
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

SYM-AM-17-080

Proceedings
of the

Fourteenth Annual
Acquisition Research

Symposium

Thursday Sessions
Volume II

Acquisition Research:
Creating Synergy for Informed Change

April 26–27, 2017

Published March 31, 2017

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program:
Creating Synergy for Informed Change - 240 -

Software Productivity Trends and Issues

David M. Tate—joined the research staff of the Institute for Defense Analyses’ Cost Analysis and
Research Division in 2000. Since then, he has worked on a wide variety of resource analysis and
quantitative modeling projects related to national security. These include an independent cost
estimate of Future Combat Systems development costs, investigation of apparent inequities in
Veterans’ Disability Benefit adjudications, and modeling and optimization of resource-constrained
acquisition portfolios. Dr. Tate holds bachelor’s degrees in philosophy and mathematical sciences
from Johns Hopkins University, and MS and PhD degrees in operations research from Cornell
University. [dtate@ida.org]

Abstract
The Department of Defense is experiencing an explosive increase in its demand for software-
implemented features in weapon systems. The combination of exponential increases in
computing power and similar advances in memory density and speed has made software-
mediated implementation of system features increasingly attractive. In the meantime, defense
software productivity and industrial base capacity have not been growing as quickly. Do we
have an impending bottleneck? If so, what are the management implications?

Malthus on Software
The Scottish cleric and economist Thomas Robert Malthus famously noted that,

when there is enough food to go around, population growth is exponential. Since Malthus
could not envision any means whereby food production could also grow exponentially, given
the constraints of arable land and property ownership, he predicted that the inevitable result
would be a population limited by recurring poverty and starvation.

Malthus was wrong about food, at least so far, but could he be right about national
security software? Any time you have an exponential growth in demand without a
commensurate exponential growth in supply, demand will soon be frustrated. Rapidly
growing demand for new software, combined with the need to maintain the code going
forward, places considerable stress on the productive capacity of the defense software
industrial base. The ability to keep up will depend on just how fast demand is growing, how
quickly the Department of Defense (DoD) can grow the industrial base, and how quickly the
productivity of individual software developers improves over time. To know whether we
should worry, we need to look at each of those factors.

How Fast Is Defense Demand for Software Growing?
It is surprisingly difficult to find historical and current data on the demand for software

in defense systems. However, there are some strong indicators available:

 The National Research Council (2010) wrote that “the extent of the DoD code
in service has been increasing by more than an order of magnitude every
decade, and a similar growth pattern has been exhibited within individual,
long-lived military systems.” One order of magnitude per decade is
approximately 25% annual growth.

 The Aerospace Vehicle Systems Institute (2017) states that source lines of
code (SLOC) in aircraft (both military and commercial) has been doubling
approximately every four years. This corresponds to an annual growth rate of
~18%.

 The Army (2011) estimated that the volume of code under Army depot
maintenance (either post-deployment or post-production support) had

Acquisition Research Program:
Creating Synergy for Informed Change - 241 -

increased from 5 million to 240 million SLOC between 1980 and 2009. This
corresponds to ~15% annual growth.

 Dvorak (2009) stated that National Aeronautics and Space Administration
unmanned space systems SLOC have also increased by an order of
magnitude every 10 years, with manned systems SLOC growing even faster.

Taken together, these suggest an annual growth rate of at least 15% for the amount
of software being developed and maintained for defense purposes, with 25% or more
annual growth possible. Annual growth of 15–25% means doubling every three to five years,
on top of which is the added workload of maintaining the growing base of deployed code.

