
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

SYM-AM-17-047

Proceedings
of the

Fourteenth Annual
Acquisition Research

Symposium

Wednesday Sessions
Volume I

Acquisition Research:
Creating Synergy for Informed Change

April 26–27, 2017

Published March 31, 2017

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program:
Creating Synergy for Informed Change - 67 -

Software Vulnerabilities, Defects, and Design Flaws: A
Technical Debt Perspective

Robert L. Nord—is a Principal Researcher at the Carnegie Mellon University’s Software Engineering
Institute (SEI). He is engaged in activities focusing on managing technical debt, agile and architecting
at scale, and works to develop and communicate effective practices for software architecture. He is
co-author of Applied Software Architecture and Documenting Software Architectures: Views and
Beyond and lectures on architecture-centric approaches. Dr. Nord is a recognized leader in the
software engineering community, both as a thought leader in software architecture and through his
work helping industry and government customers at the SEI. He is a distinguished member of the
ACM. [rn@sei.cmu.edu]

Ipek Ozkaya—is a Principal Researcher and Deputy Technical Lead of Software Architecture
Practices at Carnegie Mellon University’s Software Engineering Institute (SEI). With her team at the
SEI, she works to help government and industry organizations improve their software development
efficiency and system evolution through better use of agile architecting and technical debt
management. Dr. Ozkaya serves as the chair of the departments of the IEEE Software magazine and
as an adjunct faculty member for the Master of Software Engineering Program at Carnegie Mellon
University. She is the co-author of articles on software architecture and technical debt management.
[ozkaya@sei.cmu.edu]

Forrest Shull—is Assistant Director for Empirical Research at Carnegie Mellon University’s Software
Engineering Institute. His role is to lead work with the U.S. DoD, other government agencies, national
labs, industry, and academic institutions to advance the use of empirically grounded information in
software engineering, cybersecurity, and emerging technologies. He has been a lead researcher on
projects for the DoD, NASA’s Office of Safety and Mission Assurance, the Defense Advanced
Research Projects Agency (DARPA), the National Science Foundation, and commercial companies.
He serves on the IEEE Computer Society Board of Governors and Executive Committee.
[fjshull@sei.cmu.edu]

Abstract
Technical debt describes a universal software development phenomenon: “Quick and easy”
design or implementation choices that linger in the system will cause ripple effects that make
future changes more costly. Although DoD software sustainment organizations have routine
practices to manage other kinds of software issues, such as defects and vulnerabilities, the
same cannot be said for technical debt. In this work, we discuss the relationships among
these three kinds of software anomalies and their impact on software assurance and
sustainable development and delivery. Defects are directly linked to external quality, and
vulnerabilities are linked to more specific security concerns, but technical debt concerns
internal quality and has a significant economic impact on the cost of sustaining and evolving
software systems. Emerging research results and industry input demonstrate there are clear
distinctions that call for different detection and management methods for defects,
vulnerabilities, and technical debt. We draw from concrete examples and experience to offer
software development practices to improve the management of technical debt and its impact
on security.

Introduction
Software engineers face a universal problem when developing and sustaining

software: weighing the benefit of an approach that is expedient in the short-term, but which
can lead to complexity and cost over the long-term. In software-intensive systems, these
tradeoffs can create technical debt (Kruchten, 2012), which is a design or implementation
construct that is expedient in the short-term, but which sets up a technical context that can
make future changes more costly or even impossible. Accumulating technical debt in the
form of design shortcuts can be a strategic approach for software developers to accelerate

Acquisition Research Program:
Creating Synergy for Informed Change - 68 -

development and optimize resource management without impacting overall quality—as long
as the debt is eventually paid off (i.e., the time is taken to improve the software quality). The
results of recent practitioner-focused empirical industry studies reveal that most systems are
also suffering from unintentional technical debt, that is, the quick and dirty choices that
accumulate with no strategic thought.

