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Architectural Growth in Major Defense Acquisition 

Programs1 
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Abstract 
It is well-known that cost overruns in Major Defense Acquisition Programs (MDAPs) are 
endemic, and requirements volatility is at least partially to blame. In particular, when the 
desired capabilities of a system change during its life cycle, substantial reengineering can 
result, especially when a new subsystem must be incorporated into an existing architecture. 
Of course, the likelihood and specifics of such additions are rarely known ahead of time, and 
predicting integration costs is challenging. In this paper, we present a novel algorithm to 
address this issue. In particular, leveraging an integer programming implementation of the 
social network analysis technique blockmodeling, we optimally partition the subsystems 
represented in Department of Defense Architecture Framework (DoDAF) models into 
architectural positions. Using this abstracted structure, we subsequently grow the architecture 
according to its statistical properties, and we estimate this unforeseen cost of evolutionary 
architectural growth via the Constructive Systems Engineering Cost Model (COSYSMO). We 
illustrate this process with a real-world example, discuss limitations, and highlight areas for 
future research. 

	
 

 

 
                                            
 

 

1 The views expressed in written materials or publications, and/or made by speakers, moderators, 
and presenters, do not necessarily reflect the official policies of the Naval Postgraduate School nor 
does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. 
Government. 
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Introduction2 
Major Defense Acquisition Programs (MDAPs) are notoriously prone to excessive 

cost overruns (GAO, 2011), and requirements volatility is often partially to blame (e.g., 
Bolten et al., 2008; Peña & Valerdi, 2015). In fact, based on the GAO’s most recent 
Assessments of Selected Weapon Programs (2015), 6 of the 14 largest increases in MDAP 
development costs were due to the addition of new capabilities, making it the most frequent 
cause of substantial post-Milestone B (MS B) cost growth. Given a general lack of system 
specification early in the system life cycle (Blanchard & Fabrycky, 1998), this is not 
surprising, as accurately estimating the cost of an unknown set of capabilities is difficult at 
best. 

With this in mind, in 2009, Congress passed the Weapon Systems Acquisition 
Reform Act (WSARA), which implemented several initiatives to rein in cost growth, including 
shifting an MDAP’s baseline cost estimate from MS B to MS A (WSARA, 2009). 
Acknowledging the need for detailed system information earlier in the life cycle, the DoD 
followed suit in 2013 by requiring the submission of a draft Capability Development 
Document (CDD) pre–MS A (USD[AT&L], 2013), replete with the DoD Architecture 
Framework (DoDAF) models required by the Joint Capabilities Integration and Development 
System (JCIDS; Chairman of the Joint Chiefs of Staff, 2012).  

Given WSARA’s call for accurate early life cycle cost estimates, this has favorable 
implications. Specifically, in Valerdi, Dabkowski, and Dixit (2015), we demonstrate that the 
DoDAF models required pre–MS A map to 14 of the 18 parameters of the Constructive 
Systems Engineering Cost Model (COSYSMO). Consisting of four size drivers (i.e., number 
of requirements, number of interfaces, number of algorithms, and number of operational 
scenarios) and 14 effort multipliers, COSYSMO has been used by a variety of organizations 
to estimate the amount of systems engineering effort required to bring a system to fruition 
(e.g.,Valerdi, 2008; Wang et al., 2012),3 and industry has found this estimate to be a 
valuable proxy for total system cost (e.g., Honour, 2004; Cole, 2012). 

Moreover, in Dabkowski, Valerdi, and Farr (2014), we develop an algorithm to 
estimate the cost of unforeseen architectural growth in MDAPs via the SV-3 (or Systems-
Systems Matrix), providing a mechanism to assess the cost risk associated with alternative 
designs. Leveraging elements of network science and simulation, the algorithm exploits both 
the micro- and macrostructure of the SV-3 to connect a new subsystem to an MDAP’s 
existing architecture, and it employs COSYSMO to estimate the cost of the associated 
growth. In 2016, we validated and further refined our approach using real-world SV-3s 
(Dabkowski & Valerdi, 2016). While the details of our most recent work are beyond the 
scope of this paper, one of our modeling considerations is not, namely, the detection and 
exploitation of architectural communities within the SV-3.  