In order to forecast future demands for new code and software maintenance, we also
need to know the current size of the code base and the current annual demand. The most
recent demand estimate we were able to find (Chao, 2006) concluded that the 2006
requirement for national security software was about 35 million lines of new code and 25
million lines of maintenance code. We can apply the “20% per year” rule of thumb for
maintenance effort to infer a deployed 2006 base of about 125 million lines of code. We will
base our analysis on those assumptions: 125 million source lines of code (MSLOC) under
maintenance in 2006, 35 MSLOC of new code required in 2006, and annual demand for
new code growing at 15% annually from that time forward. For maintenance effort, we
assume that annual maintenance effort on the installed base is equivalent to 20% of the
development effort of the base, and that half of the maintenance effort results in more new
code to be maintained.1 In addition, some fraction of the installed code base is retired every
year. We will assume that 10% of the installed base is retired each year, exactly offsetting
the new code generated by maintenance. As we will see, the conclusions of this
investigation are not sensitive to the exact parameter values chosen here.

Figure 1 shows the projected growth in annual demand for defense software under
these assumptions, separated into new code and maintenance of existing code. Bear in
mind that this is a projection of unconstrained demand—how much the DoD is expected to
want to buy, if it is available at prices comparable to historical prices.

1 Jones (2013) estimates the maintenance costs of a nominal 1000-function point application at closer
to 40% per year over the first five years. Using that estimate would result in a smaller 2006 deployed
code base estimate, but much faster growth in that base in subsequent years.

Acquisition Research Program:
Creating Synergy for Informed Change - 242 -

Figure 1. Forecast of DoD Software Demand

It is worth noting that, under these assumptions, the total size of the deployed code
base under maintenance is projected to be more than 1 billion SLOC by 2018, and more
than 3 billion SLOC by 2025. Figure 1 shows only the new effort each year, not the deployed
base.

The Supply of Defense Software
Chao (2006) estimated both the size of the defense software workforce and the

productivity of that workforce. The productive capacity of the industrial base is the product of
those two factors. We will attempt to estimate each in turn using available data. For
purposes of this analysis, we will accept Chao’s estimates that there were 68,000 cleared
software developers in 2006, capable of producing 75 MSLOC per year. That implies a
productivity at that time of roughly 1100 SLOC per developer in 2006, or (equivalently) 900
developers required per MSLOC, as our baseline.

The Size of the Workforce

How quickly might the defense software workforce be growing? The Bureau of Labor
Statistics estimates that from 2010 to 2015, total employment of software developers2 grew
almost 30%, or about 5.3% annually. However, they forecast that rate to decline sharply
going forward, averaging only about 1.6% per year over the decade of 2014–2024 (BLS,
2017). The defense software industrial base will need to grow more quickly than that to keep
pace with established demand growth.

2 BLS occupation codes 15-1132 (software developers, applications) and 15-1133 (software
developers, system software), total employment as of May 2010 and May 2015 (BLS, 2017).

Acquisition Research Program:
Creating Synergy for Informed Change - 243 -

Any scarcity of cleared software talent should translate into rising salaries and
benefits for workers with those skills, providing incentive for more and more workers to enter
the industry. In a free and liquid market, we would expect this to happen fairly quickly.
Unfortunately, some aspects of this particular market might be problematic. The first is the
requirement that workers be U.S. citizens with security clearances. This not only
dramatically restricts the pool of potential entrants, but it also creates a licensure bottleneck
for individuals seeking to join the labor force. There is currently a backlog of half a million
unfinished security background checks, and the time required to get through the process is
increasing steadily. In addition, over the past few years the total size of the cleared
workforce has contracted by ~25% in reaction to high-profile spills of classified information.
Defense software employers are also facing tough competition from the private sector,
which is experiencing an explosion of demand for software to power the expanding role of
the Internet in daily life. Of course, other industries can supplement U.S. graduates with
offshore or immigrant labor—a solution unavailable to the defense sector under current
regulations.

Another barrier to market corrections is that the most urgent scarcities seem to be at
the high end of the experience scale. Chao (2006) found that (at least in 2006) there was no
general shortage of programmers, but there was already a significant shortage (with
corresponding salary premium) of relatively senior software project managers, architects,
and developers. At the tip of the pyramid, they cited a cadre of 500–600 “elite” individuals
who play a disproportionate role in project success. If rising compensation for senior talent
begins to cause an increased growth rate in software degrees, we will not see that begin to
alleviate the crunch in senior talent and elite individuals for at least another 10 years.

