems officer. His major command 
assignment was as the Aegis Shipbuilding program manager in the program executive office ships, 
where he helped deliver seven DDG 51 class ships and procured another 10 ships. 

Lewis’ shore assignments include executive assistant to the assistant secretary of the Navy 
(research, development, and acquisition), assistant chief of staff for maintenance and engineering, 
commander, and Naval Surface Forces, where he also served as a charter member of the Surface 
Warfare Enterprise. Lewis’ other ship maintenance and acquisition assignments ashore include the 
Navy secretariat staff; commander, Naval Sea Systems Command staff; the Aegis Shipbuilding 
Program Office; supervisor of shipbuilding, Bath; and Readiness Support Group, San Diego. Upon 
selection to flag rank, Lewis served as vice commander, Naval Sea Systems Command. Lewis 
earned a Master of Science degree in computer science from the Naval Postgraduate School. He 
completed the seminar course at the Naval War College Command and Staff School and received his 
Joint Professional Military Education certification. He is a member of the acquisition professional 
community with Level III certifications in program management and production quality management, 
and he has completed his civilian project management professional certification. 

Lewis’ personal awards include the Legion of Merit, Meritorious Service Medal, Navy and Marine 
Corps Commendation, Navy and Marine Corps Achievement Medal, and various service and unit 
awards. 
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An Analysis of TRL-Based Cost and Schedule Models 

C. Robert Kenley—Kenley holds a PhD and an MS in engineering-economic systems from Stanford, 
an MS in statistics from Purdue, and an SB in management from MIT. He has over 30 years 
experience in systems engineering in advanced socio-technical systems research and development 
in the aerospace, nuclear, and healthcare domains. He has provided clients with insight and 
understanding of systems problems as an independent consultant, and he currently is a research 
associate at MIT. He is a published author of several papers and journal articles in the fields of 
systems engineering, decision analysis, Bayesian probability networks, and applied meteorology. 

Bernard El-Khoury—El-Khoury is a graduate student at the Massachusetts Institute of Technology 
where he is pursuing a master’s degree in the technology and policy program. He is simultaneously 
pursuing a master’s degree in industrial engineering at Ecole Centrale Paris, where he also received 
a BS in engineering. His research interests are in technology cost and schedule forecasting, and 
power systems modeling. 

Abstract 
The GAO’s, NASA’s, and the DoD’s adoption of the technology readiness level (TRL) scale to 
improve technology management has led to the emergence of many TRL-based models that 
are used to monitor technology maturation, mitigate technology program risk, characterize 
TRL transition times, or model schedule and cost risk for individual technologies, as well as 
technology systems and portfolios. In the first part of this paper, we develop a theoretical 
framework to classify those models based on the (often implicit) assumptions they make; we 
then propose modifications and alternative models to make full use of the assumptions. In the 
second part, we depart from those assumptions and present a new decision-based 
framework for cost and schedule joint modeling. 

Introduction 
The technology readiness level (TRL) is a discrete scale used by U.S. acquisition 

agencies to assess the maturity of evolving technologies prior to incorporating those 
technologies into a system or subsystem. A low TRL (1–2) indicates a technology that is still 
at a basic research level, while a high TRL (8–9) indicates a technology at the final system 
level being already incorporated into an operational system. Table 1 presents the formal 
definitions of the NASA TRL levels defined by Mankins (1995). 

Table 1. NASA TRL Scale Definitions 

TRL NASA TRL Definition 
1 Basic principles observed and reported 
2 Technology concept and/or application formulated 
3 Analytical and experimental critical function and/or characteristic proof of concept 
4 Component and/or breadboard validation in laboratory environment 
5 Component and/or breadboard validation in relevant environment 
6 System/subsystem model or prototype demonstration in a relevant environment 

(ground or space) 
7 System prototype demonstration in a space environment 
8 Actual system completed and “flight qualified” through test and demonstration 

(ground or space) 
9 Actual system “flight proven” through successful mission operations 

Government agencies face major challenges when it comes to developing new 
technologies. For instance, the Department of Defense (DoD) (1) develops a very large 
portfolio of technologies, (2) develops high complexity system technologies, (3) manages a 
budget of several hundred billion dollars (GAO, 2009) in a monopsonistic contracting 
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environment with limited market competition, (4) suffers from frequent design changes due 
to changes in requirements, and (5) is under constant pressure to accelerate the 
development of technologies required for pressing national security issues. 

