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Abstract 
This paper examines the technologies and architecture patterns that are transforming 
software-intensive systems and the Internet of Things (IoT) that are currently being designed 
and implemented. The use of these practices should create an ensuing transformational shift 
in the relationships between the Test and Evaluation (T&E), development, and operational 
communities. 

Based on the findings of this research, a set of practices for a coordinated set of hardware, 
software, functional, and data architecture patterns and testing strategies is presented. This 
paper will show how these need to be applied via a data architecture that defines the 
declared test points between modular components in software intensive systems. This will 
support affordable and rapid integration of innovation through a business model that uses 
small-scale component replacement. This research ends with an assertion that, when the 
right architectural elements are standardized, regular incremental improvement is both 
affordable and effectively applied throughout system development. 

Introduction 
This paper proposes a new path toward a robust and affordable approach for product 

development to achieve the fundamental purposes of T&E—to validate and verify the 
acquisition of excellent military capability. The architecture itself, not just the content, should 
also be testable to its own set of requirements. As such, there needs to be a set of practices 
that can directly test such architecture characteristics of flexibility, scalability, interoperability, 
and so forth, prior to making major investments in detailed development. Then, when the 
content of the components that make up the system are filled out, the test and evaluation 
process can validate and verify that the content is following the constraints of the 
architecture. In this way, when the full system is completed, the program is not at the 
beginning of traditional T&E, but at the end of the product development and test process, 
and can quickly transition to fielding. Synergistically, when open and functional architecture 
steps are followed, some of the smaller testable chucks of software prior to the “full system” 
being created, thus expanding opportunities for broader enterprise value of strategic reuse. 
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DoD procurement is changing, driven by a combination of the national strategic 
imperative to much more rapidly address the needs of the warfighter who is facing an 
asymmetric enemy, who is also able to access the fundamental underlying building blocks of 
capability derived from globally available commercial technology (National Defense 
Authorization Act, 2017). As a result, defense procurement needs to become nimble, 
deriving new mission capability through flexible and rapid integration of capability modules 
instead of classically procured standalone systems (Richardson, 2016).  

A natural extension of these assertions is that fielding of new capability must also be 
made more fluidly, frequently, and in smaller increments than the large-scale major systems 
deployments typical of classic Program of Record approaches that follow a 
design/build/field/sustain/dispose life cycle as shown in Figure 1. The environment must 
adjust to a different deployment model for capability where new features and performance 
capabilities can be delivered when they are needed in the field. 

 

Figure 1. Defense Acquisition Framework 

The new model changes the design/build/field/sustainment approach of discrete and 
separate phases into one of continuous engineering and deployment. In order to achieve 
this, new increments of capability, acquired from a wide range of offerors, must be able to 
be affordably tested and fielded within days or weeks. Both the testing community and the 
acquisition environment must have strong evidence and buy-in that such an approach can 
be risk-prudently performed. This will be a difficult change in culture as both of these 
communities are steeped in the natural cadence of the defense acquisition framework, 
which can require years to move from characterizing a problem to having a fully fielded 
system-specific capability.  

The Changing Environment 
Energetics and life-costing decisions hang in the balance of military products. The 

rigor of testing and certification required for warfighting capability is very different from 
standard industry practices for consumer products, such as testing an incremental release 
of a popular mobile application. As such, software for military warfighting systems, 
regardless of its origin, must be governed and implemented with rigor. This is made more 
urgent by the growing and persistent cyber threat to software-intensive systems. Consider 
the following observations on current DoD software architecture practices: 

 The System’s Engineering “V” diagram is being eclipsed to today’s by new 
forms of robust model-based systems engineering and systems-of-systems 
design environments and tools (Micouin, 2014). In addition, system 
performance requirements must adjust as the technology matures and the 
warfighting problem space changes. Architectures and test capabilities are 
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needed to readdress the duration of the continuous engineering, testing, and 
deployment phases.  

 

Figure 2. Continuous Engineering 
(Rahman, 2014). 

 Modern cyber-physical software development practices are using 
decomposition of capabilities into smaller, individually competed functions 
(Guertin, Schmidt, & Sweeney, 2015). These functions also need to come 
built with accessibility to internal software “test-points” and conformant 
external interfaces. Both of these will be necessary to support automation of 
tests. 

 Today’s delivered capabilities span multiple systems, programs, and services 
(Jamshidi, 2008). The overarching integrated capabilities are composed of 
orchestrated behaviors forced through an array of architectures, deployed on 
different hardware, using different internal interfaces with a multitude of 
different data representations.  