An increasingly important cost driver for DoD systems is the effort that is put into
developing, acquiring, and sustaining software-intensive systems. Most DoD systems are in
operation for extensive periods of time—likely for multiple decades—and continue through
sustainment to evolve to incorporate new functionality. Even in mature systems, ongoing
sources of software changes may include changing mission profiles, the need to incorporate
more effective or efficient technologies into the system, or the need to repair newly
discovered software vulnerabilities. For all of these issues, software tends to be the logical
and cost-effective way to make the change, meaning that in effect, software is never “done.”
Consequently, dealing with technical debt is an unavoidable phenomenon for the DoD. For
systems on which technical debt has been allowed to accumulate (or said another way,
sufficient emphasis has not been placed on maintaining software quality), dealing with this
never-ending stream of changes becomes increasingly less cost-effective, as more and
more effort is required to comprehend and work within a poor quality system rather than on
focusing on implementing new capabilities. This can result in cost and schedule slippage or
diminished abilities to field new capabilities for the same amount of effort.

The conventional approach many organizations take to managing such cost and
schedule issues is to assess software project and process performance through metrics. An
important class of these metrics focuses on software defects, since correcting defects
(especially late in the software life cycle) can represent significant expenditures of
unplanned effort. Cyber vulnerabilities, once detected, are typically candidates for focused
effort to repair or mitigate quickly. Our overarching research question is this: Will DoD
systems see improved outcomes if they manage technical debt explicitly, along with
these other classes of software anomalies?

Impacts of Technical Debt
Indeed, a growing body of research indicates that focusing on defect management

provides insight to only one perspective of the schedule, cost, and quality management
problem. Empirical studies have shown that if technical debt is not paid back in a timely
manner, it correlates with greater likelihood of defects (Falessi, 2015), unintended rework
(Li, 2014), and increased time for implementing new system capabilities in software
(Kazman, 2015).

For example, code quality issues such as dead code or duplicate code add to the
technical debt. They do not affect the functionality seen by the end user but can impede
progress and make development more costly over time. Software architecture plays a
significant role in the development of large systems; flaws in a software system’s design,
such as a frequently changing interface between two classes (an unstable interface; Xiao,
2014), can also add significantly to the technical debt.

Technical debt can have observable adverse consequences on software security as
well, an issue of high priority for DoD software-intensive systems, meaning that allowing
debt to accumulate may be even more costly. Some vulnerabilities may be inadvertently
introduced as the result of technical debt: for example, if a vulnerability is fixed in one
location but is not fixed in a similar duplicated code fragment, or if overly complex code
makes it harder to reason about whether a dangerous corner-case condition is feasible or
not. Alternatively, as we will show, technical debt can also be caused by addressing a

Acquisition Research Program:
Creating Synergy for Informed Change - 69 -

vulnerability’s symptoms rather than its root cause. Both of these relationships motivate a
better understanding of the complex relationship between software vulnerabilities and
technical debt. Therefore, we advocate that in order to get a better handle on their software
quality, DoD programs should move toward also tracking their technical debt, similar to how
they may be tracking defects and vulnerabilities (Figure 1).

In the remainder of this paper, we review the state of practice in managing technical
debt and illustrate the need to manage all three types of software anomalies by summarizing
results from our previous study, looking at the relationship between software vulnerabilities
(Nord, 2016) and technical debt to address the following question: Are software components
with accrued technical debt more likely to be vulnerability-prone? We present findings from a
study of the Chromium open source project that motivates the need to examine a
combination of evidence: quantitative static analysis of anomalies in code, qualitative
classification of design consequences in issue trackers, and software development
indicators in the commit history. Understanding this relationship can provide DoD programs
with (a) ideas for improving their software engineering practices in better facilitating software
quality assessment initiatives through data-driven analysis as presented in this work, and (b)
an approach to better take advantage of existing analysis tools to help them focus what
areas of their software to improve.

 Software Anomalies

State of Practice in Managing Technical Debt
The technical debt metaphor is widely used to encapsulate numerous software

quality problems. The metaphor is attractive to practitioners as it communicates to both
technical and nontechnical audiences that if quality problems are not addressed, things may
get worse. It is also very applicable in government sustainment contexts, as often the
organizations that deal with the debt and those that take on the debt are not the same.
While there has been significant progress made in creating an empirical and theoretical
basis for identifying, quantifying, and managing technical debt (Spinola, 2012), there is still a
lot of opportunity for improvement (Avgeriou, 2016).

