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Abstract 
Technical debt describes a universal software development phenomenon: “Quick and easy” 
design or implementation choices that linger in the system will cause ripple effects that make 
future changes more costly. Although DoD software sustainment organizations have routine 
practices to manage other kinds of software issues, such as defects and vulnerabilities, the 
same cannot be said for technical debt. In this work, we discuss the relationships among 
these three kinds of software anomalies and their impact on software assurance and 
sustainable development and delivery. Defects are directly linked to external quality, and 
vulnerabilities are linked to more specific security concerns, but technical debt concerns 
internal quality and has a significant economic impact on the cost of sustaining and evolving 
software systems. Emerging research results and industry input demonstrate there are clear 
distinctions that call for different detection and management methods for defects, 
vulnerabilities, and technical debt. We draw from concrete examples and experience to offer 
software development practices to improve the management of technical debt and its impact 
on security. 

Introduction 
Software engineers face a universal problem when developing and sustaining 

software: weighing the benefit of an approach that is expedient in the short-term, but which 
can lead to complexity and cost over the long-term. In software-intensive systems, these 
tradeoffs can create technical debt (Kruchten, 2012), which is a design or implementation 
construct that is expedient in the short-term, but which sets up a technical context that can 
make future changes more costly or even impossible. Accumulating technical debt in the 
form of design shortcuts can be a strategic approach for software developers to accelerate 
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development and optimize resource management without impacting overall quality—as long 
as the debt is eventually paid off (i.e., the time is taken to improve the software quality). The 
results of recent practitioner-focused empirical industry studies reveal that most systems are 
also suffering from unintentional technical debt, that is, the quick and dirty choices that 
accumulate with no strategic thought. 

An increasingly important cost driver for DoD systems is the effort that is put into 
developing, acquiring, and sustaining software-intensive systems. Most DoD systems are in 
operation for extensive periods of time—likely for multiple decades—and continue through 
sustainment to evolve to incorporate new functionality. Even in mature systems, ongoing 
sources of software changes may include changing mission profiles, the need to incorporate 
more effective or efficient technologies into the system, or the need to repair newly 
discovered software vulnerabilities. For all of these issues, software tends to be the logical 
and cost-effective way to make the change, meaning that in effect, software is never “done.” 
Consequently, dealing with technical debt is an unavoidable phenomenon for the DoD. For 
systems on which technical debt has been allowed to accumulate (or said another way, 
sufficient emphasis has not been placed on maintaining software quality), dealing with this 
never-ending stream of changes becomes increasingly less cost-effective, as more and 
more effort is required to comprehend and work within a poor quality system rather than on 
focusing on implementing new capabilities. This can result in cost and schedule slippage or 
diminished abilities to field new capabilities for the same amount of effort.  

The conventional approach many organizations take to managing such cost and 
schedule issues is to assess software project and process performance through metrics. An 
important class of these metrics focuses on software defects, since correcting defects 
(especially late in the software life cycle) can represent significant expenditures of 
unplanned effort. Cyber vulnerabilities, once detected, are typically candidates for focused 
effort to repair or mitigate quickly. Our overarching research question is this: Will DoD 
systems see improved outcomes if they manage technical debt explicitly, along with 
these other classes of software anomalies? 

Impacts of Technical Debt 
Indeed, a growing body of research indicates that focusing on defect management 

provides insight to only one perspective of the schedule, cost, and quality management 
problem. Empirical studies have shown that if technical debt is not paid back in a timely 
manner, it correlates with greater likelihood of defects (Falessi, 2015), unintended rework 
(Li, 2014), and increased time for implementing new system capabilities in software 
(Kazman, 2015).  

For example, code quality issues such as dead code or duplicate code add to the 
technical debt. They do not affect the functionality seen by the end user but can impede 
progress and make development more costly over time. Software architecture plays a 
significant role in the development of large systems; flaws in a software system’s design, 
such as a frequently changing interface between two classes (an unstable interface; Xiao, 
2014), can also add significantly to the technical debt. 

Technical debt can have observable adverse consequences on software security as 
well, an issue of high priority for DoD software-intensive systems, meaning that allowing 
debt to accumulate may be even more costly. Some vulnerabilities may be inadvertently 
introduced as the result of technical debt: for example, if a vulnerability is fixed in one 
location but is not fixed in a similar duplicated code fragment, or if overly complex code 
makes it harder to reason about whether a dangerous corner-case condition is feasible or 
not. Alternatively, as we will show, technical debt can also be caused by addressing a 



Acquisition Research Program: 
Creating Synergy for Informed Change - 69 - 

vulnerability’s symptoms rather than its root cause. Both of these relationships motivate a 
better understanding of the complex relationship between software vulnerabilities and 
technical debt. Therefore, we advocate that in order to get a better handle on their software 
quality, DoD programs should move toward also tracking their technical debt, similar to how 
they may be tracking defects and vulnerabilities (Figure 1).  

