
1

Certifying Tools for Test Reduction in Open

Architecture

Valdis Berzins

Naval Postgraduate School

U.S. Navy Open Architecture

• A multi-faceted strategy for developing joint

interoperable systems that adapt and exploit

open system design principles and architectures

• OA Principles, processes, and best practices:

– Provide more opportunities for completion and innovation

– Rapidly field affordable, interoperable systems

– Minimize total ownership cost

– Maximize total system performance

– Field systems that are easily developed and upgradable

– Achieve component software reuse

2

Problem and Proposed Solution

• Traditional U.S. Navy Software T&E practices

will limit many benefits of OA

– It is virtually impossible to field frequent and rapid

configuration changes with current approaches

• New Testing Technologies, Processes &

Policies are Needed

– Safely Reduce Testing Required (2007-2012)

– Make testing more effective

• Risk-based testing (2012), safe test result reuse (Berzins, 2009)

– Transition from Manual Testing to Profile-Based

Automated Statistical Testing (Berzins, 2010)

– Dependency-based acquisition (2012)

3

OS
S2S1

C2 C3C1

Code and specs unchanged

Code and specs changed

Code changed, specs unchanged

C5 C4

OS
S2S1

C2 C3C1

Code and specs unchanged

Code and specs changed

Code changed, specs unchanged

C5 C4

 = No retest due to slicing

Test Avoidance Approach

4

Program Slicing

• Program slicing is a kind of automated

dependency analysis

– Same slice implies same behavior

– Can be computed for large programs

– Depends on the source code, language specific

– Some tools exist, but are not in widespread use

• Slicing tools must handle the full programming

language correctly to support safe reduction of

testing.

5

Test Reduction Process

• Check that the slice of each service is the same in

both versions (automated)

• Check that the requirements and workload of each

service are the same in both versions

• Must recheck timing and resource constraints

• Must certify absence of memory corrupting bugs

– Popular tools exist: Valgrind, Insure++, Coverity, etc.

• Must ensure absence of runtime code modifications

due to cyber attacks or physical faults

– Cannot be detected by testing because modifications

are not present in test loads

– Need runtime certification

• Can be done using cryptographic signatures (Berzins, 2009)

 6

7

The Current Problem

To Evaluate the Suitability of

COTS Slicing Tools

for Supporting Safe Test Reduction

8

Current Research Objectives

1. To conduct experimental assessments and
compare the suitability of the available COTS
program slicing tools for safe reduction of
testing effort.

2. To identify the most adequate slicing tools
among the evaluated ones.

3. To determine the suitability of available COTS
program slicing tools for practical SW test
reduction.

4. To explore additional benefits of dependency
analysis

9

Requirements for Slicing Tools

1. Must satisfy the behavior invariance property:

• If the original program terminates cleanly,
the slices must terminate cleanly and
produce the same result as the original
program for all observable values specified
by the slicing criterion.

2. Must support comparison or output of
computed slices

3. Must support modeling of external
dependencies

Examples of Dependencies

1 int bar(int k) {

2 int v;

3 if (k == 0)

4 v = 1;

5 else

6 v = 2;

7 return v;

8 }

10

1 int foo(int k) {

2 Pointer v, u;

3 v = new Pointer();

4 u = v;

5 if (k == 0)

6 v.o = 1;

7 else

8 v.o = 2;

9 u.o = 4;

10 return v.o;

11 } Legend

Control Dependency

Data Dependency

Pointer Aliasing Dependency

28

29 class Spouse implements Runnable {

30 private Account save;

31 private float amount;

32 public Spouse(Account account, float a) {

33 save = account;

34 amount = a;}

35 public void run() {

36 save.withdraw(amount);

37 (new Account()).deposit(10);

38 }

39 }

40

41 class Home {

42 public static void main(String[] s) {

43 Account savings = new Account();

44 Runnable worker = new Worker(savings, 90);

45 Runnable spouse = new Spouse(savings, 10);

46 new Thread(worker).start();

47 new Thread(spouse).start();

48 }

49 }

1 class Account {

2 private float amount = 0;

3

4 public synchronized float withdraw(float x) {

5 while (amount − x < 0) {

6 try {wait ();} catch (Exception e) { }

7 }

8 amount = amount − x;

9 return amount;

10 }

11 public synchronized float deposit(float x) {

12 amount = amount + x;