 Advances in Model Based Engineering (MBE) now enable the acquisition 
community to explicitly address integration complexity for definitions of 
system software specifications (DoD, 2017). This action will fundamentally 
address the one issue that simultaneously decreases system costs and 
reduces time to deployment.  

 The Defense Department Services are revolutionizing software development 
with researched, tested, and validated Open Architecture approaches 
(Guertin & VanBenthem, 2016). However, successfully delivering its full value 
to the warfighter requires the entire DoD procurement cycle to fully embrace 
its potential and to deliver on its value. 

 The T&E community also develops large, complex software intensive 
systems to support testing (Deputy Assistant Secretary of Defense [DT&E], 
2016). Those MBE practices need to be aligned with the associated MBE 
efforts being used in the acquisition community. The T&E community has the 
ability to develop a rich set of cohesive testing infrastructure and tools while 
still preserving their independent role.  
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Testing assembled systems and systems-of-systems (SoS) has been long, complex, 
and expensive. As such, the effort associated with fielding adequately tested products is 
rapidly increasing (Deputy Secretary of Defense for Systems Engineering, n.d.). Automation 
of testing activities is necessary to address these activities to improve test breadth and 
penetration, while simultaneously increasing speed of delivery and reducing the overall test 
burden (Elfriede, Rashka, & Paul, 1999). This will similarly require robust testing frameworks 
that are not intimately tied to the product being tested. To align the product development 
and system test domains, the full panoply of complexity must be addressed, such as: 
internal component functional testing, system integration, and cross-system behavioral 
testing of software-intensive systems.  

This creates an opportunity for alignment of the MBE efforts across the acquisition 
workforce. The exploding complexity can be managed through a greater emphasis on 
defining the data artifacts of the modules of the systems under test, while also enabling their 
extensibility for re-use. This includes tools that can specially address the complexity of 
testing software intensive systems, a market-place of T&E products and test artifacts, and a 
third-party marketplace of innovative products to support the T&E workforce. 

Design and testing of interfaces are also going through fundamental changes in both 
approaches and results. The classic approach of an Interface Control Document can be 
replaced by using a combination of MBE and a supported data model. These together fully 
define what data moves across the system and how data is used internally to a module to 
support functional performance. The consistent and testable MBE processes and software 
architectures can then be used to provide “managed” automation of testing and 
interoperability. This results in testing products that are open to support integration and are 
readily reusable across programs.  

Defining a “Testable” Architecture 
The T&E community can test components and software early and often by first 

decomposing the criteria for the fundamental building blocks of software intensive systems. 
An analogy is beneficial to set the stage—the most accessible and reliable one is your 
house.  

To better understand the relationships of enterprise design, consider the comparative 
example of how communities build out their towns. Figure 2 depicts the relationship of the 
enterprise architecture to the community’s master plan. The enterprise architecture is the 
first tier of a multi-level design process. Both the large-scale plan and the individual house 
plan represent a forward-looking vision of the eventual community or product-line 
implementation. Both the developer and the inspector are governed by regulatory practices 
and architectural patterns and styles, and they must be responsive to future market and 
business-driven factors. In short, building codes define the architecture rules.  

At the highest level in the building architecture analogy, business and community 
leaders determine what they want their town to look like and what infrastructure 
requirements they might need. Roads, utilities, and capacities are examples of the highest 
level requirements of a community. Likewise, an enterprise product line for a defense 
system constructs a set of rules to facilitate systems domain business requirements, such as 
portability, reuse, interoperability, speed, and scalability. These requirements are then 
translated into attributes that the resulting architecture must possess.   
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Figure 3. Architecture via Building Codes Example 

When a house is built, it must conform to these overarching requirements. The rules 
of construction are set for things like framing, electrical, plumbing, insulation, internal and 
external finishes, and so forth. Building/zoning codes and other constraints, like 
homeowners association agreements, can also assert controls on how the building interacts 
with the rest of the community.  

The home builder does not set the building codes or the inspection and test 
methods. The inspectors have a basis for evaluating creative alternative implementations 
while preserving safety for the individual and value to the community. These codes and 
building rules must be structured to be loosely coupled and have limited impact on other 
rules. However, when new construction methods, modern materials, or new aesthetics are 
presented, the test criteria and test methods must react dynamically and evolve.  