In the remainder of this paper, we review the state of practice in managing technical 
debt and illustrate the need to manage all three types of software anomalies by summarizing 
results from our previous study, looking at the relationship between software vulnerabilities 
(Nord, 2016) and technical debt to address the following question: Are software components 
with accrued technical debt more likely to be vulnerability-prone? We present findings from a 
study of the Chromium open source project that motivates the need to examine a 
combination of evidence: quantitative static analysis of anomalies in code, qualitative 
classification of design consequences in issue trackers, and software development 
indicators in the commit history. Understanding this relationship can provide DoD programs 
with (a) ideas for improving their software engineering practices in better facilitating software 
quality assessment initiatives through data-driven analysis as presented in this work, and (b) 
an approach to better take advantage of existing analysis tools to help them focus what 
areas of their software to improve.  

 

 Software Anomalies 

State of Practice in Managing Technical Debt 
The technical debt metaphor is widely used to encapsulate numerous software 

quality problems. The metaphor is attractive to practitioners as it communicates to both 
technical and nontechnical audiences that if quality problems are not addressed, things may 
get worse. It is also very applicable in government sustainment contexts, as often the 
organizations that deal with the debt and those that take on the debt are not the same. 
While there has been significant progress made in creating an empirical and theoretical 
basis for identifying, quantifying, and managing technical debt (Spinola, 2012), there is still a 
lot of opportunity for improvement (Avgeriou, 2016).  

Major software failures—for example, the recent United Airlines failure and New York 
Stock Exchange glitch or the National Security Agency’s call data collection discrepancy—
are being recognized in the popular media as the result of accumulating technical debt 
(Felten, 2014; Tufekci, 2015). In 2012, researchers conservatively estimated that for every 
100 KLOC, an average software application had approximately US$361,000 of technical 
debt, the cost to eliminate the structural-quality problems that seriously threatened the 
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application’s business viability (Curtis, 2012). The undeniable message is that technical debt 
is real and significant. Industry and government organizations have started to respond to 
this message, most significantly demonstrated by increasing initiatives focusing on 
analyzing code quality. Yet repeatable, data-driven studies that can help quantify this 
understanding, especially in the context of government systems, still lag behind.  

The results of our recent, broad practitioner survey of 1,831 software engineers and 
managers, including industry and government participants, demonstrate that they share a 
common understanding of the concept of technical debt (Ernst, 2015). According to 
participants, the lack of proven tool support to accurately identify, communicate, and track 
technical debt is a key issue and remains a gap in practice. More than half of the 
participants of our survey reported using issue trackers to communicate technical debt either 
explicitly (“technical debt” is mentioned) or implicitly (the concept of “technical debt” is 
discussed but not explicitly mentioned). This is consistent with anecdotal feedback from our 
own experiences of working with organizations, as well as case studies represented in 
literature on technical debt (Zazworka, 2013). In the absence of validated tools to concretely 
communicate technical debt and its consequences, developers resort to practices they are 
familiar with. Our work in this paper contributes to closing the gap between system analysis 
and understanding of observed problems of technical debt, demonstrated as security issues.  

Analysis Approach 
To understand whether software components with accrued technical debt are more 

likely to be vulnerability-prone, we need to take into account data from multiple sources: 
quantitative static analysis of anomalies (faults, vulnerabilities, design flaws) in code, 
qualitative classification of design consequences in issue trackers, and software 
development indicators in the commit history. In this paper we present results from our 
analysis with Chromium open source project (Barth, 2008; Camillo, 2015). This is a complex 
web-based application that operates on sensitive information and allows untrusted input 
from both web clients and servers. We use it as a representative test bed of typical technical 
debt issues and types of vulnerabilities. The Chromium open source project released 
Version 17.0.963.46 (referred to as Chromium 17 from here on) on February 8, 2012. This 
release contained 18,730 files. From February 1, 2010, to February 8, 2012, there were 
14,119 bug issues reported as fixed (Chromium 2017). 

A challenge we observe with some DoD programs is that this type of data is not 
always available and different development parties are not incentivized correctly to share 
this information in a timely way with key decision-makers. Therefore, replicating this study 
with a DoD software-intensive system has its challenges, although we expect the underlying 
relationships would hold equally well in the DoD context. 

Our analysis approach is as follows: 

1. Identify software vulnerabilities. 

a. Enumerate issues in the Chromium issue tracker (Chromium 2017) 
that have the security label. 

b. Classify each issue in terms of its Common Weakness Enumeration 
(CWE) using the issue’s description, comments, metadata, and patch. 

c. For each issue, identify the set of files changed by commits that 
reference the issue. 

2. Identify technical debt. 

a. Classify issues for technical debt. 
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b. Classify the type of design problem and rework based on the issue 
description, comments, and metadata. 

c. Detect design flaws that co-exist in the same files changed to fix the 
issues labeled security. 

3. Model the relationships between technical debt issues and vulnerabilities in 
the common artifacts they represent (code files, issues, commits). 

a. Extract concepts related to vulnerability types. 

b. Test whether technical debt indicators (e.g., number and type of 
design flaws, number of traditional bugs, number of bugs labeled 
security, and the lines of code that change to fix a bug) correlate with 
the number of vulnerabilities reported. 

c. Manually investigate how selected vulnerabilities are influenced by the 
correlated technical debt indicators. 

