
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

SYM-AM-17-063

Proceedings
of the

Fourteenth Annual
Acquisition Research

Symposium

Wednesday Sessions
Volume I

Acquisition Research:
Creating Synergy for Informed Change

April 26–27, 2017

Published March 31, 2017

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program:
Creating Synergy for Informed Change - 335 -

Security Measurement—Establishing Confidence That
System and Software Security Is Sufficient

Carol Woody—PhD, has been a senior member of the technical staff at the Software Engineering
Institute since 2001. She is the Technical Manager of the CERT Cybersecurity Engineering team
which addresses security and survivability throughout the development and acquisition life cycles,
especially in the early stages. Her research focuses on building capabilities for measuring, managing,
and sustaining cybersecurity for highly complex networked systems and systems of systems. She
coauthored Cyber Security Engineering: A Practical Approach for Systems and Software Assurance,
published in November 2016 by Pearson Education, InformIT, as part of the SEI Series in Software
Engineering. [cwoody@cert.org]

Abstract
Evaluating the software assurance of a product as it functions within a specific system
context involves assembling carefully chosen metrics that demonstrate a range of behaviors
to establish confidence that the product functions as intended and is free of vulnerabilities.
The first challenge is to establish that the requirements define the appropriate security
behavior and the design addresses these security concerns. The second challenge is to
establish that the completed product, as built, fully satisfies the specifications. Measures to
provide assurance must, therefore, address requirements, design, construction, and test. We
know that software is never defect free. According to Jones and Bonsignour (2012), the
average defect level in the United States is 0.75 defects per function point or 6,000 per
million lines of code (MLOC) for a high-level language. Thus, software, on average, cannot
always function perfectly as intended. Additionally, we cannot establish that software is
completely free from vulnerabilities based on our research which indicates that 5% of defects
should be categorized as vulnerabilities. So how can we establish reasonable confidence in
software security? To answer this question, the Software Engineering Institute (SEI) is
researching how measurement can be used to establish confidence in software security. This
paper will share our progress to date.

Is the System Secure?
The Department of Defense (DoD) has followed a well-structured acquisition and

development life cycle for decades. The rules for these activities are clearly laid out in
Department of Defense Instruction (DoDI) 5000.2 (DoD, 2003)1. There are a series of
activities and milestone reviews that require a program office to demonstrate to
management and oversight groups that good engineering is underway as the acquisition of
a system moves from an idea through to final implementation. Can we leverage this process
focus to establish confidence that software assurance is well-integrated into each of the life
cycle steps? The current acquisition focus is on establishing appropriate requirements and
ensuring these are met in the delivery of the system.

The evaluation of the security of the same system is equally as well-structured using
the guidance provided in DoDI 8510 (DoD, 2014). These guidelines were recently rewritten
to broaden the focus beyond the security technology controls to include protection of critical

1 The most recent version effective February 2, 2017, is available at http://www.acqnotes.com/wp-
content/uploads/2014/09/DoD-Instruction-5000.02-The-Defense-Acquisition-System-2-Feb-17-
Change-2.pdf

Acquisition Research Program:
Creating Synergy for Informed Change - 336 -

assets based on potential risks. If selected controls are implemented to protect these key
assets and these are validated through the certification and accreditation reviews, is the
system secure? It is hard to say since the engineers are focused on requirements and the
security analysis is focused on security controls. How sufficient are the security
requirements? Requirements are subject to change as the system progresses into the life
cycle, but the security controls are not typically reviewed after the initial selection.

The acquisition is focused on delivery of a system, and software is typically viewed
as a necessary component. In reality, software is quickly becoming the major component.
Software handled 8% of the functionality of the F-4 Phantom fighter in 1960, but by 2000, its
role grew to 80% for the F-22 Raptor, and the trend does not appear to be abating (National
Research Council, 2010). We know that software is never defect free. According to Jones
and Bonsignour (2012), the average defect level in the United States is 0.75 defects per
function point or 6,000 defects per million lines of code (MLOC) for a high-level language.
Very good code levels would be 600 to 1,000 defects per MLOC, and exceptional levels
would be below 600 defects per MLOC. Thus, software, cannot always function perfectly as
intended since there will always be defects. Additionally, we cannot establish that software
is completely free from vulnerabilities based on our research which indicates that 5% of
defects should be categorized as vulnerabilities (Woody, Ellison, & Nichols, 2014). Hence,
as the role of software increases, the availability of software vulnerabilities also increases. It
is impossible to avoid the constant news that systems are under attack and vulnerabilities
are so prevalent that attackers are successful. Software security is a growing concern and
needs to be effectively managed as part of an acquisition. Can we do this?