In evaluating the DoD’s performance, the Government Accountability Office (GAO) 
concluded, “Maturing new technology before it is included on a product is perhaps the most 
important determinant of the success of the eventual product—or weapon system” (GAO, 
1999, p. 12). The GAO (1999) also encouraged the use of “a disciplined and knowledge-
based approach of assessing technology maturity, such as TRLs, DoD-wide” (p. 7). 

The TRL scale gained prominence in technology management and the defense 
acquisition community, and a literature soon developed on the use of TRL to monitor 
technology maturation, to mitigate technology program risk, to characterize TRL transition 
times, and to model schedule and cost risk for individual technologies, as well as technology 
systems and portfolios. 

Those approaches do not depart from the same assumptions. Although some try to 
find a theoretical foundation for their models, others implicitly make the assumptions and 
found their models on the usefulness and robustness of the results. Developing a common 
framework for TRL-based models can help us better understand the underlying assumptions 
of those models and better critique them or use them to their full potential. 

These models try to study the relationship between TRL and key program 
management variables, such as cost, schedule, performance, and program risk. We refer to 
these variables more generally as maturity variables because we try to model their evolution 
(along with the related uncertainties) as the project matures (i.e., as TRL increases). We use 
maturity variables in an attempt to generalize the results and maximize the scope of the 
models whenever possible. Transition maturity variables are maturity variables defined for 
one TRL transition (e.g., the TRL 1-to-2 transition time, or the cost of transition from TRL 5 
to TRL 7, are such variables). 

We provide a theoretical framework of the assumptions generally made to make 
TRL-based cost and schedule modeling, classify existing TRL-based models within this 
framework, and propose modifications and alternative models to make full use of the 
assumptions. We look at one of those proposed models in more detail as a method that 
integrates both cost and schedule through the use of a decision-modeling framework. In the 
Part I: Theoretical Framework and Currently Available Models section, we explain the 
theoretical framework, and for each assumption level of the framework, we list the currently 
available models and discuss alternatives or suggestions whenever possible. In the Part II: 
A New Framework for Cost and Schedule Joint Modeling section, we depart from those 
assumptions and present a new framework for cost and schedule joint modeling. 

Part I: Theoretical Framework and Currently Available Models 
Figure 1 shows the four levels of increasingly strong assumptions made in TRL-

based models of maturity variables. 
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Figure 1. Assumption Levels for the Framework 

Level 1 Assumption 

The Level 1 assumption is trivial and is hard to contest; it makes use of the ordinality 
property of the TRL scale. Its direct consequence is that the higher the TRLs, the smaller 
the remaining overall uncertainty in maturity variables. A project at TRL 3 is subject to risks 
(cost, schedule, technology) on transitions from TRL 3 to TRL 9, while a project at TRL 7 is 
subject only to risks on transitions from TRL 7 to TRL 9. Figure 2 depicts the reduction in 
uncertainty and particularly identifies the TRL 6-to-7 transition as the most important step in 
reducing the risk of achieving a product launch. Although the GAO identified this for product 
launch or programmatic risk, this reduction in uncertainty is also true for other maturity 
variables. The range of uncertainty for cost, schedule, and performance is also reduced as 
the TRL progresses. 

 

Figure 2. Programmatic Risk as a Function of TRL 
(GAO, 1999, p. 24) 

1. TRL scale is a 
measure of  

maturity and risk

2. Transition maturity 
variables are 

consistently related 
across technologies

3. Maturity variables are 
significantly different for different 

TRL transitions

4. TRL marks points of progression in 
technology development
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Level 2 Assumption 

The Level 2 assumption is also a weak assumption. It stipulates that when we look at 
one technology transition, the maturity variables have a probability distribution different from 
other TRL transitions. Theoretically, this assumption is supported by the very design of the 
TRL scale. Because each transition in the scale corresponds to a well-defined action 
common to any technology development, we expect each of those transitions to share 
common properties across technologies and thus be significantly differentiable from other 
transitions. For example, the TRL 1–2 transition that happens when “an application of the 
basic principles is found” is different from the TRL 2–3 transition that corresponds to “going 
from paper to lab experiments,” which itself is different from the TRL 6–7 transition that 
happens when “the prototype is tested in the real environment.” The descriptions of those 
transition processes are clear enough to expect their properties to be different from each 
other while being coherent among similar transitions. 