The physical nature of a building forces us to take a step-wise approach to 
inspection, such as the overall design is inspected before construction begins, the 
foundation is inspected before the structure is built and before electrical and plumbing is 
installed, etc. Software intensive systems could be approached in a similar fashion. As such, 
the developers and evaluators would establish a partnership for setting the building codes 
and creating the criteria for testing and inspection. 

Establishing the Categories of Architecture 

The T&E community must be involved in defining the “building codes” for today’s 
complex software-intensive systems to establish the governing principles for building, 
implementing, and eventually testing software-intensive System-of-Systems (SoS).  

The scale of the problem is growing faster than existing methods can account for. 
Consider that a modern automobile can have 10 million lines of “mission critical” code (“How 
Many Millions,” 2017), and even the operating systems can easily top 25–30 million lines of 
code. Similarly, modern weapons systems can each have in the neighborhood of 10–20 
million lines of code. Additional software is needed to integrate and share data between all 
platforms, sensors, and weapons to make these complex systems perform together. In 
addition, the very act of testing these software-intensive systems is creating significant 
amounts of software as well. As a result of this complexity, one or more of the following 
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challenges are often observed when testing and integrating large software-intensive 
systems: 

 Integration patterns limit flexibility for incorporating new capabilities. 

 System do not scale in size or diversity and have less capability than 
required. 

 External or key interfaces do not work as specified or designed. 

 Functionality is reduced from design specifications. 

 Interface documentation is insufficient to effectively test system boundaries. 

 Traditional Interface Control Document (ICD) specifications evolve too slowly 
to accommodate evolving or novel capabilities. 

 The combinatorial challenge of testing every interface leads to untested 
interactions (Kuhn, Kacker, & Lei, 2013).  

Analysis of these failure mechanisms often indicates that unplanned dynamic 
behavior exists among the key system elements (Capilla et al., 2014). Since the 
characteristic of this failure mode is unanticipated and systemic, it is unlikely that traditional 
analysis and engineering judgment will provide a robust and enduring solution. The situation 
will deteriorate as systems get more distributed, complex, and interdependent. The 
commercial industry is working to address the challenge of an estimated 20 billion 
connected devices by 2020 (Hosain, 2016). This revolution is happening over time to build 
and connect these devices, including finding agreements on how they all connect together. 
The solution to this complexity must be foundational and a fundamental aspect of 
architecture.  

In some isolated cases, the idea of a testable architecture has been realized. For 
example, Architecture Analysis and Design Language (AADL) was created for the 
specification, analysis, automated integration and code generation of real-time performance-
critical distributed computer systems (Architecture Analysis and Design Language, n.d.). 
AADL provides additional model-based engineering mechanisms to test an architecture prior 
to full product development. Outcomes of embracing testable architectures include the 
following: 

 Early detection and debugging of unanticipated dynamic behavior 

 Exercise key interfaces early in the development phase 

 Enable benchmarking of key function prototypes in the system environment 
to provide visibility into unanticipated dependencies 

 Provide for tools that can test the architecture separate from function 
enabling repeatable testing of early development products in a system 
environment 

 Analysis and comparison of design alternatives in a system environment 

 Discovery of emergent net-benefit capabilities that can be realized when 
integrating large systems and system-of systems.  

The following assertions were derived from the experience of the authors and 
validated through research:  

 Integrating systems in predictable and testable increments reduces risk and 
rework.  

 Defining the rules and the architectural elements that enable this behavior 
further improves outcomes.  
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 Analysis of the different documents, standards, processes, models, software 
libraries, and physical components led to a definition for how to implement a 
system.  

These core concepts were then distilled and mapped to a set of architectural 
elements from which systems can be informed, specified, designed, and implemented 
(Allport, Hunt, & Revill, 2016).  

Table 1 presents a simplified view of that analysis, where the input in the left column 
is the software, interface, or hardware specifications that the acquisition community currently 
leverages in execution and implementation of cyber-physical systems. Those were grouped 
and identified the input’s core architectural tenets to realize the reference architecture 
categories. As additional input, consideration was given to current architectural tools, 
standards, and best-practices to ensure that architectural content in an identified category 
could be captured and documented, and most importantly, tested.  