The Program Protection Plan2 assigns a software assurance reporting responsibility
to the program office, but they are typically not the group building and maintaining the
software, so they pass this responsibility to the contractor. How will a program office know if
there is sufficient software security in the system the contractor delivers? Few engineers in a
program office are trained in security, and even with training, will they be able to directly
evaluate the product? Maybe not, but they should be able to evaluate the quality of the
processes used by the contractor in building, integrating, and verifying the system. Higher
quality with fewer defects, along with a focus on software security, should result in fewer
defects and fewer vulnerabilities.

The program office can ask the contractor to report on a wide range of metrics.
There are metrics for cost, schedule, quality, complexity, resiliency, and technical debt just
to list a few of the categories. Capers Jones (2015) reports that over 3000 different metrics
are in use, and most of them are inconsistent at best and typically misleading. In his 2015
report, Jones notes “the software industry labors under a variety of non-standard and highly
inaccurate measures compounded by very sloppy measurement practices.” What are the
metrics for software security? We can count vulnerabilities just as we count defects. Can we
assume all code will be of high quality so that defects and vulnerabilities are at a minimum?
High quality development requires resources with the capability to deliver high quality as
well as effective processes to ensure the results delivered meet expectations. What kind of
useful measurements can we apply to these?

2 See Defense Acquisition University (DAU; n.d.) for a description of the Program Protection Plan.

Acquisition Research Program:
Creating Synergy for Informed Change - 337 -

Using Engineering Evidence to Reduce Fear, Uncertainty, and Doubt (FUD) for
Software

For a measurement to be useful in engineering, there are three questions that need
to be addressed:

 Are we measuring the right things at the right time?

 Are our measurements trending in the right direction?

 Do we collect information soon enough to react to problems within other
constraints?

As an example, let’s consider how these questions are addressed in the acquisition
of an airplane. How do we establish that the plane will fly when it is delivered? The planes
are engineered to meet requirements that are defined for the expected use. The Dreamliner
is designed to carry up to 330 passengers on long distances in comfort (Boeing, n.d.). It is
reported to have a range of 11,910 kilometers, or 6,430 nautical miles. The wing span is 197
feet and 4 inches, height is 55 feet and 10 inches, and the length is 224 feet. All of these
characteristics are determined based on lift and speed and other aerodynamic
characteristics to allow the plane to meet its flight requirements. The F35 has a very different
set of requirements as a single-seat, single-engine, all-weather stealth fighter plane
(Lockheed Martin, n.d.). It is designed for a maximum speed of Mach 1.5 at altitude, with a
range of approximately 1,620 nautical miles using internal fuel. The wing span is 32.78 feet,
height is 13.33 feet, length is 50.5 feet, and wing area is 450 feet. Each of these planes is
built in a highly structured manufacturing operation using best practices for constructing and
testing the parts and validating the assembled whole. Reviews are conducted at scheduled
times throughout the development and testing of prototypes is extensive to ensure
requirements are met. There should be no surprises at the point of delivery about the
plane’s ability to meet its flight requirements (NASA, 2009). To apply this approach to
software security, we need effective processes and a means of measuring how well they are
working.

Building Blocks for Engineering Software Security
After determining that there were many software security practices, but nothing

structured for evaluating software assurance, SEI undertook the task of developing the
Software Assurance Framework (SAF)3. The SAF defines a set of cybersecurity practices
that programs should apply across the life cycle and supply chain. The SAF can be used to
assess a program’s current practices to identify gaps and chart a course for improvement.
By verifying and identifying improvements for a program’s cybersecurity practices relevant to
software, the SAF helps to (1) establish confidence in the program’s ability to acquire
software-reliant systems that are sufficiently secure, and (2) reduce the cybersecurity risk of
deployed software-reliant systems. When developing the SAF, we leveraged the software
acquisition and cybersecurity expertise of the SEI’s technical staff and also referenced a
variety of acquisition, development, process improvement, and cybersecurity documents
including the following:

3 A technical note, CMU/SEI-2017-TN-001, that provides a detailed description of the key practices
selected for the SAF, is in the publication process and is expected to be available on the SEI website
this spring.