We performed analysis of variance (ANOVA) in Table 2, which shows for example 
that TRL transitions 1–2 and 2–3 are both different from transition 1–3 at a 95% confidence 
level. Hence, we statistically lose information when we reduce the TRL scale to fewer than 
the nine defined stages. The ANOVA uses data from a case study done by the Systems 
Analysis Branch at NASA’s Langley research center, looking at typical times aeronautical 
technologies take to mature (Peisen & Schulz, 1999). The data was collected through 
interviews with NASA personnel. The equality of means hypothesis was rejected here, 
although the dataset contained transition times for only 18 technologies; the power of the 
test can be significantly improved if more data were available. 
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Table 2. ANOVA Analysis on NASA SAIC Data Comparing Transitions 1–2 and 2–
3 to Transition 1–3 

 

 

Dubos, Saleh, and Braun (2010) implicitly apply our Level 2 assumption when they 
look at the distribution of every TRL transition time. They found that TRLs’ transition times 
have lognormal distributions and used that to propose average estimators and confidence 
intervals. 

ANOVA Summary

Total Sample Size 38
Grand Mean 0.3221
Pooled Std Dev 0.8973
Pooled Variance 0.8052
Number of Samples 2
Confidence Level 95.00%

12 13

ANOVA Sample Stats Data Set #1 Data Set #1

Sample Size 19 19
Sample Mean 0.0157 0.6285
Sample Std Dev 0.9041 0.8905
Sample Variance 0.8174 0.7930
Pooling Weight 0.5000 0.5000

Sum of Degrees of Mean

OneWay ANOVA Table Squares Freedom Squares

Between Variation 3.5682 1 3.5682 4.4313 0.0423
Within Variation 28.9884 36 0.8052
Total Variation 32.5566 37

Difference

Confidence Interval Tests of Means Lower Upper

12‐13 ‐0.6129 ‐1.203316939 ‐0.022406713

F‐Ratio p‐Value

No Correction

ANOVA Summary

Total Sample Size 38
Grand Mean 0.1755
Pooled Std Dev 0.9275
Pooled Variance 0.8603
Number of Samples 2
Confidence Level 95.00%

13 23

ANOVA Sample Stats Data Set #1 Data Set #1

Sample Size 19 19
Sample Mean 0.6285 ‐0.2775
Sample Std Dev 0.8905 0.9631
Sample Variance 0.7930 0.9276
Pooling Weight 0.5000 0.5000

Sum of Degrees of Mean

OneWay ANOVA Table Squares Freedom Squares

Between Variation 7.7985 1 7.7985 9.0645 0.0047
Within Variation 30.9721 36 0.8603
Total Variation 38.7706 37

Difference

Confidence Interval Tests of Means Lower Upper

13‐23 0.9060 0.295709129 1.516356742

F‐Ratio p‐Value

No Correction
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Because TRL data is typically scarce, and because of its high skewness, we should 
evaluate it using a more robust measure, such as the median instead of the average; 
however, it is harder to generate median estimators and confidence intervals. In such cases 
of asymmetrical data, typically when the data is truncated and skewed, which is the case for 
all maturity variables, Mooney and Duval (1993) recommend the bootstrap over classic 
parametric tests. The bootstrap is a resampling technique that generates an empirical 
distribution of the required statistic (the median in this case; Efron & Tibshirani, 1993). It is 
especially useful to make inference on small samples and access the (little) information 
contained in the sample without making parametric assumptions. To implement the median 
bootstrap, we resampled with replacement a large number of times; then we took the 
median of each of those resamples. From the resulting histogram of the medians, we 
obtained an empirical distribution of the median and used it to generate confidence intervals.  

We used the iterated smoothed bootstrap for the median and mean of TRL transition 
times; then we saved the resulting mean and median distributions in two Excel user-defined 
functions, as shown in Figure 3. A user can easily access different estimates, standard 
deviations, and confidence intervals by typing the starting TRL, the ending TRL, and the 
required confidence level. We also created a bootstrap Excel function that generates the 
bootstrap distribution based on a data sample input. 