Table 1. Core Architectural Elements 
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The reference architecture categories serve as the building code categories for 
specifying, designing, and implementing systems and testable elements in the architecture. 
Each of the identified reference architecture categories are defined as follows: 

 Functional/System Architecture—This architectural segment is closely tied to 
the business goals of the system and includes statements about what a 
device or service “does,” what it “provides,” and what it “needs.” Testable 
KPPs are usually defined against the functions and are implicitly coupled to 
the implementation requirements. Traditional ICDs document and define 
messages and interface syntax as aspects of an interoperability requirement 
on a unit of function. These often implicitly couple a function’s deployment 
and current intended use into its specification. Various model-based 
engineering tools and standards exist for documenting interfaces of a system. 
The challenge is to ensure that the documentation and design clearly 
decouples software, from data, from function of an interface specification.  

 Software Architecture—This architectural segment focuses more on how a 
function should be implemented in code and logic. It covers how the software 
infrastructure, computational support interfaces, operating systems, 
middleware technologies (Hohpe, 2004), and display technologies are used 
and integrated. A software architecture defines the boundaries between 
components of functionality, the granularity of those components, how those 
components communicate, and how the resulting software is deployed and 
managed. Key interfaces are identified, and mechanisms to test and 
decouple the interfaces are often elements of a software architecture. The 
challenge is that software architectures are not crafted as enduring designs 
and many times end up as a defacto system architecture coupling one 
system’s implementation specifics to every other software service in the 
system.  

 Data Architecture—This architectural segment is focused on documenting the 
content and meaning of data. Data is not just what is exchanged between 
functions and comprises more than the messages. Levels of interoperability 
(Tolk & Muguira, 2003) define not only the structure (syntax) of the data but 
also the context and behavior (semantics) as well. Traditional documentation 
of data has captured syntax, but semantic and meaning of the data is implicit 
when considering model-based engineering practices. Recent 
standardization efforts and activities have clearly delineated the data 
architectural properties necessary for a reference architecture (The Open 
Group, n.d.). This includes the ability to identify the syntax (structure of 
interfaces and messages), the traceable context (semantics of the data itself), 
and the behavior of the data as presented through the documented 
interfaces. The challenge in data architecture is decoupling the 
documentation of the meaning from the presentation and dissemination of 
messages. Often what is actually exchanged carries additional meaning and 
understanding that is not overtly stated or captured. Not capturing this 
meaning in MBE formats make testing at scale certain to generate integration 
errors and is the source for many of the non-desirable emergent behaviors.  

 Hardware Architecture—This architectural segment covers specifications on 
physical computer hardware, network fabric and I/O signaling mechanisms, 
hardware mounting, power and handshaking protocols, connectors’ wiring 
specification, and the like. The T&E community has a long history of 
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successfully and independently testing hardware. The challenge addressed in 
architecture is to test and ensure that software, functions, and data are 
sufficiently decoupled. While it is sometimes advantageous to directly talk to 
hardware for performance, the T&E community needs testable architectural 
mechanisms to isolate and decouple software and function from the 
hardware. 

 Governance—This is a critical component in a reference architecture and 
details where and how the various levels of the architecture will be 
assembled, deployed, evaluated, and tested for conformance. The 
architectural categories that need to be put together for testing are as 
important as the testing architectural products of the individual categories.  

The relationship between these architectural segments provides additional testable 
architectural attributes. When coupled with a functional architecture, the data architecture 
ensures the information flowing across to peer-level modules will be correctly interpreted 
when new elements are added. The software and data architecture boundary ensures that 
information bringing exchange within software libraries is fully documented and understood. 
The software and hardware architecture boundary establishes the required decoupling and 
interface abstraction required for portability and extensibility of the implemented functions. 
These boundaries are especially critical when components that require interaction are 
crafted by new suppliers or third-parties.  

Tying the architecture categories together with a data architecture in this way 
reduces program risk by easing integration of replacement or new capabilities by adding 
clearly documented semantics and meaning—something that is lacking in today’s MBE 
tooling. 

 

Figure 4. Data Architecture Prominence in System Architectures 

These formalized concepts will result in individually testable architectural rules, 
testable relationships between the rules, designs that can be evaluated against the rules 
prior to implementation, and final products that are testable throughout the development life 
cycle. In order to accomplish this, standard arrangements of standards are needed to build 
and group the governing set of rules. A growing and powerful practice for achieving this is to 
use Technical Reference Frameworks (TRF; Schmidt, 2016). 