13 notifyAll ();

14 return amount;

15 }

16 }

17

18 class Worker implements Runnable {

19 private Account save;

20 private float amount;

21 public Worker(Account account, float a) {

22 save = account;

23 amount = a;}

24 public void run() {

25 save.deposit(amount);

26 }

27 }

Examples of Parallel Dependencies

11

Slicing Example

12

Legend:

Resolution of slices computed by Kaveri

Partially Relevant Slice

100% Relevant Slice

Using slicing criterion {8, p1.a} for both (a) and (b)

1 public class Test {

2 public static void main(String[] args) {

3 point p1 = new point();

4 point p2 = new point();

5 p1.a = 1;

6 p2.a = 2; //should not be relevant

7 System.out.println("irrelevant1");

8 System.out.println("P1: a= "+p1.a);

9 System.out.println("irrelevant2");

10 System.out.println("P2: a= "+p2.a);

11 }

12 }

(a)

1 public class Test {

2 public static void main(String[] args) {

3 point p1 = new point();

4 point p2 = p1;

5 p1.a = 1;

6 p2.a = 2; //should be relevant

7 System.out.println("irrelevant1");

8 System.out.println("P1: a= "+p1.a);

9 System.out.println("irrelevant2");

10 System.out.println("P2: a= "+p2.a);

11 }

12 }

(b)

Difference

13

Project Status

• Experimental assessment is in progress
and not yet complete.

– The team is currently instrumenting the
tools and developing additional test cases.

• Developed the initial framework for two
additional uses of dependency analysis:

– Risk based testing

– Risk based acquisition

Risk Based Testing

1. Whole-system operational risk analysis

identify potential mishaps / mission failures

2. Identify which software service failures

would lead to identified mishaps

3. Use slicing to identify which software

modules affect the critical services

4. Associate maximum risk level of affected

services with each software module

5. Set number of test cases using risk level

14

Current Policy for Mishap Risk Assessment

15

MISHAP SEVERITY CATEGORIES

FREQUENCY OF

OCCURRENCE

1

CATASTROPHIC

2

CRITICAL

3

MARGINAL

4

NEGLIGIBLE

A – FREQUENT

P ≥ 10%
1A 2A 3A 4A

B – PROBABLE

10% P ≥ 1%
1B 2B 3B 4B

C – OCCASIONAL

1% P ≥ 0.1%
1C 2C 3C 4C

D – REMOTE

.1% > P ≥ 0.0001%
1D 2D 3D 4D

E – IMPROBABLE

0.0001% > P
1E 2E 3E 4E

Cells: Risk Level & Acceptance Authority:

1A, 1B, 1C, 2A, 2B: HIGH – ASN (RDA)

1D, 2C, 3A, 3B: SERIOUS - PEO-IWS

1E, 2D, 2E, 3C, 3D, 3E, 4A, 4B:
MEDIUM –PEO-IWS 3

4C, 4D, 4E: LOW – PEO-IWS 3

P: Probability of occurrence in the lifetime of an individual system, ranges taken from MIL_STD-882D

Risk Based Acquisition

1. Identify missions and scenarios that systems

must support

2. Assign priorities to missions / scenarios

based on impact of success or failure

3. Use dependency analysis to identify which

system components affect mission success

4. Associate maximum priority of affected

missions / scenarios with each component

5. Allocate funding per priority level, regardless

of which program offices are responsible.

16

Example

Mission Group Priorities

Mission Bundle Priority Members

Bundle 1 High M1, M2

Bundle 2 Medium M1, M3

17

Inherited Priorities for Individual Missions

M1 High

M2 High

M3 Medium

Priorities of different bundles must be different

Assumptions

1. It is less contentious to prioritize missions

and scenarios than system components

2. In the absence of cross-cutting budget

authority, a principled basis for cross-cutting

allocation is needed to reach agreement.

3. As more components are shared across

platforms, such issues will gain importance.

18

19

Conclusion

• For systems with long lifetimes, regression
testing is a major cost component in each
new release, including periodic technology
upgrades.

• Program Slicing has the potential to reduce
the time and cost of the regression testing
that is necessary to ensure the safety and
effectiveness of each new release.

• Preliminary evaluation criteria for slicing
tools in the context of their ability to achieve
safe reduction of regression testing have
been developed.

Thank you