 

Figure 3. Snapshot of the Transition Time User-Defined Function in Excel 

In summary, this Level 2 assumption is made whenever we want to study the 
statistics of maturity variables on each of the TRL transitions. Empirical data appears to 
confirm that the introduction of those TRL divisions increase the amount of significant 
information on the maturity variables. However, because the available data sets are small 
and skewed, the median bootstrap is a good method for making inferences on those 
transition-based maturity variables. 

Level 3 Assumption 

The Level 3 assumption is a stronger one. One of its major implications is that for 
one technology, we can use early transition information to make inferences on possible 
values of later transition variables.  

One important question that we can answer under this assumption is this: If a 
technology is already developing quickly (or cheaply), does this mean that it is more likely to 
continue developing quickly (or cheaply)? The theoretical argument here might be that some 
technologies have overall properties that are independent of maturity or the TRL, such as, 
the technology is intrinsically harder to develop, the contractor is more expensive than the 
average, or the contract terms encourage late delivery. Another argument is that the cost 
risk or schedule risk during technology development always evolves in the same manner 
independently of the technology. For example, we might assume that cost risk always 
increases throughout the project, and hence initial values of cost overruns will give us an 
idea about future cost overruns. 
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Our analysis of empirical evidence using the NASA SAIC schedule data supports this 
assumption. Figure 4 shows log-transition times for all 18 technologies. By looking at each 
technology (each curve), we can see some similar trends before TRL 6, many values of zero 
(one year) for transition from TRL 2 to 3, a general tendency to increase after TRL 2–3 or 
after TRL 3–4, and then a general tendency to decrease after TRL 4–5; however, those 
trends seem to disappear after TRL 6–7 with either a constant value or a high amplitude 
oscillation, before converging at the last transition towards a value close to zero. 

 

Figure 4. Log-Transition Times for NASA SAIC Data Technology 

This graphical evidence of a well-behaving group before TRL 6 is confirmed by the 
cluster of positive correlations in Table 3. The data clearly shows a high-correlation cluster 
for transition times 1–2, 2–3, 3–4, and 4–5. Transition 6–7 is the least correlated with other 
transitions. One explanation of this lack of correlation is that the technology development 
responsibility changes from NASA laboratories and research agencies that have managed 
the research from TRL 1 to TRL 6 to large-scale programs that must integrate multiple 
technologies and that use contractors to complete the technology development. 

Table 3. NASA SAIC Data Correlation for Log-Transition Times 

 

Figure 5 shows that the 6–7 transition time has the highest variance, which makes it 
very unpredictable. This confirms the GAO conclusion that technology risk is reduced after 
TRL 7, because finishing the 6–7 transition gets the technology past the step that has the 
highest variance. 

ln(12) ln(23) ln(34) ln(45) ln(56) ln(67) ln(78) ln(89)

Correlation Table log data log data log data log data log data log data log data log data

ln(12) 1.000 0.660 0.752 0.312 0.149 ‐0.074 ‐0.135 ‐0.606
ln(23) 0.660 1.000 0.905 0.673 0.385 0.043 ‐0.170 ‐0.350
ln(34) 0.752 0.905 1.000 0.639 0.351 0.113 ‐0.256 ‐0.265
ln(45) 0.312 0.673 0.639 1.000 0.490 0.344 0.006 0.073
ln(56) 0.149 0.385 0.351 0.490 1.000 0.325 0.331 0.307
ln(67) ‐0.074 0.043 0.113 0.344 0.325 1.000 ‐0.092 0.633
ln(78) ‐0.135 ‐0.170 ‐0.256 0.006 0.331 ‐0.092 1.000 0.180
ln(89) ‐0.606 ‐0.350 ‐0.265 0.073 0.307 0.633 0.180 1.000



^Åèìáëáíáçå=oÉëÉ~êÅÜ=moldo^jW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= -=226 - 

=

 

Figure 5. Variance of NASA SAIC’s Technology Log-Transition Times 

In simple terms, the correlation table (Table 3) implies that if a technology is maturing 
fast (resp. slow) at early stages, it is likely to keep its high (resp. low) maturation speed up 
until TRL 5. However, there are no significant correlations (positive or negative) after TRL 5.  