Characteristics of a Technical Reference Framework 

TRFs define implementation-agonistic design environments and patterns that 
establish a common set of practices for use in a specified context. In effect, a TRF is a 
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standard for how to use a set of standards to achieve a class of designs. Program managers 
and their architecture teams can choose TRFs to apply their product requirements against 
enterprise business drivers, with the goal of creating reusable components and to establish 
opportunities for any practitioner that can access the environment and add value.  

A minimum of three TRFs are needed to craft the full range of military mission 
systems and for developing reference architectures are shown in Figure 5 (Lethart et al., 
2016). Note that the TRFs overlap and transition across the dimensions of criticality and 
scale. Product requirements may dictate the use of more than one TRF in the development 
of the reference architecture. For example, a system may require TRF1 for control of a 
vehicle, TFR2 for command functions, and TRF3 for data analytics of sensor information. 
TRFs are not aligned with products and systems platforms, but rather the physics-based 
drivers that guide and constrain how systems get implemented and connected. The three 
TRFs are summarized as follows:  

 

Figure 5. Technical Reference Frameworks and Time Domains 

Safety Critical (TRF1): This TRF addresses the most critical requirements for 
the safe and continuous operation of the system or platform, as well as the 
most demanding design requirements such as personnel or weapon safety. 
Safety critical requirements are the ones that must take precedence if there is 
a conflict with other technical aspects of product. Testing these products 
require high degrees of timing precision and is often coupled to real-world 
dynamics. Implicit in the design of high availability systems/functions are 
forms of internal redundancy, unit duplication, direct control and polling of 
separate solutions, and dedicated allocation and management of resources. 
However, in the context of TRFs, those patterns remain implementation-
agnostic. When applied, the segments of the system designed to TRF1 will 
meet the highest level of criticality.  

Mission-Critical (TRF2): This TRF is applied to functions that comprise the 
mission capabilities of the platform. Timing and scale are the prime drivers 
within TRF2. The purpose of TRF2 is to apply modular, data-centric, loosely 
coupled solutions (e.g., using inversion of control patterns) to create 
architectural elements that satisfy performance requirements, with stringent 
end-to-end timing and reliability quality attributes forming key design 
decisions. Subordinate requirements, such as scale, regulatory compliance, 
and security are applied in a recursive fashion until all requirements are met. 



Acquisition Research Program: 
Creating Synergy for Informed Change - 265 - 

When applied, TRF2 will manage performance of designs that are highly time 
sensitive, but not safety critical. 

Analysis and Support (TRF3): This TRF is applied to portions of the design 
that has low criticality, i.e., they may not need to operate on strict time 
deadlines and or be hardened to survive in harsh environments. Like TRF1 
and TRF2, the elements of TRF3 must adhere to the enterprise architecture 
model as quality attributes of an integrated system or system of systems 
reference architecture are created. Program managers generally would use 
this TRF for products that address capabilities associated with analysis, 
support, and infotainment applications. This analysis is guided by TRF3 
patterns, which often involve virtualization, containers, and resource 
pooling/sharing. 

The architecture team, a collaboration between the program office and the T&E 
community, should evaluate system requirements and assign the appropriate TRF(s) to 
guide the development and of their reference architecture. The reference architecture then 
guides and supports continuous testing throughout the development life cycle.  

Testing a Design Using a Reference Architecture 

Continuing with the building code analogy—an electrical inspector need only worry 
about the electrical concerns of a project. Whether the structure is business or residential, 
there are existing guidelines which dictate practices for wire gauge and placement of 
electrical outlets. Inspections can be performed in phases as construction proceeds, and if 
an inspection fails at any point, the errors must be remedied before work can proceed. 
Additionally, there are cross-cutting specifications when electrical passes through framing or 
is near plumbing and water fixtures.  

Instead of testing to a common implementation specification, the architectural-
rigorous approach tests against a set of design tenets defined in the reference. Testing 
allows determination of these independent design elements. The disparate components of 
the product can then be properly integrated. For example, a builder does not have to wait 
until the house is fully built to buy faucets. There are specifications that govern the interface 
between the faucet and the counter and allow one, two, or three holes at various sizes in the 
counter. These same principles apply with TRFs. Flexibility is preserved with the use of the 
interfaces between and in the reference architecture categories, without resorting to being 
forced into reusing legacy implementations that add fragility to the end product. 

Each previously introduced aspect of the overall reference architecture, software, 
hardware, functional, and data, has its own set of test points, tools, and MBE-based 
documentation practices. This needs to be performed as a carefully considered deconfliction 
of the related standards and specifications.  