Finally, it is not clear that the DoD wants the market to correct itself through
increases in compensation. Contractor labor rates are closely monitored by the DoD, and
the government pushes back when they rise too quickly. Senior software talent in the
general economy can be as highly compensated as senior management executives.
Arrington (2010a) reported that “[a Google employee] was recently offered a counter offer
he couldn’t refuse (except he did). He was offered a 15% raise on his $150,000 mid level
developer salary, quadruple the stock benefits and … wait for it … a $500,000 cash bonus
to stay for a year. He took the Facebook offer anyway.” (Note that $150,000 for a mid-level
developer is already well above industry norms.) Arrington (2010b) also reported that
Google had paid a top software engineer $3.5 million to turn down an offer from Facebook.
Allowable defense contractor labor costs are capped; companies choosing to pay salaries
over those caps must take the difference out of profit. This provides a strong disincentive to
paying market rates for top talent within the defense world.

On the supply side, what does the educational pipeline for software look like? The
number of bachelor’s degrees conferred each year in computer and information sciences
has shown a striking cyclical pattern over the past four decades (see Figure 2). The general
trend has been a baseline increase of ~1000 degrees per year, with superimposed boom
and bust cycles. We are currently on the upswing of a boom cycle, with more than 60,000
degrees conferred per year.

Acquisition Research Program:
Creating Synergy for Informed Change - 244 -

Figure 2. Annual Computer Science and Information Sciences Bachelor's
Degrees Conferred

In addition to this pool of potential defense software developers, the educational
pipeline for software developers also includes nontraditional educational options. More than
16,000 students graduated from “coding boot camp” programs in 2015, and that number has
been growing rapidly over the few years that such programs have existed (Lauerman,
2015).

This suggests that there are as many as 80,000 potential developers graduating per
year. In 2006, the cleared workforce made up 7% of the overall software workforce. Again
being optimistic, if 10% of new graduates (college and boot camp combined) end up in the
cleared software workforce, that would currently be about 8,000 per year, which could grow
to 10,000 per year in a couple of years. This corresponds to between 5% and 10% annual
growth. For purposes of our baseline analysis, we will assume annual workforce growth of
5%, comparable to recent growth in software developers and well above the forecast
national average for the software industry.

As noted above, in 2006, there were roughly 68,000 cleared software developers in
the defense industrial base. If we assume 5% annual growth in the national security
software developer workforce starting in 2006, that would translate to about 120,000 people
today, reaching 150,000 by 2023. Figure 3 shows this projected growth over time.

Acquisition Research Program:
Creating Synergy for Informed Change - 245 -

Figure 3. Forecast Cleared Software Workforce Size

The Productivity of Defense Software Developers

Malthus was wrong about hunger in England in large part because the technology for
food production improved enormously over the next few centuries, making individual farmers
much more productive and bringing marginal land into productive use. Could defense
software development see (or already be seeing) a similar explosion in individual
productivity that would be enough to make up for the slower growth of the labor force?

In 2000, Jones estimated defense software productivity at 4.2 function points (FP)
per staff month (SM); in 2013, his estimate was 6.75 FP/SM. That corresponds to just under
4% annual productivity improvement. This is in line with other historical estimates of
software productivity growth. For example, Longstreet (2001) estimated ~4% annual
productivity growth (FP per hour) from 1970 to 2000 industry-wide. These estimates are
based on FP, rather than on MSLOC. Since the number of FP per line of code has been
growing historically (Jones, 2013), productivity growth in terms of MSLOC would be
somewhat lower, but we will optimistically estimate MSLOC productivity growth at 4% as
well.

Of course, the DoD may not yet have realized all of the productivity enhancement
that can be had using current technology. We discuss these at greater length in the
Recommendations section.