We tried exploiting those effects by developing schedule forecasting models. In one 
approach, we modeled the transition times as an influence diagram (Shachter & Kenley, 
1989) and did Bayesian updating to make forecasts. We also tried extrapolation techniques 
and some other statistical techniques, such as autoregression. The autoregression method 
consists of regressing the variable that is being forecasted against all the already known 
transitions by using the training data, then generating the forecast by applying the resulting 
linear function to the known transitions of the particular technology. For example, if we 
already know transitions 1–2, 2–3, and 3–4, and we want to forecast transition 7–8, we 
would use the training set to regress 7–8 against 1–2, 2–3, and 3–4; then we would get the 
forecast by multiplying the regression coefficients by the known values of 1–2, 2–3 and 3–4 
transitions. 

We then compared those estimates to those done by using fixed estimates (i.e., by 
simply using the mean or median transition time as an estimate, which is equivalent to 
limiting the assumptions to the Level 2 assumptions). Different measures of forecast errors 
were used, and we found, as expected, that most forecasting methods outperformed the 
fixed estimates on the early TRLs. However, only one of those techniques, the bounded 
autoregression, was able to consistently outperform the median and mean estimates of all 
TRL transitions for all of the forecasting error measures. The bounded autoregression 
method controls estimates through an upper bound to prevent the algorithm from predicting 
unrealistically high values. 

This analysis is based on a small number of data points, and there is a risk that 
those forecasting techniques are overlearning the dataset. As long as we do not have 
enough testing data to properly validate this approach, it might be better to limit ourselves to 
Level 2 assumption and use fixed median estimates with bootstrapping. 

Level 4 Assumption 

The Level 4 assumption consists of mainly two separate assumptions: The first 
assumption is that TRL measures technology maturity and, by extension, the second 
assumption is that TRL also measures risk. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=moldo^jW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= -=227 - 

=

The first assumption that TRL measures maturity is easier to defend. A lot of factors 
outside of TRL contribute to technology maturity. Other factors that influence maturation 
variables and are not captured by TRL can be external, such as political risk (change of 
budget or requirements), technological risk (obsolescence due to disruptive technologies), 
bureaucracy (number of steps, amount of documentation, tests, demonstrations, and 
milestones required), contractor in charge and contracting structure and incentives, and 
availability of proper development labs and testing facilities. They can also be inherent 
technology properties, such as new technology vs. adaptation (or new use), type of 
technology (software vs. hardware vs. process), domain of technology (space vs. weapons), 
and scale of technology (component vs. system vs. integration). Nevertheless, this 
assumption stipulates that TRL captures a major part of the technology maturation process. 
After all, TRL was developed as a measure of technology maturity, and project managers 
can augment the model with those other factors whenever they are relevant for particular 
project; however, we did not find any historical data to support quantitative modeling. 

The second assumption, that TRL measures risk, is not as easy to defend. As Nolte 
(2008) pointed out, TRL is a good measure of how far the technology has evolved, but it 
tells us very little about how difficult it will be to advance to the following steps. 
Advancement degree of difficulty (AD2) and research and development degree of difficulty 
(RD3) are two scales developed to eliminate uncertainty over the maturity variables of future 
steps. 

Even if we accept the second assumption, Conrow (2009) pointed out another 
problem in this TRL-risk relationship. Cost, schedule, and performance risks can be 
decomposed into probability of occurrence and consequence of occurrence. Although TRL 
might be partially correlated with the probability of occurrence term, it has no correlation with 
the consequence of occurrence term. 

Several cost uncertainty models (Lee & Thomas, 2003; Hoy & Hudak, 1994; Dubos 
& Saleh, 2008) are based on a regression of cost risk against TRL. Conrow (2009) 
mentioned a cardinality assumption made when these cost-risk models aggregate project 
TRLs through averaging (more specifically, cost-weighted TRLs). In our statistical modeling 
for schedule, we used only the ordinal properties of TRLs (the fact that TRL 2 is more 
mature than TRL 1, and TRL 3 more mature than TRL 2, etc.). Averaging TRLs implies that 
TRL values are not just placeholders, but that they are metric scales, and the distances 
between them can be compared (for example, this would mean that the difference of 
maturity between TRL 1 and TRL 4 is the same as that between TRL 5 and TRL 8). Conrow 
also points out other problems in this approach: There is no particular reason to weigh the 
TRL average by cost, and more importantly, there is no reason to believe that averages are 
the best way to get an aggregate system TRL. The maturity of a system (especially when we 
are looking at performance and schedule variables) depends heavily on the work breakdown 
structure (WBS). For example, if the WBS contains important parallel branches, then system 
maturity is better represented by taking the minimum of subsystem TRLs. 