The location of these test points establishes considerations for the automation 
afforded by MBE-based approaches, to include following: 

 The T&E Community being engaged in defining and maintaining the 
architectural elements enables testing early and often.  

 The product designs can be tested against the architecture well before they 
are integrated into the system, e.g., testing the faucet design without knowing 
where it will be installed. 

 The ability to test at all levels of the design is established in the context of the 
architectural elements, e.g., testing whether a home has enough bathrooms 
doesn’t require detailed design of the entire house. 
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 Creativity in the solution space is preserved by testing a design against 
architecture principles, vice against a specified implementation. 

In short, each reference architecture category is required to be documented with its 
set of building codes. This defines architecturally where the test points are well before a 
Program of Record starts. Certainly more can be covered and detailed, but for the purpose 
of this paper, a set of key testable architectural elements and patters from each reference 
architecture category are highlighted.  

Software Architecture 

Many books have been written about good software design. They agree on the 
fundamentals, but then diverge in different directions to add specialized guidance that may 
be less acceptable depending on what is being implemented. While a TRF is a selection of 
design-appropriate constraints for the system, there are a few common elements of software 
architecture that the majority of systems leverage. Highlights include the following: 

Design for Orthogonality: Functional units of software are built to perform a 
specific function and can be swapped with other implementations that 
perform that same function (with new or improved features). When functional 
units do one thing, they are constrained to not be doing something else. 
Despite the obvious nature of that statement, behavior leakage is 
inadvertently built into software all the time. Products designed to do a single 
thing can be tested and do not require the rest of the system for a valid result. 
Occasionally, these tests can be performed in a simple test harness. If the 
software design is sufficiently granular and the software decoupled, this can 
allow for early testing. 

Minimize Coupling—Interface-Based Designs: Software changes. 
Implementations change. Designs that focus on a consistent interface are far 
more resilient to change. This principle is very similar to the notion of 
orthogonality, but refers to how the software is built rather than isolating 
functionality. The amount of coupling is an engineering tradeoff that should 
be most addressed overtly at the end points of decision strings or edges. The 
location of those edges are a function of the TRF selected and can be at a 
software library, system executable, or entire virtual operating system.  

Test-Driven Design: Another popular methodology is test-driven design. 
Before any implementation software is developed, the test cases for the 
corresponding requirement are developed. Then, the code is written to pass 
the test. This ensures that, at the very least, the requirement is met. The 
challenge is that designs of tests based on current understanding of the 
product and how it is expected to function, and those implicit assumptions, 
are part of the tests and developed software—for example, deciding that the 
test for a bathroom counter will test for three holes. Unfortunately, the right 
level of specification is driven by where and how integration flexibility is 
required, hence the need for the TRF to define the rule sets. 

It is not necessary to implement a full test-driven design process in order to benefit 
from these principles. The value added is that software is tested against an architecture as it 
is developed, ensuring the design and deployment requirements of the TRF are met. 
Current MBE-based software engineering tooling provides requirement traceability, test 
artifact generation, machine parseable documentation of deployment and system 
topologies, code coverage, other analysis tools, and more. Each serves a function, but 
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without the traceability to a reference architecture “rule” there isn’t a consistent application of 
their utility. 

Hardware Architecture 

The T&E community has a long and successful history testing hardware. While this 
paper is focused on the current software complexity challenges facing today’s integrators, 
there are good examples and lessons from the hardware perspective. The JTAG (IEEE, 
2009) standard is just such an example. It provides the physical test point specification as 
well as the data and signaling IO that the interface supports. The JTAG community didn’t 
invent new technology, but rather assembled a standard of standards (serial 
communication, power, connectors, etc.) to support their use-cases and defined data in the 
hardware test domain.  

There are parallels in the JTAG standard and what this paper is proposing. Clearly 
defined separations between the hardware, software, and functional architectures provided 
the flexibility and endurance of the standard over the past 20 years. How the data is 
exchanged and packaged over the interface is well understood, but what the data means 
from a particular device is often documented separately. This highlights what has 
traditionally been the gap in architecture specifications. The syntax can document a 
system’s interface on MBE-based tooling, but little is done other than human-interpreted 
prose to document the semantics. This makes every integration a process of discovery of 
the meaning of the data. Fundamentally, it is the data architecture that has been the missing 
testable piece.  