We will show how design knowledge can help identify other related issues and files 
so that developers can more efficiently diagnose the root cause of vulnerabilities and 
provide a long-term fix. 

Analysis Results 
To identify vulnerabilities, we used the issues labeled security. Using the Chromium 

project’s issue tracker, we identified 79 software vulnerability issues, which were related to 
289 files in which we detected design flaws (described in the next section). An issue labeled 
security may have a well-identified security bug, such as a null pointer exception. Such an 
issue may not represent technical debt but could simply be an implementation oversight. On 
the other hand, some issues may manifest themselves with multiple symptoms. This can 
hint that technical debt contributed to the vulnerability. 

Following this exercise we classified whether each issue was technical debt or not 
using the classification approach we developed (Bellomo, 2016).  

To classify source code files, we used the results of a study that analyzed Chromium 
17 and reported 289 files associated with design flaws that can be detected in the code. The 
approach analyzes a project’s repositories—its code and its revisions—to calculate a model 
of the design as a set of design rule spaces (DRSpaces; Xiao, 2014). These DRSpaces are 
automatically analyzed for design flaws that violate proper design principles. Four types of 
design flaws can be identified from the DRSpace analysis: modularity violation, unstable 
interface, clique, and improper inheritance. A modularity violation occurs when files with no 
structural relation frequently change together. This suggests that those files share some 
secret or knowledge and that information has not been encapsulated or modularized. An 
unstable interface occurs when there is an important class or interface that many other files 
depend on, and this class is buggy and changes frequently, requiring its “followers” to also 
change. Clique refers to a cross-module cycle that prevents groups of modules from being 
independent of each other. Improper inheritance occurs when the parent class depends on 
the child or when another file depends on both a parent and its child class. We consider 
these flaws as indicators of technical debt. 

Table 1. Design Flaws and Issues Classified as Technical Debt 
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Table 1 shows our results where we found 15 issues classified as technical debt that 
also demonstrate design flaws. When we analyze these results for correlations using 
Pearson correlation coefficient, we see promising results. Design flaws demonstrate 
correlations with number of bugs (0.921), bug churn (0.908), number of security bugs 
(0.988) and security churn (0.826). Our further analysis shows that for three of the four types 
of design flaws—modularity violation, clique, and improper inheritance—files with 
vulnerabilities are also more likely to have design flaws. The more types of design flaws a 
file is involved in, the higher the likelihood of it also having vulnerabilities. We look at the 
design concepts represented in these issues related to vulnerabilities to better understand 
overarching correlations. Table 2 summarizes the vulnerabilities of those issues that also 
reported design problems from the 79 issues we classified, in the form of CWE categories 
(CWE 2017). 

Table 2. Affinity Groups of Vulnerability Types 

 

Our study revealed that developers are already using concepts related to technical 
debt when investigating security issues, including the following: 

 getting to the root cause 

 understanding the underlying design issues 

 recording symptoms where changes are taking longer than usual or problems 
are reoccurring 

 predicting consequences for the longer term 

 building evidence for a more substantial fix 

Furthermore, when we studied the issues in detail, we observed that finding the true 
design root cause of the problems, i.e., the underlying technical debt, took a substantial 
amount of resources of the developers. DoD software deals with these challenges, where 
many small issues like these add up daily to accumulate to not only jeopardize sustainment 
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resources, but also operational issues such as vulnerabilities that cause significant risks for 
the DoD.  

Conclusions and Future Work 
Software system vulnerability and technical debt are high priority concerns for our 

DoD software base and industry alike, leading us to address research questions such as: 

 Are software components with accrued technical debt more likely to be 
vulnerability-prone? 

 Does understanding the difference and similarities between technical debt, 
defect, and vulnerabilities lead to their better management? 

Our studies on open source, industry, and government software data demonstrate 
that a conscious focus on understanding design issues that accumulate consequences in 
the form of vulnerabilities, extensive rework, and maintenance issues create the most risky 
technical debt items. The state of the practice in industry and the DoD alike is that such 
issues are not explicitly tracked and understood. Our results demonstrate that it is those 
areas that in the long run create both the highest operational and sustainment risks.  

Understanding and calling out similarities and differences between defects, 
vulnerabilities, and technical debt has a direct impact on acquisition practices such as 
software risk management and technical tradeoffs that impact contracting decisions. 
Measurement and analysis techniques for managing technical debt in the long run improves 
sustainability of systems and impacts better buying power. When they address security 
issues, software developers use technical debt concepts to discuss design limitations and 
their consequences on future work. One time-consuming relationship between vulnerabilities 
and technical debt is tracing a vulnerability to its root cause when it is the result of technical 
debt. Introducing technical debt measurement and analysis potentially improves finding such 
root causes. 

Our ongoing and future work focuses on creating intelligent mechanisms to extract 
and analyze this data for software development professionals and provide guidelines that 
DoD decision-makers can use to allocate their scarce resources most appropriately.  
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