As a solution, Conrow (2009) proposed an AHP-based curve fit that calibrates the 
TRL scale making it cardinal. Although this approach is a good way of getting over the 
cardinality assumption and the assumption that TRLs measures maturity in general, there 
are a couple of caveats to the method: 

On the one hand, the method factors in the subjectivities inherent to the AHP method 
that require asking and answering the 36 questions relating to how much more mature TRL 
scale level N is compared to TRL scale M. 
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On the other hand, the method factors in the subjectivities and definitional issues 
inherent to the term “maturity.” Let us assume the expert answered, “TRL 5 is 3.5 times 
more mature than TRL 2.” Were the experts thinking in terms of individual maturity variables 
(remaining work to be done, remaining cost, schedule, performance, program risk, or other 
variables related to program readiness), or were they doing some kind of mental average on 
some of those maturity variables? 

Conrow’s (2009) technique would allow us to overcome all of the Level 4 
assumptions except for the “TRL is a measure of remaining risk” assumption. Although TRL 
averaging is not encouraged, Conrow’s proposed method does offer a way of doing so 
without committing any potential cardinality-related errors, but it does add considerable 
subjectivity. The one major advantage of the three cost uncertainty models that do use 
regressions against TRL values is that they require only TRL as the input for predicting cost 
uncertainty and do not require the extensive subjective AHP comparison inputs suggested 
by Conrow (2009). 

Part II: A New Framework for Cost and Schedule Joint Modeling 
For joint cost and schedule modeling, we adopted a completely different (decision-

based) approach of modeling TRLs and project management. The need for such a model 
emerges from the fact that the approaches presented so far present a major weakness 
when applied to joint cost and schedule models: They model cost and schedule risk 
separately and fail to take cost and schedule arbitrage into consideration. For example, let 
us assume that cost and schedule have normal distributions and that we want to generate a 
cost and schedule joint distribution. On the one hand, we cannot simply model them as 
independent variables because we would be neglecting cost and schedule interactions. On 
the other hand, even if we model the variables as a bivariate normal distribution, we would 
still be missing the cost and schedule dynamics because such a distribution reduces the 
interaction between cost and schedule to only one correlation factor. The relationship 
between cost and schedule is more than just a positive or a negative correlation: We might 
assume that the two variables are independent or positively correlated on some ranges, but 
such a relationship would not hold for the extreme values: If schedule slippage is going too 
high, the project manager would increase spending to reduce schedule slippage (or vice 
versa if cost is getting out of control). As a result, we should expect a cost and schedule 
arbitrage. The terms of this tradeoff would depend on factors such as (1) the available 
budget, (2) the reward structure of developing the technology, or (3) the relative 
attractiveness of other projects to where cost or schedule resources might get diverted. 

First, it is not very realistic to consider a normal or lognormal budget that can take 
any value. Very often, the budget can take only certain discrete values and has some 
maximum allowable limit. More importantly, a single budget might have to be allocated 
across multiple projects. 

A second factor that can impact the terms of the cost and schedule tradeoff is the 
expected payoff of developing the technology. Although some technologies generate higher 
utility if developed quickly, others give priority to cost considerations and generate utility as 
long as they don’t exceed budget. 

Finally, cross-technology arbitrage is an important factor in shifting schedule and 
cost resources from one technology to another. For example, if a technology has already 
considerably matured and it is expected to have a high return if developed early, then this is 
a low-risk, high-return project, and it will get resources diverted to it from other higher risk 
projects where schedule is relatively less important (for example, projects that have low 
returns in the short term, but that were nevertheless started just to be kept alive). This is 
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especially relevant if the budget is shared across different projects or technology 
components. 

One way of capturing those variables and those project-management tradeoffs is 
through decision analysis using a simple finite-horizon dynamic programming model. Not 
only does the model incorporate those important factors, it also simulates the decision-
process of a rational project manager controlling a portfolio of technologies and facing 
uncertainty. The proposed model works in two steps: First, we define a decision tree and 
solve it; second, we use the resulting policy matrix to generate the cost and schedule joint 
distribution. Because very little of the required data is readily available (especially joint cost 
and schedule data, and technology maturation utility data), what follows is a high-level 
description of the dynamic program and the methodology for generating the distribution 
(hence, the numbers that appear in the description are for illustrative purposes only). 