                                            
 

 

2 The material in the Introduction and Identifying and Exploiting Architectural Communities sections is 
derived from our earlier Acquisition Research Symposium paper titled “The Budding SV3: Estimating 
the Cost of Architectural Growth Early in the Life Cycle” (Dabkowski & Valerdi, 2014). Copyright is 
retained by the authors. 
3 COSYSMO estimates systems engineering effort in person months (nominal schedule) or PMNS 
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Identifying and Exploiting Architectural Communities 
In order to facilitate the discussion that follows, consider the hypothetical SV-3 in 

Panel (a) of Figure 1, where cell ( , ) is shaded if subsystem  interfaces with subsystem , 
and darker shades indicate greater interface complexity (i.e., light gray ⇒ easy, medium 
gray ⇒ nominal, black ⇒ difficult). Consisting of =20 subsystems (labeled A through T) and 

=47 undirected interfaces,4 suppose we are interested in estimating the effort required to 
incorporate an additional subsystem (U) into the architecture without knowing its purpose or 
function. In light of COSYSMO’s cost estimating relationship (CER), this ultimately forces us 
to estimate the number of interfaces (by complexity level) U will generate. 

 

 Hypothetical SV-3 in Its Original (Panel (a)) and Isomorphic (Panel (b)) 
Representations, Where Subsystems Have Been Permuted Into 

Architectural Communities  
(Dabkowski et al., 2014) 

More granularly, we need to answer three questions:  

(Q1) How many subsystems should U connect to (degree, m)?; 

(Q2) If U connects to m subsystems, which m subsystems should it 
connect to (adjacency)?; and  

(Q3)  If U connects to a specific set of m subsystems, what should the 
complexity of these interfaces be (weights)? 

Under the scenario of evolutionary growth versus revolutionary change, we make the 
fundamental assumption that the current architecture foretells the future architecture. In 
other words, the existing patterns and characteristics of the subsystems’ interfaces in Figure 
1 provide us with useful evidence for predicting the pattern and characteristics of the 

                                            
 

 

4 In the parlance of network science, undirected interfaces are symmetric with respect to the SV-3’s 
main diagonal. In other words, the interface from subsystem  to subsystem  implies the same 
interface from subsystem  to subsystem . For directed interfaces, symmetry is not required, and the 
implication does not hold. 
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interfaces U will generate. As reported in our earlier Acquisition Research Symposium paper 
titled “The Budding SV3: Estimating the Cost of Architectural Growth Early in the Life Cycle” 
(Dabkowski & Valerdi, 2014), making this assumption allows us to address (Q1) through 
(Q3) as follows:5 

(A1) Degree: To model a “rich-by-birth” effect, view the degree of U (MU) as 
a random variable with a probability mass function (PMF) equal to the 
observed degree distribution of the existing system (Dorogovtsev & Mendes, 
2003);  

(A2) Adjacency: To incorporate a “rich-get-richer” effect, utilize the 
Barabási-Albert preferential attachment (PA) model from network science, 
where the probability subsystem  attaches to subsystem U is a linear 
function of its degree ( ) or ∑⁄  (Barabási & Albert, 1999); and 

(A3) Weights: To mimic the observed complexity in the existing 
architecture, cast the complexity of the interface between U and subsystem  
(wiU) as a conditional random variable, where the PMF for wiU equates to the 
observed interface complexity distribution of subsystem . 

Furthermore, when searching for patterns in an MDAP’s architecture, the manner in 
which systems engineers typically architect systems should be taken into account. For 
instance, in The Art of Systems Architecting, Maier and Rechtin (2000) note that the “most 
important aggregation and partitioning heuristics are to minimize external coupling and 
maximize internal cohesion [emphasis added].” Accordingly, looking for clusters or 
communities of subsystems where the density of intra- versus inter-community interfaces is 
high seems reasonable, and applying the Girvan-Newman community detection heuristic 
(Girvan & Newman, 2002) to the SV-3 in Panel (a) of Figure 1 identifies three architectural 
communities. As seen in Panel (b) of Figure 1, when the MDAP’s subsystems are permuted 
by their community membership, the system’s underlying macrostructure appears to abide 
Maier and Rechtin’s (2000) heuristics. Exploiting these architectural communities in (A1) to 
(A3) yields the following mechanism for estimating the cost of connecting subsystem U to 
the existing architecture (Dabkowski et al., 2014): 

For a specified, suitably large number of iterations (e.g., 10,000)6… 

Preprocessing  

1. Initialize the system as the current system, 

2. Use Girvan-Newman (2002) to identify architectural communities, 

3. Randomly assign U to community j, 

                                            
 

 