Acquisition Research Program:
Creating Synergy for Informed Change - 338 -

 National Institute of Standards and Technology (NIST) Special Publication
800-53, titled Security and Privacy Controls for Federal Information Systems
and Organizations (NIST, 2013)

 NIST Special Publication 800-37, titled Guide for Applying the Risk
Management Framework to Federal Information Systems: A Security Life
Cycle Approach (NIST, 2010)

 DoDI 5000.2, titled Operation of the Defense Acquisition System (DoD, 2003)

 Capability Maturing Model® Integration (CMMI®; CMMI, 2007)

 Build Security In Maturity Model (BSIMM; McGraw, Migues, & West, 2015)

The selected practices fall into four general focus areas: process management,
engineering, project management, and support. Within each of these general areas we have
grouped practices within subcategories.

Process management would include the following categories of practices:

 process definition

 infrastructure standards

 resources

 training

Engineering would include the following categories of practices:

 product risk management

 requirements

 architecture

 implementation

 testing, validation, and verification

 support documentation and tools

 deployment

Project management would include the following categories of practices:

 project plans

 project infrastructure

 project monitoring

 project risk management

 supplier management

Support would include the following categories of practices:

 measurement and analysis

 change management

 product operation and sustainment

In order to link the detailed practices from the SAF framework to a specific program
to address software assurance, we have used a standard software management technique,
Goal-Question-Metric (GQM) Approach developed in the 1980s as a structuring mechanism
(Basili, 1984). This is a well-recognized and widely used metrics approach. It requires the
establishing of a goal for which we structure questions with associated metrics that begin to
answer each question. In the following section, we will show an example of how these

Acquisition Research Program:
Creating Synergy for Informed Change - 339 -

building blocks can be used to structure an answer to our question about whether a system
is secure.

Engineering for Software Security
If we apply the engineering approach described earlier about the plane’s flying to

security, we must start with establishing our engineering goal for software security. We
would like to establish a requirement that software critical to mission and flight functions
have no vulnerabilities, but this is not feasible (Woody, Ellison, & Nichols, 2014). However,
we can structure a goal for the airplane that the critical software be of the highest quality
such as:

Mission- and flight-critical applications executing on the plane or used to
interact with the plane from ground stations shall be high quality, with no
more than 600 defects per MLOC and vulnerability levels below 30 per
MLOC.

As the saying goes, quality cannot be tested in, it must be built into the product
(Koch, n.d.). In order to meet this goal, the contractor would have to ensure they are building
the system using high quality engineering processes at each step of the life cycle. This
system goal would need to flow down to each step in building the software. To define how
we might measure and monitor these processes to ensure high quality, we can create sub-
questions for each major area of software development that reflect the contribution to be
made to the system as follows:

 Software Requirements. Does the program/project define and manage
software security requirements?

 Software Architecture. Does the program/project appropriately address
security in its software architecture and design?

 Implementation. Does the program/project minimize the number of
vulnerabilities inserted into the code?

 Testing, Validation, and Verification. Does the program/project test,
validate, and verify security in its software components?

 Support Tools and Documentation. Does the program/project develop
tools and documentation to support secure configuration and operation of
software components?

 Deployment. Does the program/project consider security during the
deployment of software components?

Each of these questions could be addressed within the software life cycle through
the selection of appropriate practices, outputs, and metrics that demonstrate quality results.
For each of the software development areas, we would want to confirm that best practices
are performed and these are producing expected outputs along with metrics appropriate to
expected results.

As an example, since much of the concern with software security is tied to
vulnerabilities, consider how we could be confident that the number of vulnerabilities
introduced into the critical code are minimized. There are several best practices in secure
coding that we would expect to be performed as follows:

 Secure coding standards are applied.

 Code developers are trained in the use of secure coding standards.

Acquisition Research Program:
Creating Synergy for Informed Change - 340 -

 Evaluation practices (e.g., code reviews and apply tools) are applied to
identify and remove vulnerabilities in delivered code (including code libraries,
open source, and other reused components).