Supply vs. Demand
We now have all of the pieces we need for a back-of-the-envelope comparison of

forecast productive capacity versus unconstrained demand. Figure 4 shows that, even given
the generally optimistic assumptions we have made, we have already passed the point of
being able to produce and maintain all of the software that the DoD would like. According to
this forecast, the DoD will soon also reach the point of neither being able to produce all of
the new code desired (without maintenance), nor to maintain all existing code (with no new
development). The projected 2020 workforce of 135,000 developers would be less than half

Acquisition Research Program:
Creating Synergy for Informed Change - 246 -

of the 290,000 developers required to write and maintain all of the code desired up to that
point.

Figure 4. Forecast Supply vs. Unconstrained Demand

Revisiting the assumptions behind this forecast, we have assumed:

 15% annual growth in demand for new code

 5% annual defense software workforce expansion

 4% annual productivity growth

 A workforce of 68,000 in 2006

 Demand for 35 MSLOC in 2006

 An installed base of 125 MSLOC in 2006

 Productive capacity of 75 MSLOC in 2006

 20% annual maintenance effort

 50% of maintenance resulting in new code

 10% annual retirement of software in the base

Most of these assumptions could be fairly described as optimistic, based on historical
data. Varying the parameters changes the details, but the shape of the situation remains the
same. For example, if we assume that productivity growth post-2006 will be 8% instead of
4%, we get the picture in Figure 5. Software development is still capacity-constrained in this
case, but not as severely. Conversely, if we keep productivity growth at 4% but allow the
workforce to grow by 10% per year, we get the picture in Figure 6.

Acquisition Research Program:
Creating Synergy for Informed Change - 247 -

Figure 5. Supply vs. Demand at 8% Productivity Growth

Figure 6. Supply vs. Demand Assuming 10% Workforce Growth

Acquisition Research Program:
Creating Synergy for Informed Change - 248 -

It goes without saying that the reverse is also true—if we assume 20% annual
demand growth, or a 2006 installed base significantly larger than 125 MSLOC,3 all of these
pictures look much worse. Similarly assuming less optimistic values for the annual
maintenance fraction (40%), or the proportion of maintenance that generates new code
(>50%) (Galorath, n.d.), would lower the forecast capacity significantly.

If This Were Correct, Wouldn’t We Have Noticed?
Is it really possible that we could be suffering a (possibly severe) shortage of

software developers in the defense sector without anyone noticing? What symptoms should
we look for?

Barnow, Trutko, and Piatak (2013) list 16 separate actions that employers might take
that are indicative of a labor shortage. These include increased recruiting expenditures,
increased use of overtime, new on-the-job training programs, relaxing minimum
qualifications, and so forth. These are in addition to the operational symptoms of resource
shortage, such as increased development times, lower-than-predicted staffing levels, and
higher ratios of systems engineering/program management costs to touch labor costs.

Are these things happening in the defense sector? There is some evidence that they
are.

 Chao (2006) found that senior software architects and project managers in
the cleared software sector earned 50+% more than their counterparts in the
general economy. They took this to indicate that there was already a
shortage of those particular skills in the defense industrial base.

 Lucero (2009) found that many defense software positions were being filled
by personnel with no formal software engineering training (on-the-job
training).

 There are currently more than 10,000 job postings for software developers
and software engineers at ClearanceJobs.com, which is more than half of all
listings at that site (vacancies).

 Salaries for cleared information technology program/project managers rose
10% in one year between 2013 and 2014, faster than any other category and
passing engineers as the highest-compensated cleared occupation group
(salary rise) (ClearanceJobs.com, 2014).

 BLS estimates the national unemployment rate for technology professionals
at only 2.9% (vacancies) (ClearanceJobs.com, 2014).

 Nearly half of recent ClearanceJobs.com survey respondents have been in
their current job less than three years (churn) (Kyzer, 2017).

Barnow et al. (2013) also note that measuring occupational shortages is difficult, in
part because occupational vacancy data are not generally available in the U.S. and
available reporting uses job classification systems that are based on outdated industrial
models and too coarse to be useful for many purposes. It would be very interesting to look

3 Given that the Army alone claimed to have 240 MSLOC under sustainment in 2009, 125 MSLOC
defense-wide in 2006 seems improbably low.

