PURDUE UNIVERSITY

Capability and Development Risk Management in Systemof-Systems Architectures: A Portfolio Approach to Decision Making

NPS Acquisition Research Symposium 16-MAY -2012

Dr. Daniel DeLaurentis , Dr. Muharrem Mane, Dr. Navindran Davendralingam

> School of Aeronautics & Astronautics and System-of Systems Laboratory Purdue University

Presentation Outline

- The Big Picture
- SoS Architecting and Acquisition: Wave Model context
- An Investment Portfolio Approach
 - Mean Variance Approach
 - Mean-Variance: A Robust Version
- Concept Problem: Simple Littoral Combat Ship (LCS)
 - Robust Portfolio application
 - Multiple risk measures
- Future Work

PURDUE

The Big Picture

CONTRACTOR OF STREET

Wave Model*: SoS Architecture Development

*adapted from Dahmann et. al, "Integrating Systems Engineering and Test & Evaluation in System of Systems Development" IEEE Vancouver, 2011

Wave Model: Acquisition and Architecture

- How to leverage acquiring capabilities against associated risk?
 - Evolving requirements, Open Architectures (OA)
- What about system interdependencies?
- What about acquisition uncertainty considerations?
 - SRL, TRL, operational/developmental characteristics

A Portfolio Approach: Background

 Classical Mean-Variance optimization among techniques adopted by financial engineering and operations research.

RDUE

- Balance expected profit (performance) against risk (variance) in investments
- Generates efficiency frontier of optimal portfolios given investor risk averseness
- Extends current frameworks (Housel, Mun, et.al)
- Systems (nodes) can be modeled as potential investment assets → how do we invest?

Mean-Variance Portfolio Approach

Portfolio Uncertainty

Sources of uncertainty

JRDUE

- System Capability: Actual performance of system individually and as a whole SoS entity
- **System Interdependence**: Interdependency variances/covariances?
- Addressing uncertainty
 - Operations Research/Financial Engineering Methods to address uncertainty measures
 - Introduce uncertainty in interdependencies and individual asset performances
 - Introduce SoS connectivity in portfolio space

Mean-Variance Portfolio: Robust Approach

PURDUE UNIVERSITY

School of Aeronautics & Astronautics

Robust Portfolio Case Study: Simple LCS Portfolio

Table 2: System interdependency and development risk (covariance)

		able Depth	ti Fcn Tow	tweight tow	ACS II	1DS (MH-60)	DS Missiles	fin Missiles	kage System 1	kage System 2	kage System 3	
-	Diagonal : System Variance Off Diagonal : System Interdependency											
	Package System 2	0	0.1	0	0.2	0	0.1	0	0	0.3	0	
	Package System 3	0	0	0.2	0	0.3	0	0	0	0	0.2	

Table 1: Individual system information

Image from: Presentation slides by RDML Vic Guillory of OPNAV at Mine Warfare Association Conference (titled "Littoral Combat Ship", 08-May-07)

Robust Portfolio Case Study: Simple LCS Portfolio

Portfolio Approach: LCS Multiple Risk Measures

 Layered measure of risk (e.g. weapons vs. communications layer).

URDUE

 Separate covariance for each measure of risk

weapons

 X_i^B

Comm. Variance (Risk) Constraint

Weapon Variance (Risk) Constraint

 $\leq \sigma_{weapon}$

Summary/Conclusion

TF.

- RMVO promising framework to leverage SoS performance against risk
- Considers uncertainty and system interdependencies explicitly in portfolio construction
- Needs more realistic data (performance, interdependencies) for real world application and verification

Portfolio Approach: Future Work

- Extend to multi-period considerations
 - How do I make investment decisions in changing environments?
 - Can I hedge my bets for future anticipations?
 - (e.g. price of steel in LCS program?)
 - Do my decisions now allow me to learn for the future?
 - Similar technologies, frameworks → knowledge space?

$$\max \underbrace{\left(\sum_{q} \left(\frac{S_{qc} - R_{c}}{R_{c}} \cdot w \cdot X_{q}^{B}\right) - \lambda \left(X_{q}^{F}\right)^{T} \Sigma_{ij} X_{q}^{F} - \sum_{q} \left(C_{q} X_{q}^{B}\right)\right)}_{I} + E\left(A_{t+1} \mid w_{t+1}, \Sigma_{t+1}, \lambda_{t+1}\right)$$

$$\underbrace{I}_{I}$$
Capability vs. Risk now
Effect on Capability Later

Application to more realistic world SoS portfolio problems

School of Aeronautics & Astronautics

Extra/Backup Slides

Portfolio Approach: SoS Modelling Additions

 Model individual system as 'nodes'

JRDUE

- Functional & Physical representation
- Rules for node connectivity (this is currently not addressed elsewhere, e.g., RT-18)
 - Compatibility between nodes
 - Bandwidth of linkages
 - Supply (Capability)
 - Demand (Requirements)
 - Relay capability

Extension to SoS Interconnectivities

Maximize Capability Performance Index

URDUE

Sufficient Capabilities Supplied

Individual System Requirements met

Connectivity Rules Obeyed (Big-M formulation)

Risk Tolerance (per measure of risk)

 \Box

 \Box