Data Architecture 

Data architecture for interfaces is the newcomer to the conversation. Data isn’t new, 
and database administrators have had an architecture to describe and document data’s 
meaning for quite some time. But about data in motion? In the past, developers have been 
allowed to simply “create a new message” to communicate system information and state. 
This approach is sufficient so long as systems remain relatively small and not connected to 
too many external systems. 

Integrating with external systems requires documentation. It requires understanding 
of the data’s format as well as the data’s meaning. To date, most development teams have 
relied on paper-based ICDs and some MBE-based representations of the ICD. While these 
documents are fine for capturing syntax (the structure: units and data type), they fall short 
on capturing the semantics, or, what the attributes actually mean. By adopting a rigorous 
approach to data architecture, the syntactic and semantic rigor in a machine readable and 
machine-understandable data model can be captured. It is the machine-understandable part 
that enables MBE-based methods for automating testing data and the interfaces that 
exchange it. Much like measuring and testing a database against the normal forms (Kent, 
1983), testing can instead use the semantic documentation of interfaces for completeness 
and machine-based utility.  

A powerful new integration tool is created once the exercise of capturing this 
information has been performed. The meaning of data is also captured when the semantics 
of data have been documented in a machine-understandable format. This means that a 
computer is able to mathematically process equivalence relationships with absolute 
certainty, not using stochastic processes. A priori integration and analysis of the data 
exchanges can be performed when starting the design process armed with data 
architectures. These systems then can be related to each other and analytically determine 
the overlap/gap of the integration using machine-understandable documentation (Hunt & 
Allport, 2016).  
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Data architectures test the structure of the documentation and make explicit the 
meaning of the content. The definition of the meaning (semantics) of the data in the 
interface in MBE-based formats allows testing of the interfaces with a defined syntax of their 
content. A data architecture supports a rigorous functional architecture. 

Functional Architecture 

Finally, the functional architecture needs to be explored. This reference architectural 
category is interesting in that many aspects of it get coupled inadvertently with other 
architectural specifications. For example, the interface is designed to accommodate the 
hardware’s limited bandwidth, address implications of limited compute resources, enforce a 
singular use of the data, or bake in signaling protocols that dictate implementation patterns. 
The first decoupling aspect of a functional architecture is to separate interfaces from 
messages. Often these are implemented as the same thing, which results in significant 
coupling in order to have an architecture that manages and treats the interfaces and 
messages as separate testable specifications. Further decoupling includes the functional 
decomposition of the system itself. This decomposition details each component’s role in a 
system. In order to test the decoupling of the roles in a functional architecture, there are 
several approaches and techniques (a TRF will have to specify what applies for its domain) 
that can be leveraged. This is certainly not an exhaustive list, and the interaction with the 
other architectural would need to be defined. 

 Functional Flow Block Diagram. The diagrams define the step-by-step flow of 
the logical order of execution in the system. In UML, these types of diagrams 
can be manifested as sequence diagrams. Other standards exist for 
documenting this implementation detail.  

 N2 Chart. These are used in software-intensive system to calculate the 
coupling between the inputs and outputs of the identified functions (Hitchins, 
2003). A decoupled functional architecture limits the dependencies across 
components in the system and makes it easier to predict impacts of updates 
to a component in the system. 

 Structured Analysis and Design. This methodology can be leveraged to 
describe systems as a series of functions, with identified inputs, outputs, and 
supporting data and mechanisms for the function’s action. Again, it provides a 
way to quantify (test) the robustness of a design. 

Testable Architecture Summary 

In summary, the data architecture provides the binding and traceability between the 
different architectural segments. The architectural specifications needed to build a design 
with increasing levels of specificity can link the implementation all the way back to the 
architectural goals inherent in the applied TRFs. Each level adds detail about the location of 
the interface test points, the data and its meaning that is exchange over the interface, and 
methods and implementation patterns that minimize coupling of software. In the end, 
software is just a specification that is compiled into many very specific instructions for a 
processor. The specification of a system and its interfaces can be treated with the same 
level of testable rigor as a software program as long as the right architecture is in place. The 
assembled systems can then be tested with compliable automation versus human-powered 
actions. 

The Consequence of Testable Architecture  
System and system-of-system testability is enabled by an open architecture. An 

open architecture is achieved when the rules-of-construction are clearly documented, 
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deconflicted, and documentable in model-based engineering processes per the selected 
TRF specification (Figure 6). When a program adopts an architecture specified to this level 
of rigor, the infrastructure itself becomes an explicit and a separate component of that 
system. The open infrastructure changes the nature of integration as well the relationship 
between the T&E and development communities.  