Acquisition Research Program:
Creating Synergy for Informed Change - 249 -

at (for instance) how the cost per staff month of defense software development has changed
over the past decade, as reflected in the Software Requirements Data Reporting database.

What Are the Policy Options?
We identify several available short-term and long-term policy options associated with

both the supply and demand for defense software.

Option 1: Moderate Demand

The obvious short-term solution to a scarcity of software productive capacity is to ask
for less software. At the present time, it seems unlikely that the defense establishment
would be willing or able to accomplish this. Software is viewed as vital to any hope of
maintaining the United States’ traditional technological advantage in military capability. A
significant overall reduction in software demand would also require the several Services to
cooperate effectively to optimize the allocation of software development capacity to the most
important software-intensive programs. Given that the services struggle to allocate
resources efficiently within and among their own acquisition portfolios, this seems like a
stretch. The results, then, would be a less-efficient allocation of software resources to
capabilities, an associated effective loss of software productivity, and failure to reap the
potential benefits of software-mediated capabilities.

In the longer term, natural factors limit the growth in demand for software. Defense
budgets do not grow without limit, so the exponential growth in software demand reflects, to
some extent, substitution of software for other categories of expenditure—primarily analog
hardware and human labor. There are natural limits to that process. Regardless of the
underlying desire for software-mediated capabilities, the DoD cannot procure more software
than the industrial base is able to provide.

Perhaps just as importantly, there is a tension between the size and complexity of
the software in a system and how long it takes to develop that system. If rapid response to a
rapidly changing world is one of the motivations for implementing capabilities in software, it
makes no sense to pursue designs whose complex software will require 20+ years to
design, build, and test. Prior analysis of the dependence of development cycle times on
software content assumed development times unconstrained by industrial base issues
(Tate, 2016). If Major Defense Acquisition Program/Major Automated Information System
(MDAP/MAIS) software projects are now subject to chronic resource shortfalls, those past
lead time estimates were optimistic. Increased demand for software-mediated functions thus
has a twofold negative effect on schedules: first by adding work to the critical development
path of each program, and second by starving the programs of the resources necessary to
do the work on the critical path. From a policy perspective, it does not seem practical for the
DoD or Congress to mandate reduced use of software overall, or limits on the amount of
software in any one program. Not only would those policies be counterproductive, they
would also be unenforceable and prone to wasteful gaming by the services and defense
contractor base. Demand-side policy options would not seem to be helpful here.

Option 2: Grow the Workforce

From a policy perspective, there are several plausible mechanisms for increasing the
growth rate of the defense software base:

 Encourage students to pursue software education, both through traditional
college degrees and nontraditional (e.g., boot camp) training programs.
Incentives could include low-interest loans, direct subsidies/scholarships,
loan forgiveness, etc. These could be made contingent on a minimum tenure
of employment in the defense sector.

Acquisition Research Program:
Creating Synergy for Informed Change - 250 -

 Invest in improving the throughput of the security clearance process,
especially for software workers.

 Relax barriers to employing foreign nationals. The software industry has
thoroughly globalized, but the defense sector is not permitted to take
advantage of that at present. As we shall see below, there are ways of doing
this implicitly that do not involved relaxing security standards.

 Allow contractors to pay true market salaries for software talent.

The first three of these options would tend to reduce the price of defense software by
increasing supply, thus somewhat offsetting the investment required. Allowing higher
salaries for key software professionals looks like it would tend to increase the cost of any
given system—but it might not. It might improve efficiency and increase supply by enough to
offset the higher cost per hour of that labor. It might also make it possible to have that
system at all, or improve its quality, or permit the DoD to acquire it in time for it to be useful.

Option 3: Improve Productivity Dramatically

There have been multiple drivers of significant productivity improvement in the
commercial software world over the past few decades. These include computer-aided
software engineering (CASE) tools, automated test environments, improved programming
languages,4 agile (and similar) development processes, and modular open system
architectures. The defense software base has participated in the first three (though the use
of improved programming languages was long delayed by the mandate to write in Ada), but
it has not leveraged the last two nearly as much.

