Air Force Materiel Command

Developing, Fielding, and Sustaining America's Aerospace Force

U.S. AIR FORCE

The Macro Dynamics of Weapon System Acquisition: Shaping Early Decisions to Get Better Outcomes

Dr. Ed Kraft Chief Technologist Arnold Engineering Development Center May 17, 2012

Approved for Public Release – AEDC/PA 2012- 060

Integrity - Service - Excellence

- Defense acquisition is already broken
 - Systems Engineering event driven vs effects based
 - Reduced Capacity "procurement holidays" increase cycle time and costs
 - Complexity A&D community self inflicted wound
 - Requirements not necessarily connected to mission, physical reality, affordability, and ability to deliver on time
- Reduced budgets are a fact of life
 - Fewer acquisition new starts
 - Reduced infrastructure, reduced capacity
 - Not if or when, but how much
- Over the next decade the US could loose technological superiority, economic competitiveness in key areas
- We have to get past policies to systemic root causes to overcome pending reductions and increase the output of the US Aerospace and Defense industry

Key Systems Engineering Leverage Points Marked by Events – Mired by Lack of Effectiveness

Top Line Economic Model Understanding Impact of Reduced Capacity

RDT&E Fraction of the DoD Acquisition Budget

Macro-Dynamics of Acquisition Moving From Symptoms to Systemic Causes

AFMC

 Acquisition output impacted by RDT&E Fraction of acquisition costs

- <u>Discrete jumps in RDT&E Fraction align with</u> "Procurement Holidays" – not a general increase attributable to complexity
- Fundamental dynamic cycle
 - At onset of each period, procurement decreases but RDT&E stays constant because of backlog
 - At end of each period, procurement increases and so does RDT&E because of new starts added to backlog
- Correlating causative factor
 - Capability and capacity of system reduced at beginning of each cycle but not rebuilt during the ascending end of the cycle – bathtub effect, more RDT&E coming in but less going out

Acquisition system has passed a tipping point leading to pathological firefighting

- Declining Acquisition Budget
 - Reduced capacity, capability, intellectual capital
 - Programs already in development continue with less capacity for development
- Increasing Acquisition Budget
 - Increase in new starts added to programs already in development
 - Capacity, capability, and intellectual capital not increased to meet new demand

Both scenarios lead to a mismatch between capacity and demand leading to *pathological firefighting* for all programs

Complexity A Self Inflicted Wound?

Impact of Reduced Capacity and Increased Complexity

Design Variable "B"

Requirements Setting

Robust, Resilient Design Vice Single Point Optimum Solution

Design Variable "A"

Coupling Operability, Interoperability, and Physical Feasibility Analyses – a Game Changer

Comm Models

Simulator

- Discrete Event Simulation, Agent Based Modeling
- < Real Time
- Scenario Visualization
- Event Engineering Models
- Table Look Ups

Common Interface Built on Reducing **Physics Models to** Light Weight Algebraic Relations

<u>Physics Modeling</u>

- Discretized Physics
- Real Time
- Phenomena Visualization

Integrating M&S, RDT&E, and Statistical Engineering for Life Cycle Support

A Continuum of Tools Underpinned with Statistical Engineering to Quantify Margins and Risks at Key Decision Points

- Systems Engineering event driven vs effects based
 - •Quantified margins/uncertainties at key decision points, particularly MS A/B
 - Accountability for risk management
- Reduced Capacity "procurement holidays" increase cycle time
- Increase effective capacity by reducing total workload and late defect discoveries through better design tools and technical process changes
- Complexity aerospace/defense community self inflicted wound
 - Platform based engineering, common architectures for most software systems vice clean sheet approach
 - Increases in complexity have to "buy" their way onto the system during the requirements setting phase, including impact on acquisition cycle time
- Requirements not necessarily connected to mission or physical reality
 - Integrated wargames, flight simulators, and physics-based modeling support early insertion of physical reality into operational assessments and cost/risk projections
 - •Resilient system designs for flexibility to meet changing missions

A Final Thought from Winnie-the-Pooh

It is, as far as he knows, the only way of coming downstairs. but sometimes he feels there really is another way, if only he could stop bumping for a moment and think of it.