5 See Dabkowski et al. (2013) for additional details. 
6 When estimating the population mean of a random variable   using Monte Carlo simulation, 
the minimum number of iterations required is a function of (a) the researcher’s desired accuracy for 
the estimate, which varies depending on the context, and (b) the population variance , which is 
normally unknown. Accordingly, the researcher typically runs an initial set of iterations to generate 
unbiased estimates of  and  from which the minimum number of iterations can be calculated (i.e., 
via Driels & Shin, 2004) 
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Intracommunity Growth 

4. Generate a realization for MU,intra given U is assigned to community j (mintra), 

5. Connect U to mintra subsystems inside community j using the PA model, 

6. For each interface established in (5), assign complexity (wiU,intra), 

Intercommunity Growth 

7. Generate a realization for MU,inter given U is assigned to community j (minter), 

8. Connect U to minter communities using the PA model, and 

9. For each interface established in (8), assign complexity (wiU,inter), 

Cost Estimation 

10. Estimate the cost for the augmented system using COSYSMO (PMNS*), 

11. Calculate the additional cost of adding subsystem U (PMNS* − PMNS), and 

12. Store results and return to (3). 

Generalizing Beyond Architectural Communities via Blockmodeling 
While the above algorithm has intuitive appeal, the SV-3 in Figure 1 is hypothetical, 

and this raises the following questions: “Do (A1) through (A3) adequately model the growth 
of real-world SV-3s, and do SV-3s actually harbor architectural communities?” In a recent 
paper, we address these questions using 24 different SV-3s from a wide variety of MDAPs 
(Dabkowski & Valerdi, 2016). First, with respect to (A1) and (A2), formal hypothesis testing 
suggested that using the observed degree distribution generated far too many interfaces 
and blindly applying the PA model was ill-advised. In fact, the PMF for an incoming 
subsystem’s number of interfaces  and the strength of preferential attachment  
interact, which led us to identify and utilize an optimal set of ,  pairs for each 
SV-3. Moving on to (A3), none of the real-world SV-3s we examined were valued; thus, the 
validity of using the observed interface complexity distribution to estimate future interface 
complexity could not be assessed. Finally, as regards architectural communities, less than 
50% of the SV-3s exhibited community structure worth exploiting, suggesting a non-
community version of the algorithm was necessary. Simply put, significant adjustments to 
our earlier algorithm were necessary, and these are documented in Dabkowski and Valerdi 
(2016). 

Notwithstanding these refinements, restricting our attention to architectural 
communities may ignore other, more compelling macrostructures within the architecture. For 
example, consider the hypothetical SV-3 in Panel (a) of Figure 2. 
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 Hypothetical SV-3 With a Hierarchical Structure in Its Original (Panel (a)) 
and Isomorphic (Panel (b)) Representations, Where Subsystems Have Been 

Optimally Partitioned and Permuted 
 

Consisting of 20	subsystems (labeled A through T) and 251 directed 
interfaces, the SV-3 is relatively dense, and, while the Girvan-Newman community detection 
heuristic identifies six architectural communities, the community structure is weak. Based on 
this result, we would invoke our non-community version of the algorithm. That said, the 
Girvan-Newman community detection heuristic was designed for sparse networks (Girvan & 
Newman, 2002), and the weak community structure may be spurious. Moreover, taking this 
approach would ignore the indisputable hierarchical structure of subsystems seen in Panel 
(b) of Figure 2, where subsystems in lower ranking clusters ({R, J, H, N, M, D, S, T, E} and 
{P, K, F, C, L}) not only have a high density of interfaces with subsystems inside their 
clusters but also have a high density of interfaces with subsystems inside higher ranking 
clusters.  

To identify this and other hidden macrostructure, we can apply the network analysis 
technique known as blockmodeling, where a network consisting of 1,⋯ ,  objects (i.e., 
the SV-3 and its subsystems) is partitioned into 1,⋯ ,  nonoverlapping positions (or 
clusters) where the positions generally abide the structure represented in a  image 
matrix such that ≪  Conceived by computational sociologists at Harvard in the mid-
1970s (e.g., White, Boorman, & Breiger, 1976; Boorman & White, 1976), blockmodeling 
methods have been an active area of research for over 40 years, and they have been 
integrated into popular network analysis software such as UCINET (Borgatti, Everett, & 
Freeman, 2002), R’s igraph package (Csárdi & Nepusz, 2006), and Pajek (Mrvar & Batagelj, 
2013).  