Definitions of “agile development” invariably lead to arguments among both
advocates and skeptics, but in general the phrase refers to a strategy of rapid, small-scale,
incremental development and release of software functionality, driven not by prespecified
requirements or specifications but rather by close, iterative interaction with future users of
the software being developed. The key features here are as follows:

 Small—Features are added in many small increments, rather than a few
large blocks/versions/updates.

 Rapid—New releases happen on a scale of weeks, not months or years.

 No fixed requirements—Users and developers together explore the space
of potential features and discover which are the most useful.

 Interactive—Users and developers participate as a collaborative partnership,
rather than as customer and vendor, with developers in self-organizing
teams.

All of these key features pose problems for traditional DoD acquisition. Having many
small incremental releases of functionality breaks the logistics system whereby new
software releases are coordinated and deployed to far-flung operational units. The absence
of fixed formal requirements is antithetic to the Joint Requirements Oversight Council
(JROC) mission of specifying formal, validated requirements with threshold levels. It may
also cause legal and practical headaches for the writers of requests for proposals and the
awarders of contracts, not to mention cost and schedule estimators. The interaction

4 For our purposes, improved simply means more FP of product per SM of effort on average.

Acquisition Research Program:
Creating Synergy for Informed Change - 251 -

between developers and users requires active, ongoing participation of uniformed and
civilian personnel who would traditionally never get near the system under development until
(perhaps) Operational Test and Evaluation. That ongoing collaboration might last for years.

The other dominant recent development in the commercial world that has generated
significant productivity gains is the use of modular open system architectures. Stephen
Welby (2014), during his time as Deputy Assistant Secretary of Defense for Systems
Engineering, described these as “technical architectures that leverage technical standards
to support a modular, loosely coupled and highly cohesive system structure.” There are
actually two distinct and separately important ideas here: modularity, which is about the way
the software’s functions are organized into independent composable units, and openness,
which is about who can see, modify, publish, or use the code. Not all modular architectures
are open; not all open source software is modular. There is a synergy between the two
ideas, however—modularity increases the efficiency of individual contributions to the open
code base, while openness allows more individuals to contribute.

For our purposes, the key features that drive enhanced productivity are the following:

 Composable software modules that can be combined in many ways to
execute more complex functions

 Well-defined, standardized, documented interfaces for these modules

 Universal transparent access to (nearly) all of the source code

 Extensive rights to modify or enhance existing source code

 A large base of independent agents actively engaged in developing/improving
the set of modules

Examples of thriving modular open software ecosystems include the Linux operating
system, the Apache web hosting platform, the FreeRTOS real-time operating system for
embedded systems, the R and Python programming environments, the emacs document
editor, and the MySQL relational database. The collaborative nature of the communities of
developers working with these tools can lead to enormous total effort—the Linux Foundation
estimated in 2008 that the total cost to develop the Fedora 9 distribution of Linux (including
the Linux kernel itself) from scratch would have been more than $12 billion (McPherson,
Proffitt, & Hale-Evans, 2008). That was nearly a decade of additional development ago.

Modular open architectures enhance productivity through three principal
mechanisms: reuse, parallelism, and scrutiny. Modularity allows large parts of the code base
to be reused in new applications with little or no modification, greatly reducing development
times. It also makes it easier for program managers to decompose complex development
projects into weakly-dependent subprojects, so that less work lies on the critical path.
Openness, on the other hand, invites large numbers of developers to work on continuous
improvements to the ecosystem, so that there is an ever-richer set of existing modules to re-
use. This widespread active attention to improving the code in turn results in a higher level
of scrutiny—and thus generally lower defect rates—for frequently-used modules in such
environments (Brockmeier, 2003). Similarly, software assurance and cybersecurity can be
easier for open source software than for proprietary software (Wheeler, 2010).