Major software failures—for example, the recent United Airlines failure and New York
Stock Exchange glitch or the National Security Agency’s call data collection discrepancy—
are being recognized in the popular media as the result of accumulating technical debt
(Felten, 2014; Tufekci, 2015). In 2012, researchers conservatively estimated that for every
100 KLOC, an average software application had approximately US$361,000 of technical
debt, the cost to eliminate the structural-quality problems that seriously threatened the

Acquisition Research Program:
Creating Synergy for Informed Change - 70 -

application’s business viability (Curtis, 2012). The undeniable message is that technical debt
is real and significant. Industry and government organizations have started to respond to
this message, most significantly demonstrated by increasing initiatives focusing on
analyzing code quality. Yet repeatable, data-driven studies that can help quantify this
understanding, especially in the context of government systems, still lag behind.

The results of our recent, broad practitioner survey of 1,831 software engineers and
managers, including industry and government participants, demonstrate that they share a
common understanding of the concept of technical debt (Ernst, 2015). According to
participants, the lack of proven tool support to accurately identify, communicate, and track
technical debt is a key issue and remains a gap in practice. More than half of the
participants of our survey reported using issue trackers to communicate technical debt either
explicitly (“technical debt” is mentioned) or implicitly (the concept of “technical debt” is
discussed but not explicitly mentioned). This is consistent with anecdotal feedback from our
own experiences of working with organizations, as well as case studies represented in
literature on technical debt (Zazworka, 2013). In the absence of validated tools to concretely
communicate technical debt and its consequences, developers resort to practices they are
familiar with. Our work in this paper contributes to closing the gap between system analysis
and understanding of observed problems of technical debt, demonstrated as security issues.

Analysis Approach
To understand whether software components with accrued technical debt are more

likely to be vulnerability-prone, we need to take into account data from multiple sources:
quantitative static analysis of anomalies (faults, vulnerabilities, design flaws) in code,
qualitative classification of design consequences in issue trackers, and software
development indicators in the commit history. In this paper we present results from our
analysis with Chromium open source project (Barth, 2008; Camillo, 2015). This is a complex
web-based application that operates on sensitive information and allows untrusted input
from both web clients and servers. We use it as a representative test bed of typical technical
debt issues and types of vulnerabilities. The Chromium open source project released
Version 17.0.963.46 (referred to as Chromium 17 from here on) on February 8, 2012. This
release contained 18,730 files. From February 1, 2010, to February 8, 2012, there were
14,119 bug issues reported as fixed (Chromium 2017).

A challenge we observe with some DoD programs is that this type of data is not
always available and different development parties are not incentivized correctly to share
this information in a timely way with key decision-makers. Therefore, replicating this study
with a DoD software-intensive system has its challenges, although we expect the underlying
relationships would hold equally well in the DoD context.

Our analysis approach is as follows:

1. Identify software vulnerabilities.

a. Enumerate issues in the Chromium issue tracker (Chromium 2017)
that have the security label.

b. Classify each issue in terms of its Common Weakness Enumeration
(CWE) using the issue’s description, comments, metadata, and patch.

c. For each issue, identify the set of files changed by commits that
reference the issue.

2. Identify technical debt.

a. Classify issues for technical debt.

Acquisition Research Program:
Creating Synergy for Informed Change - 71 -

b. Classify the type of design problem and rework based on the issue
description, comments, and metadata.

c. Detect design flaws that co-exist in the same files changed to fix the
issues labeled security.

3. Model the relationships between technical debt issues and vulnerabilities in
the common artifacts they represent (code files, issues, commits).

a. Extract concepts related to vulnerability types.

b. Test whether technical debt indicators (e.g., number and type of
design flaws, number of traditional bugs, number of bugs labeled
security, and the lines of code that change to fix a bug) correlate with
the number of vulnerabilities reported.

c. Manually investigate how selected vulnerabilities are influenced by the
correlated technical debt indicators.

We will show how design knowledge can help identify other related issues and files
so that developers can more efficiently diagnose the root cause of vulnerabilities and
provide a long-term fix.

Analysis Results
To identify vulnerabilities, we used the issues labeled security. Using the Chromium

project’s issue tracker, we identified 79 software vulnerability issues, which were related to
289 files in which we detected design flaws (described in the next section). An issue labeled
security may have a well-identified security bug, such as a null pointer exception. Such an
issue may not represent technical debt but could simply be an implementation oversight. On
the other hand, some issues may manifest themselves with multiple symptoms. This can
hint that technical debt contributed to the vulnerability.