Notable among these is Pajek’s inclusion of Doreian, Batagelj, and Ferligoj’s (2005) 
direct approach, which employs a simple object relocation routine that minimizes the number 
of inconsistencies between the permuted, partitioned  adjacency matrix (i.e., the SV-
3) and a corresponding  image matrix. Invoked in Pajek via the commands Network 
→ Create Partition → Blockmodeling, we ran Doreian et al.’s (2005) direct 
approach on the hypothetical SV-3 in Panel (a) of Figure 2, and this yielded the image 
matrix and reduced graph seen in Panels (a) and (b) of Figure 3, respectively. With zero 
inconsistences, the solution’s partition matches Panel (b) of Figure 2, and it is the unique 
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global optimum. As Figure 3 clearly demonstrates, unlike Girvan and Newman’s (2002) 
community detection heuristic, Doreian et al.’s (2005) direct approach recovered the 
hierarchical clustering of subsystems. 

 

 Globally Optimal Image Matrix (Panel (a)) and Reduced Graph (Panel 
(b)) for the Hypothetical SV-3 Seen in Panel (a) of Figure 2 

In fact, blockmodeling can be seen as the natural generalization of community 
detection, as finding an optimal clustering of N objects into  communities is equivalent to 
finding the optimal partition of  objects for a -position identity image matrix. For instance, 
consider the hypothetical SV-3 in Panels (a) and (b) of Figure 4. 

 

 Hypothetical SV-3 With Community Structure in Its Original (Panel (a)) 
and Isomorphic (Panel (b)) Representations, Where Subsystems Have Been 

Optimally Partitioned and Permuted 

With three isolated cliques and a sparse structure, we expect the Girvan-Newman 
community detection heuristic to identify the architectural communities, and it does. 
Similarly, Doreian et al.’s (2005) direct approach recovers the communities, yielding the 
globally optimal image matrix and reduced graph seen in Panels (a) and (b) of Figure 5, 
respectively. 
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 Globally Optimal Image Matrix (Panel (a)) and Reduced Graph (Panel 
(b)) for the Hypothetical SV-3 Seen in Panel (a) of Figure 4 

Given these observations, the implication is that when it comes to identifying and 
exploiting the underlying macrostructure of a network, blockmodeling subsumes—and 
therefore trumps—community detection. Interestingly enough, however, this relationship has 
only recently been acknowledged by network scientists, as Newman and Leicht note in their 
2007 paper extending earlier and more limited community detection methods: 

Here we describe a general technique for detecting structural features in 
large-scale network data that works by dividing the nodes of a network into 
classes such that the members of each class have similar patterns of 
connection to other nodes. … the idea is similar in philosophy to the block 
models proposed by White and others. (pp. 9564–9565)  

Nonetheless, Doreian et al.’s (2005) direct approach is not a panacea, as it (1) 
generates locally optimal solutions and, thus, provides no guarantee that better fitting image 
matrices and partitions do not exist and (2) was designed to handle single one- or two-mode 
networks,7 and, therefore, cannot readily accommodate multiple relations simultaneously. 
Unfortunately, both shortcomings are problematic. First, without a known optimality gap, we 
cannot definitively assess the quality of Pajek’s solutions, and exact methods that generate 
global optima are necessary. Second, during our investigation of real-world SV-3s 
(Dabkowski & Valerdi, 2016), we discovered that 3 of the 24 SV-3s were actually mixed-
mode networks. For example, consider the SV-3 in Figure 6, which consists of 10 internal 
subsystems and 7 external subsystems. 

 

                                            
 

 

7 One- and two-mode networks describe the connections that exist between a single set of objects 
and two distinct sets of objects, respectively. In the context of this paper, if an SV-3 is one-mode, the 
subsystems in its rows and columns are the same. If it is two-mode, they are different. 
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 Multiple Relation Mixed-Mode SV-3 With 10 Internal Subsystems 
(Labeled I1 Through I10) and 7 External Subsystems (Labeled E1 Through 

E7) 

In this SV-3, the 1-mode portion (located to the left of the vertical red line) shows the 
interfaces that exist between internal subsystems, where a 1 in cell ( , ) implies internal 
subsystem  interfaces with internal subsystem . Similarly, the 2-mode portion (located to 
the right of the vertical red line) shows the interfaces that exist between internal and external 
subsystems, where a 1 in cell ( , ) implies internal subsystem  interfaces with external 
subsystem m. Clearly, each portion of the SV-3 contains valuable information for partitioning 
the internal subsystems, and we would like to include both in our analysis.  