The openness and transparency of open source ecosystems also provides a
welcome indirect mechanism for opening defense software development to the non-cleared
workforce. Any defense software that is based on Linux, or written in Python, or
implemented using FreeRTOS, is leveraging the efforts of thousands of developers outside
the usual defense workforce. In the end, this might be the best argument in favor of modular

Acquisition Research Program:
Creating Synergy for Informed Change - 252 -

open source—that it promises not only significant productivity gains for individual
programmers, but also the largest available expansion of the defense software workforce.

Recommendations
Thus far, we have presented some plausible guesstimates concerning actual supply

and demand, some optimistic yet sobering forecasts, and an enumeration of possible policy
options. Given all of that, what should be done?

First, collect data. Study the industrial base; measure the effective demand; measure
the maintenance efforts. The forecasts in this paper are built on sparse data from
inconsistent sources. An improved update to the Chao (2006) investigation of the state of
the defense software industrial base is long overdue, and could replace those credible
guesstimates with actionable facts. If we discover that supply has kept pace with demand
just fine over the last decade, good. We will have learned something about how the unique
defense labor market responds to internal demand surges and competition from the
commercial market. If, however, we discover that significant amounts of software
maintenance are being deferred, all projects are understaffed, and new programs are
executing by stealing from existing programs, then we can sound the alarm.

Second, adopt commercially proven productivity-enhancing acquisition models. In
recent decades, the DoD has bet that the boom in commercial software is a rising tide that
would lift defense software productivity as well. This turned out not to be true; the needs of
the DoD are sufficiently different from those of the commercial world that productivity
advances arising in the commercial sector did not necessarily translate to the defense
sector. Agile development and large-scale telework are good examples of productivity
multipliers in the commercial sector that are not as useful for defense without significant
adaptation.

In particular, embrace modular open source software ecosystems. Of the known
productivity enhancers, this is the only one that might potentially provide both ongoing rapid
productivity growth and an effective expansion of the workforce. Doing this would require
substantial regulatory, cultural, organizational, and perhaps legal changes across the
defense acquisition enterprise and the defense industrial base. There is also a nonzero risk
that such efforts could fail to produce the critical mass of actively engaged developers
necessary to realize the benefits of open source ecosystems. Evidence from the commercial
world suggests that not only would it be worth the risk, it might be necessary in order to
keep up with the pace of technology change and threat evolution. DoD leadership have
been pushing in this direction (DoD, 2017), but there is considerable institutional inertia and
active resistance to be overcome, both within government and within the industrial base.
Furthermore, the early stages of developing such ecosystems might well not look much like
progress.

Finally, fund basic productivity research the way the DoD used to do. Without
fundamental improvements in software productivity, weapon system capabilities will be
limited by the time it takes to develop new software-intensive systems, and that limit may not
be very far beyond what is currently being produced. The DoD has little use for highly
capable systems that take 25 years to field. In the long run, the key breakthrough will be the
automation of software development as a process, so that it is no longer a manual craft
labor activity. That vision—autonomous systems writing software from scratch with the
dependability required of defense systems—is currently still in the realm of science fiction.

Acquisition Research Program:
Creating Synergy for Informed Change - 253 -

References
Arrington, M. (2010a). Google making extraordinary counteroffers to stop flow of employees

to Facebook. Retrieved from https://techcrunch.com/2010/09/01/google-making-
extraordinary-counteroffers-to-stop-flow-of-employees-to-facebook/

Arrington, M. (2010b). Google offers staff engineer $3.5 million to turn down Facebook offer.
Retrieved from https://techcrunch.com/2010/11/11/google-offers-staff-engineer-3-5-
million-to-turn-down-facebook-offer/

Barnow, B. S., Trutko, J., & Piatak, J. S. (2013). How do we know occupational labor
shortages exist? Employment Research, 20(2), 4–6. doi:10.17848/1075-8445.20(2)-2

Brockmeier, J. (2003). Comparing free and proprietary software defect rates. Retrieved from
https://lwn.net/Articles/22623/

Bureau of Labor Statistics (BLS). (n.d.). Occupational outlook handbook, 2016–17 edition.
Retrieved from https://www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm

Bureau of Labor Statistics (BLS). (2017). Occupational employment statistics. Retrieved
from https://www.bls.gov/oes/tables.htm

Chao, P. (2006, October). An assessment of the national security software industrial base
[Briefing]. Retrieved from https://www.csis.org/analysis/assessment-national-security-
software-industrial-base

ClearanceJobs.com. (n.d.) Retrieved from
https://www.clearancejobs.com/jobs?keywords=software

ClearanceJobs.com. (2014). In the clear: Compensation decline for security-cleared
professionals levels off despite strong headwinds. Retrieved from
https://about.clearancejobs.com/hubfs/pdfs/ClearanceJobs_Compensation_Survey_201
4.pdf

Department of the Army. Army Organic Industrial Base Strategic Plan: 2012–2022.
Retrieved from https://www.army.mil/e2/c/downloads/276549.pdf

DoD. (2017, February 23). DoD announces the launch of “Code.mil,” an experiment in open
source (No. NR-077-17) [Press release]. Retrieved from
https://www.defense.gov/News/News-Releases/News-Release-
View/Article/1092364/dod-announces-the-launch-of-codemil-an-experiment-in-open-
source?source=GovDelivery

Dvorak, D. L. (Ed.) (2009). NASA study on flight software complexity. Pasadena, CA: NASA
Jet Propulsion Laboratory, California Institute of Technology.

Galorath, Inc. SEER by Galorath. Retrieved from
http://galorath.com/software_maintenance_cost

Jones, C. (2000). Software assessments, benchmarks, and best practices. Boston, MA:
Addison-Wesley.

Jones, C. (2013). Function points as a universal software metric. ACM SIGSOFT Software
Engineering Notes, 38(4), 1–27. doi:10.1145/2492248.2492268

Kyzer, L. (2017). Clearance salary trends in 2017. Retrieved from
https://news.clearancejobs.com/2017/01/19/clearance-salary-trends-2017/

Lauerman, J. (2015). Coding boot camp enrollment soars as students seek tech jobs.
Retrieved from https://www.bloomberg.com/news/articles/2015-06-08/coding-boot-
camp-enrollment-soars-as-students-seek-tech-jobs

Acquisition Research Program:
Creating Synergy for Informed Change - 254 -

Longstreet, D. (2001). Software productivity since 1970. Function point training and analysis
manual. Retrieved from http://www.softwaremetrics.com/Articles/history.htm

Lucero, D. (2009, April). Software sustainment challenges in defense acquisition. Presented
at the AIAA Infotech@Aerospace Conference, Seattle, WA. doi:10.2514/6.2009-1816

McPherson, A., Proffitt, B., & Hale-Evans, R. (2008). Estimating the total cost of a Linux
distribution. Retrieved from https://www.linux.com

/publications/estimating-total-cost-linux-distribution

National Research Council, Committee for Advancing Software-Intensive Systems
Producibility. (2010). Critical code: Software producibility for defense. Washington, DC:
National Academies Press. doi:10.17226/12979

System Architecture Virtual Integration (SAVI). Retrieved from http://savi.avsi.aero/about-
savi/savi-motivation/exponential-system-complexity/

Tate, D. M. (2016). Software development may drive future acquisition cycle times (IDA
Research Insights NS D-8053). Retrieved from
https://www.ida.org/idamedia/Corporate/Files/Publications/Insights/CARD-D-8053-
Tate.ashx

Welby, S. P. (2014, October). Modular open systems architecture in DoD acquisition.
Presented at the 17th Annual NDIA Systems Engineering Conference, Springfield, VA.

Wheeler, D. A. (2010, April). Open source software (OSS/FLOSS) and security. Presented
at the International Workshop on Free/Open Source Software Technologies, Riyadh,
Saudi Arabia. Retrieved from
https://www.dwheeler.com/essays/oss_security_saudi_arabia.pdf

Acknowledgments
This work was performed under the IDA Central Research Program, supported by

Department of Defense contract HQ0034-14-D-0001.

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