The Dynamic Program 

The model consists of nine periods (the nine TRLs of the technologies), where the 
manager has to manage a simple portfolio of two technologies (technology A, and 
technology B) initially at TRL 1. At each TRL, the decision-maker decides how to allocate 
the available budget on the two technologies. This decision will stochastically affect the state 
variable, which is the total cumulative development time of each of the two technologies. 
Once at TRL 9, each project will be rewarded based on its total development time. 

Note that time here is the state variable and not the period of the model. We did this 
to avoid having TRL as a state variable. Having TRL as a state variable would generate (1) 
conceptual problems (it is a discrete variable that proceeds step by step; it would be 
unrealistic to have probabilities of a project jumping many TRLs in one period, or to have a 
project staying the same TRL without having its future probabilities being affected by that), 
and (2) practical problems (a very large number of periods would be needed if a project had 
low probabilities of transitioning to the next TRL). Those problems are avoided with TRL as 
the model’s period. Hence, the total number of periods is fixed to nine; at each step the 
project has to progress by one TRL, and the state variable is the cumulative development 
time (“cumulative” because the final reward at the last step should account for the total 
development time of the technology). 

The horizontal axis in Figure 6 shows the TRL level, which represents the nine 
periods of the model. Assume that we start at TRL 1 where the technologies A and B have 
already spent some time in development (indicated by the black bars, which represent the 
total development times so far for TA and TB). At this period, we have a lot of possible 
budget choices (CA, CB): We can either allocate the maximum possible budget for both 
technologies, allocate a maximum budget for one and a minimum budget for the other, or go 
for the minimal investment for both (represented by the colored bars under CA and CB). 
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Figure 6. The State of the System at the First Period 

For each of those budget decisions, there are multiple possible outcomes. When the 
decision-maker takes a certain budgetary decision, he or she does not know for sure how 
long the transition will take and what values TA and TB will have at Period 2 (the uncertainty 
in the outcomes is represented by the dotted blue lines in Figure 7). 

 

Figure 7. The Uncertain Outcomes After Allocating Budget at the First Period 

The decision-maker can again make different budget allocations under each of those 
new states at Period 2. Finally, once TRL 9 is reached, we can calculate the terminal reward 
based on each of the technologies’ total development time and total cost, as shown in 
Figure 8. 
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Figure 8. The Uncertain Outcomes After Allocating Budget at the First Period 

Below is a more detailed description of the model parameters. 

Decision Periods  

T є {0,1,2,….,9} correspond to the 9 TRLs of the projects, which is when budget 
decisions are made.  

State Variable 

s є {1,2,….,45}x{1,2,….,45} the cumulative number of months of development of 
each of the two technologies. 

Actions  

In this case, we took a є {1,1.5,2,3.5,6}x{1,1.5,2,3.5,6} the budget (in million dollars) 
to allocate to each project at each period. Each cost corresponds (stochastically) to one of 
the following transition times in order {5,4,3,2,1}. This corresponds to the intuitive 
decreasing and convex Schedule = f(Cost) relation; it captures the cost and schedule 
tradeoff decisions that the manager has to make.  

Those cost allocation pairs are bounded, however, by a total budget constraint Bєℝ9 
that limits the total budget that can be spent on every period. The aim of this vector is to put 
a budget constraint and to force the algorithm to take resources from one project to allocate 
them to another instead of investing the maximum in both technologies. 

Rewards  

Intermediary rewards: At each period, we incur the cost of developing the two 
technologies (  and  are the budgets allocated for projects A and B at period t). = − − 	     (1)	

Terminal reward:  and  being the state variables at T = 9 (i.e., the total 
technology development times), we used the following terminal reward function form = 	 ∗ ( − , 0) 	+ ∗ ( − , 0)    (2)	
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The difference terms ( − 	, − 	) express the idea that the sooner a project is 
finished, the better (  and  represent the relevant time horizons over which utility is 
generated). Dubos and Saleh (2010) pointed out that considering useful time horizons is an 
important step in developing a value-centric design methodology (VCDM) for unpriced 
systems value (such as weapon and space systems). The max(…,0) means that the 
project’s utility is zero if it finishes too late (i.e., if the technology is obsolete even before it 
matures). It also gives the option not to invest in one of the projects and allows focusing 
resources on only one project to maximize profits.  