Following this exercise we classified whether each issue was technical debt or not
using the classification approach we developed (Bellomo, 2016).

To classify source code files, we used the results of a study that analyzed Chromium
17 and reported 289 files associated with design flaws that can be detected in the code. The
approach analyzes a project’s repositories—its code and its revisions—to calculate a model
of the design as a set of design rule spaces (DRSpaces; Xiao, 2014). These DRSpaces are
automatically analyzed for design flaws that violate proper design principles. Four types of
design flaws can be identified from the DRSpace analysis: modularity violation, unstable
interface, clique, and improper inheritance. A modularity violation occurs when files with no
structural relation frequently change together. This suggests that those files share some
secret or knowledge and that information has not been encapsulated or modularized. An
unstable interface occurs when there is an important class or interface that many other files
depend on, and this class is buggy and changes frequently, requiring its “followers” to also
change. Clique refers to a cross-module cycle that prevents groups of modules from being
independent of each other. Improper inheritance occurs when the parent class depends on
the child or when another file depends on both a parent and its child class. We consider
these flaws as indicators of technical debt.

Table 1. Design Flaws and Issues Classified as Technical Debt

Acquisition Research Program:
Creating Synergy for Informed Change - 72 -

Table 1 shows our results where we found 15 issues classified as technical debt that
also demonstrate design flaws. When we analyze these results for correlations using
Pearson correlation coefficient, we see promising results. Design flaws demonstrate
correlations with number of bugs (0.921), bug churn (0.908), number of security bugs
(0.988) and security churn (0.826). Our further analysis shows that for three of the four types
of design flaws—modularity violation, clique, and improper inheritance—files with
vulnerabilities are also more likely to have design flaws. The more types of design flaws a
file is involved in, the higher the likelihood of it also having vulnerabilities. We look at the
design concepts represented in these issues related to vulnerabilities to better understand
overarching correlations. Table 2 summarizes the vulnerabilities of those issues that also
reported design problems from the 79 issues we classified, in the form of CWE categories
(CWE 2017).

Table 2. Affinity Groups of Vulnerability Types

Our study revealed that developers are already using concepts related to technical
debt when investigating security issues, including the following:

 getting to the root cause

 understanding the underlying design issues

 recording symptoms where changes are taking longer than usual or problems
are reoccurring

 predicting consequences for the longer term

 building evidence for a more substantial fix

Furthermore, when we studied the issues in detail, we observed that finding the true
design root cause of the problems, i.e., the underlying technical debt, took a substantial
amount of resources of the developers. DoD software deals with these challenges, where
many small issues like these add up daily to accumulate to not only jeopardize sustainment

Acquisition Research Program:
Creating Synergy for Informed Change - 73 -

resources, but also operational issues such as vulnerabilities that cause significant risks for
the DoD.

Conclusions and Future Work
Software system vulnerability and technical debt are high priority concerns for our

DoD software base and industry alike, leading us to address research questions such as:

 Are software components with accrued technical debt more likely to be
vulnerability-prone?

 Does understanding the difference and similarities between technical debt,
defect, and vulnerabilities lead to their better management?

Our studies on open source, industry, and government software data demonstrate
that a conscious focus on understanding design issues that accumulate consequences in
the form of vulnerabilities, extensive rework, and maintenance issues create the most risky
technical debt items. The state of the practice in industry and the DoD alike is that such
issues are not explicitly tracked and understood. Our results demonstrate that it is those
areas that in the long run create both the highest operational and sustainment risks.

Understanding and calling out similarities and differences between defects,
vulnerabilities, and technical debt has a direct impact on acquisition practices such as
software risk management and technical tradeoffs that impact contracting decisions.
Measurement and analysis techniques for managing technical debt in the long run improves
sustainability of systems and impacts better buying power. When they address security
issues, software developers use technical debt concepts to discuss design limitations and
their consequences on future work. One time-consuming relationship between vulnerabilities
and technical debt is tracing a vulnerability to its root cause when it is the result of technical
debt. Introducing technical debt measurement and analysis potentially improves finding such
root causes.