In addition, we should expect to see outputs and metrics that reflect that these
practices are appropriately addressed as shown in Table 1.

Table 1. Activities/Practices, Outputs, and Metrics

Subsequent steps in the development process should continue to confirm that
vulnerabilities are at a minimum through testing, validation, and verification.

Conclusion and Next Steps
Returning to our initial question about determining if the system is secure, we have

established that our evaluation must focus sufficient attention on the quality and security
built into the software which makes up over 80% of the functionality of most systems. If this
software is well-defined, well-built, and well-implemented using best practices for
engineering software with good security, we should be able to review outputs and confirm
through metrics with reasonable confidence that the system is secure. There is information
we can collect and evaluate all along the life cycle about the product, processes, and
practices to give us confidence in achieving our goal that the final product will be sufficiently
secure. System engineering reviews can be used to confirm progress as follows:

Acquisition Research Program:
Creating Synergy for Informed Change - 341 -

 Initial Technical Review (ITR). Assess the capability needs (including
software security) and materiel solution approach.

 Alternative Systems Review (ASR). Ensure that solutions will be cost-
effective, affordable, operationally effective. Ensure that solutions can be
developed in a timely manner at an acceptable level of software security risk.

 System Requirements Review (SRR). Ensure that all system requirements
(including security) are defined and testable, and consistent with cost,
schedule, risk (including software security risk), technology readiness, and
other system constraints.

 Preliminary Design Review (PDR). Evaluate progress and technical
adequacy of the selected design approach including software security.

 Critical Design Review (CDR). Determine that detail designs satisfy the
design requirements (including software security) established in the
specification and establish the interface relationships.

References
Basili, V. R., & Weiss, D. M. (1984). A methodology for collecting valid software engineering

data. IEEE Transactions on Software Engineering, SE-10(6), 728–738.

Boeing. (n.d.). Boeing 787. Retrieved from http://www.boeing.com/commercial/787/#/by-
design

Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for development: Guidelines for
process integration and product improvement (3rd ed.). Boston, MA: Addison-Wesley.

Defense Acquisition University (DAU). (n.d.). Program protection plan. Retrieved from
https://acc.dau.mil/CommunityBrowser.aspx?id=549148&lang=en-US

DoD. (2003). Operation of the defense acquisition system (DoDI 5000.2). Retrieved March
20, 2017, from: http://www.acq.osd.mil/dpap/Docs/new/5000.2%2005-12-06.pdf

DoD. (2014). Risk management framework for DoD information technology (DoDI 8510.01).
Retrieved from http://www.dtic.mil/whs/directives/corres/pdf/851001_2014.pdf

Jones, C. (2015, January 26). The mess of software metrics V5.0 (Namcook Analytics).

Jones, C. & Bonsignour, O. (2012). The economics of software quality (Addison Wesley).

Koch, A. S. (n.d.). Testing is not quality assurance. PMP. Retrieved from
http://www.projectconnections.com/articles/080306-koch.html

Lockheed Martin. (n.d.). F-35 Lightning II. Retrieved from https://www.f35.com/about

McGraw, G., Migues, S., & West, J. (2015). Building Security in Maturity Model (Version 6).
Cigital. Retrieved October 10, 2016, from https://www.bsimm.com/

NASA. (2009). Final report: NASA study on flight software complexity. Retrieved from
http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf

National Institute of Standards and Technology (NIST). (2010). Guide for applying the risk
management framework to federal information systems: A security life cycle approach
(NIST Special Publication 800-37, Rev. 1). Retrieved from
http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-37-rev1-final.pdf

National Institute of Standards and Technology (NIST). (2013). Security and privacy controls
for federal information systems and organizations (NIST Special Publication 800-53,
Rev. 4). Retrieved from
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

Acquisition Research Program:
Creating Synergy for Informed Change - 342 -

National Research Council. (2010). Critical code: Software producibility for defense.
Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a534043.pdf

Woody, C., Ellison, R., & Nichols, W. (2014). Predicting software assurance using quality
and reliability measures (CMU/SEI-2014-TN-026). Retrieved April 2, 2017, from the
Software Engineering Institute, Carnegie Mellon University website:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589

Acknowledgments
Copyright 2017 Carnegie Mellon University

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United
States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-U.S. government use and
distribution.

®CMMI and Capability Maturing Model are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University

DM-0004623

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