 

Figure 6. Realizing a Product Architecture Through a Series of Testable Steps 

The infrastructure can be maintained and provided separately from the platform 
functional software. Many companies could build modules or systems to the infrastructure 
and any qualified vendor could then integrate a component and have it function in the 
system. As an example, the same plumber that built the home is not needed to replace a 
faucet. Your home is in fact a testable, open architecture, from the design, through the 
construction, and the following years on maintenance and updates. An open architecture 
requires an open infrastructure, an open acquisition business model, a technical and 
operational roadmap, and an organization that can support and maintain these items.  

An open infrastructure has three primary characteristics: The first characteristic of an 
open infrastructure is that it has an open data model that is rigorously defined, described, 
and fully discoverable. The data model must be completely published, and based upon an 
abstraction that is broad enough to define the full domain of the system. An abstract data 
model enables a model to achieve the full breadth of possible implementations, while also 
defining repeatable interoperable mappings between these possible implementations.  

The second characteristic of an open infrastructure is that it is based on open 
standards and is flexible. Open standards do not limit differentiation, innovation, or 
competition and they ensure a commodity infrastructure. Flexibility is as important as open 
standards because there is no one technology or application programming interface (API) 
that is sufficient for the range of behaviors necessary for a complete, enterprise-level 
infrastructure. This flexibility is achieved through the use of architectural patterns at the 
service and interface model. The patterns specify expected behavior while not over-
constraining the communications design and build of the infrastructure architecture.  
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The third characteristic of open infrastructure is that the infrastructure can be 
developed, acquired, and maintained independently of the functionality of the system. This 
enables functionality to be acquired independently of the system infrastructure and ensures 
that capabilities are delivered without subsystem and special-purpose infrastructure 
dependencies. 

Several organizations are achieving these ends. For example, the Army has been 
doing so for its next generation ground control software (Bellamy, 2014). By defining their 
software architecture, the decoupling between the hardware and software architectures, and 
elements of the data architecture, they are laying the groundwork for a generation of 
incrementally testable components and software.  

Cultural and Organizational Impacts 

The building code analogy is a powerful example of a robust design and production 
market where creativity is highly prized, while overarching public good is managed. 
Architects, standards bodies, contractors, inspectors, and consumers work together to 
ensure new and exciting products are available to the customer. 

Similar to the relationship between the inspectors and the builders, the T&E 
community must preserve its arms-length relationship with the development community. In 
this way, they can ensure that products are built with the requisite capability and inherent 
flexibility to grow over time. To facilitate that shift, the test tools and capabilities must be 
grounded in making sure that systems have the right architectural features as well as 
making sure that the unique military capability is delivered.  

This change in relationship places the T&E role much earlier in the development 
cycle and in partnership with the development and operations efforts. They must be a part of 
setting and evolving the standards going forward and ensuring that the test products 
address fundamental architectural principles, versus purely on operational capability. 

Conclusion 
The historic path of product development will lead to accelerating growth in 

complexity with unsustainable increases in development and test time and cost. An 
approach to crafting software intensive products needs to change to address complexity of 
capability while simplifying the way those products get built, tested, and fielded. 

TRFs can be used to establish the “building codes,” or architectural patterns, for the 
product based on what the design needs to accomplish. As a team, the operators, program 
manager, development engineers, and test & evaluation experts can select the rules of 
construction during the early stages of product definition. This becomes the reference 
architecture and the T&E community sets the stage for how the product will get tested 
before it gets built—establishing the testing life cycle for the product. Testing starts with 
validating, early in the product development life cycle, that the architecture of the design will 
support the intended performance of the requirements. T&E engages early and stays 
involved throughout development, finding problems as early in the cycle as possible, 
correcting them where it is efficient and effective, driving down cost, lowering risk, and 
increasing robustness. 

A natural consequence of these practices is to end up with a new and separate 
component of the design: the infrastructure. Furthermore, by infusing that infrastructure with 
configurable variation points, a product line architecture is created that can be used to 
quickly instantiate alternative downstream implementations—a critical enabler for enterprise 
reuse. In addition, by using TRFs that are widely practiced, any qualified vendor can create 
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capabilities that can be added to the product line. Lastly, the tools to the trade of integration 
and test are known and practicable by that same community of practitioners, such that the 
role of integration or testing can be risk-prudently performed by alternative vendors.  
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