Our ongoing and future work focuses on creating intelligent mechanisms to extract
and analyze this data for software development professionals and provide guidelines that
DoD decision-makers can use to allocate their scarce resources most appropriately.

References
Avgeriou, P., Kruchten, P., Nord, R., Ozkaya, I., & Seaman, C. (2016). Reducing friction in

software development. IEEE Software, 33(1), 66–73.

Barth, A., Jackson, C., & Reis, C. (2008). The security architecture of the Chromium
browser. Stanford Web Security Research.

Bellomo, S., Nord, R. Ozkaya, I., & Popeck, M. (2016). Got technical debt? Surfacing elusive
technical debt in issue trackers. In Proceedings of the 13th International Conference on
Mining Software Repositories (pp. 327–338).

Camilo, F., Meneely, A., & Nagappan, M. (2015). Do bugs foreshadow vulnerabilities? A
study of the Chromium Project. In Proceedings of the 12th Working Conference on
Mining Software Repositories (pp. 269–279).

Chromium issues. (2017). Retrieved from https://code.google.com/p/chromium/issues/list

Common weakness enumeration. (2017). Retrieved from
https://cwe.mitre.org/about/sources.html

Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the principal of an application’s
technical debt. IEEE Software, 29(6).

Acquisition Research Program:
Creating Synergy for Informed Change - 74 -

Ernst, N., Bellomo, S., Ozkaya, I., Nord, R., & Gorton, I. (2015). Measure it? Manage it?
Ignore it? Software practitioners and technical debt. In Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering (pp. 50–60). New York, NY: ACM.

Falessi, D., & Reichel, A. (2015). Towards an open-source tool for measuring and
visualizing the interest of technical debt. In Proceedings of the Seventh International
Workshop on Managing Technical Debt.

Felten, E. (2014). Technical debt in the NSA’s phone call data program? Retrieved from
https://freedom-to-tinker.com/2014/02/10/technical-debt-in-the-nsas-phone-call-data-
program/

Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., et al. (2015). A case study in
locating the architectural roots of technical debt. In Proceedings of the 37th IEEE
International Conference on Software Engineering (pp. 179–188).

Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: From metaphor to theory and
practice. IEEE Software, 29(6), 18–21.

Li, Z., Liang, P., Avgeriou, P., Guelfi, N., & Ampatzoglou, A. (2014). An empirical
investigation of modularity metrics for indicating architectural technical debt. In
Proceedings of the 10th International ACM SIGSOFT Conference on Quality of
Software Architectures (pp. 119–128).

Nord, R., Ozkaya, I., Schwartz, E., Schull, F., & Kazman, R. (2016). Can knowledge of
technical debt help identify software vulnerabilities? CSET @ USENIX Security
Symposium.

Spínola, R. O., Zazworka, N., Vetro, A., Seaman, C., & Shull, F. (2012). Investigating
technical debt folklore: Shedding some light on technical debt opinion. MTD@ICSE
2012, 1–7.

Tufekci, Z. (2015). Why the Great Glitch of July 8th should scare you. The Message.
Retrieved from https://medium.com/message/why-the-great-glitch-of-july-8th-should-
scare-you-b791002fff03

Xiao, L., Cai, Y., & Kazman, R. (2014). Design rule spaces: A new form of architecture
insight. In Proceedings of the 36rd International Conference on Software Engineering
(pp. 967–977).

Zazvorka, N., Spínola, R., Vetro, A., Shull, F., & Seaman, C. (2013). A case study on
effectively identifying technical debt. In Proceedings of the 17th International
Conference on Evaluation and Assessment in Software Engineering (pp. 42–47). Porto
de Galinhas, Brazil.

Disclaimer & Distribution Statement
Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and
development center.

The view, opinions, and/or findings contained in this material are those of the
author(s) and should not be construed as an official Government position, policy, or
decision, unless designated by other documentation.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties of
any kind, either expressed or implied, as to any matter including, but not limited to, warranty

Acquisition Research Program:
Creating Synergy for Informed Change - 75 -

of fitness for purpose or merchantability, exclusivity, or results obtained from use of the
material. Carnegie Mellon University does not make any warranty of any kind with respect to
freedom from patent, trademark, or copyright infringement.

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM17-0091

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