With this in mind, the first author embarked on a complementary line of research to 
develop an exact method for the blockmodeling of mixed-mode networks. Drawing on the 
integer programming approach of Brusco and Steinley (2009), this effort is chronicled in the 
“Exact Exploratory Blockmodeling of Multiple Relation, Mixed-Mode Networks Using Integer 
Programming” (Dabkowski, Fan, & Breiger, 2016), and it provides analysts with a 
reasonably efficient way to find globally optimal blockmodels for one-, two-, and mixed-mode 
SV-3s. Applying this method to the SV-3 in Figure 6 and capping the number of internal and 
external positons at three yields the results in Figure 7. 
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 Globally Optimal Image Matrices for the Mixed-Mode SV-3 Seen in 
Figure 6, Where the Number of Inconsistencies Corresponding to the 

Globally Optimal |  Image Matrix Is Given at the Bottom Left 
of the Matrix 

As Figure 7 shows, with the exception of the 3 3|3 3  image matrix, the 
minimum number of inconsistencies decreases monotonically as the number of internal or 
external positions increases, eventually reaching a minimum of 20 for the two globally 
optimal 3 3|3 2  image matrices. Moreover, for each of the two globally optimal 3
3|3 2  image matrices in Figure 7, the clustering of the internal and external subsystems is 
the same, and the corresponding permuted, partitioned network is given in Figure 8. 

 

 Mixed-Mode SV-3, Where the Rows and Columns Have Been Permuted 
According to the Globally Optimal |  Image Matrices and 

Partition in Figure 7 

Interestingly, the clustering of internal subsystems appears to be entirely driven by 
connections outside the clusters. As with the hypothetical SV-3 in Figure 2, traditional 
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community detection algorithms cannot exploit this, and, as expected, Girvan and 
Newman’s (2002) heuristic returned an insignificant, much different result using the one-
mode portion of Figure 6. Nonetheless, as the number of positions increases the exact 
approach quickly becomes impractical, and mixed-mode blockmodeling heuristics are 
necessary. Accordingly, the first author built one in Pajek leveraging Doreian et al.’s (2005) 
direct approach, and its performance was outstanding, as it found the globally optimal 
solutions in a reasonable amount of time. 

Integrating Results 
Equipped with exact and heuristic methods for the blockmodeling of SV-3s, we can 

replace Step (2) in our earlier algorithm (“Use Girvan-Newman (2002) to identify 
architectural communities”) with “Use Dabkowski-Fan-Breiger (2015; 2016) to identify an 
optimal -position image matrix and partition of subsystems.” If the optimal image matrix 
and partition suggest a compelling architectural structure, future evolutionary growth should 
abide it, and, similar to our earlier algorithm, we can randomly assign an incoming 
subsystem (X) to position . However, unlike our earlier algorithm, the assignment of 
subsystem X’s  interfaces to positions is no longer modeled via separate PMFs for each 
position (or community). It is the sum of  independent and identically distributed 
categorical random variables, where the probability interface  for 1,⋯ ,  links to a 
subsystem in position  for 1,⋯ ,  is given by:  

number of interfaces in block , 	of the partitioned and permuted SV-3	

number of interfaces in row 	of the partitioned and permuted SV-3	
8  (1) 

As such, the collective assignment of subsystem X’s  interfaces to positions can be 
modeled as a random (1 ) vector , where  follows a Multinomial	 ,  distribution and  
is the 1  vector of multinomial probabilities defined in (Equation 1).  

Of course,  could generate a realization ( ) where one or more of its elements  
exceeds the number of subsystems in its respective position . In this case, we can apply 
the following numerical recipe to generate a feasible realization for : (1) for all positions 
where ,, aggregate the  	 excess interfaces into an accumulator variable, m', 
and set  as ; (2) remove these positions and their probability mass from ; (3) 
renormalize the multinomial probabilities; and (4) redistribute the ′ excess interfaces 
among the remaining positions, iterating as necessary. 