The utility function here was expressed as a power function (through  and ). 
Although it can take different functional forms, this form already expresses the fact that there 
are increasing marginal benefits of maturing a technology ahead of time. For example, 
higher values of  and  mean that the technology is badly needed and promises more 
future benefits if it is matured early. Hence, the utility of cross-technology arbitrage would be 
increased as the decision-maker has more interest in shifting one project’s funds to the 
other in order to increase the expected final reward.  

This transformation is also important because the costs and the time-related terminal 
rewards are eventually added to each other in the value function. A transformation is 
necessary in order to express the value of finishing early in dollar terms.  

Similarly,  and  allow for more freedom to change the utility of the schedule 
terminal rewards relative to cost, and relative to each other.  

Transition Function  = 	 + 	 ( )	     (3)	
This means that the cumulative development time at t+1 is the total time at t plus a 

stochastic function of the budget decision.  ( )	stochastically assigns one of the transition times (here {1,2,3,4,5}) to the action 
 taken by the decision-maker. Although transition time is uncertain,  assigns short 

transition times more often when a high budget is decided, and it assigns longer transition 
times more often when lower budget decisions are taken. ( ) expresses the uncertainty in 
technology development; it will have a higher variance for transitions and technologies that 
are more uncertain. For some well-understood TRL transitions where the cost and schedule 
relationship is well known, the manager can use a more deterministic ( ). 
Generating the Distribution 

Matlab can be used to solve this dynamic program by backward induction. As we 
solve the decision tree, we make sure we record the policy matrix X (a matrix that contains 
the best possible budget allocation for every single possible state in the tree). Once we 
know the best decisions all across the tree, we can redraw the tree without the decision 
nodes (the green dotted lines in Figure 9 indicate that the optimal decision is already taken, 
and the multiple tree scenarios are due only to the uncertainty of the cost and schedule 
relation). 
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Figure 9. The Policy Diagram With Optimal Decisions 

At this point, we can run a forward loop through the tree to compute the probability of 
getting to every possible final state, as well as the total cost when we reach this final state. 
In other words, assuming that a rational decision-maker is in charge of maximizing utility by 
managing the technology portfolio, we now have the three relevant variables of every single 
final state as shown in Figure 10: total development times, total expenditures, and the 
probability of arriving to this final state. These triplets (Ci,Ti,pi)i define the joint cost and 
schedule distribution function of each of the two technologies, which can be calculated as 
shown in Figure 11. 

 

Figure 10. The Policy Diagram With Optimal Decisions and All Possible Outcomes 
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Figure 11. Example of a Resulting Cost and Schedule Empirical Joint Distribution 

This model can be made more realistic by taking other factors into consideration, 
such as risk aversion and time discounting of money, by increasing the number of 
technologies in the portfolio, or by including cost in the state variable and defining a more 
suitable non-additive final utility function. 

Conclusion 
In this paper, we developed a TRL model taxonomy based on the increasing 

assumptions made by these models. The Level 1 assumption is irrefutable and validates the 
GAO’s recommendations on technology transition risk. Although Level 2 and Level 3 
assumptions seem to be empirically verified, the data shortage did not allow us to reliably 
validate the Level 3 approach, and it forced us to adopt bootstrap median estimation as a 
Level 2 approach instead. Finally, we are obliged at Level 4 to make at least the strong 
assumption that TRL is a measure of remaining risk. Although it is recommended to avoid 
TRL averaging and to adopt a WBS-based approach instead, we can still perform TRL 
averaging operations by using Conrow’s (2009) calibration at the cost of the subjective 
inputs introduced by the AHP. 

The decision-based joint cost and schedule model avoids most of the above 
assumptions, and it does make new assumptions on the dynamics of project management. 
The motivation behind this model was to capture cost and schedule arbitrage by considering 
different factors that affect the tradeoffs in the technology portfolio decision environment. 
The method theoretically generates a cost and schedule joint distribution that accounts for 
the decision process of the portfolio manager, but more data is needed to test and evaluate 
the predictive power of the model.  
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