Integrating these adjustments, as well as refinements from Dabkowski and Valerdi 
(2016), into our earlier algorithm yields the modified pseudocode below:  

 

 

 

For a specified, suitably large number of iterations … 

                                            
 

 

8 As Kolaczyk and Csárdi (2014) note, in a nonstochastic blockmodel, “the edge probabilities  
[where  and  represent positions], and the maximum likelihood estimates—which are natural here—
are simply the corresponding empirical frequencies” (p. 97). 
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Preprocessing  

1. Initialize the system as the current system, 

2. Build an optimal set of ,  pairs, 

3. Use Dabkowski-Fan-Breiger (2015; 2016) to identify an optimal -position 
image matrix and partition of subsystems, 

Growth 

4. Randomly select a member from the optimal set of , 	pairs,  

5. Generate a realization for the incoming subsystem’s (X’s) number of 
interfaces using ; if the optimal image matrix and partition suggest 
a compelling architectural structure, use Connection Option A; otherwise, use 
Connection Option B,  

Connection Option A 

6a. Randomly assign X to position , 

6b.  Model the collective assignment of subsystem X’s  interfaces to positions 
as a random 1  vector , where  follows a Multinomial	 ,  
distribution and  is the 1   vector of multinomial probabilities given by 
(Equation 1); generate a feasible realization for , 

6c. For 1,⋯ , , attach X to  subsystems inside position  using attachment 
probabilities ∑ , 

6d. For each interface established in (6c), assign complexity (wiX), 

Connection Option B 

6a.  Attach X to  subsystems using attachment probabilities ∑ , 

6b. For each interface established in (6a), assign complexity (wiX), 

Cost Estimation 

7. Estimate the cost for the augmented system using COSYSMO (PMNS*), 

8. Calculate the additional cost of adding subsystem X (PMNS* − PMNS), and 

9. Store results and return to (4). 

As seen above, unlike our previous algorithm, Connection Option B provides an 
alternative, nonposition-based growth mechanism. Additionally, Connection Option A does 
not condition interface complexities based on the connected subsystems’ positions of 
assignment (i.e., wiX,l), as any patterns in intra- or interposition complexity could be due to 
chance. Specifically, the blockmodeling methods developed in Dabkowski et al. (2015; 
2016) are for unvalued networks. Therefore, the statistical significance of apparent structure 
in the interface complexities must be assessed prior to leveraging them in the algorithm. 

Using our improved algorithm, we can estimate the cost of unforeseen, internal 
architectural growth in mixed-mode SV-3s (as well as one- and two-mode SV-3s). For 
example, assume the system represented in Figure 6 has the following values for 
COSYSMO’s parameters: 	 	0.25; 	 	1.06; ∏ 	 	0.89; and 75 easy, 50 nominal, 
and 10 difficult requirements. Additionally, if we assume its interface complexities are 
portrayed in Figure 9, the system has 12 interfaces between internal subsystems (6 easy, 5 
nominal, and 1 difficult) and 13 interfaces between external subsystems (6 easy, 6 nominal, 
and 1 difficult). Using COSYSMO’s CER and weights from Valerdi (2008), we estimate that 
59.24 PMNS of systems engineering effort are required to successfully conceptualize, 
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develop, and test the MDAP. At this point, we have initialized the system as the current 
system, and Step (1) of the algorithm is complete. 

  

 Hypothetical Interface Complexities for the System Represented in 
Figure 6, Where Cell ,  Is Shaded if Subsystem  Interfaces With 

Subsystem , and Darker Shades Indicate Greater Interface Complexity (i.e., 
Light Gray ⇒ Easy, Medium Gray ⇒ Nominal, Black ⇒ Difficult) 

Our next task is to build an optimal set of , 	 pairs. Using our approach 
in Dabkowski and Valerdi (2016), there are five feasible PMFs for m. Among these, the 
single optimum is 	 	2 	 	0.5 and 	 	1 	 	0.5, and the corresponding optimal 
set of  is {0, …, 0.4}.  

With Step (2) complete, our last preprocessing step is to identify an optimal -
position image matrix and partition of subsystems, and the global optimal solution is given in 
Figure 9. This result, along with the optimal set of , 	 pairs, is then ingested into 
a Monte Carlo simulation, which performs Steps (4) through (9). Running the simulation for 
10,000 iterations yields the results seen in Figure 10.  

 

 Empirical Cumulative Distribution Function and Percentiles for the 
Estimated Cost of Connecting an Additional Subsystem to the Internal 

Subsystems of Figure 9 

As seen in Figure 10, the expected cost to connect an additional subsystem (X) to 
the internal subsystems of Figure 9 is 1.19 PMNS, and the associated 95% confidence 
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interval is (1.177, 1.206) PMNS. Moreover, although the maximum cost to attach subsystem 
X should not exceed 4.08 PMNS, there is only a 5% chance it will be more than 2.95 PMNS. 
Finally, if we condition our estimate on X’s position of assignment, the expected cost in 
person months (nominal schedule) is 1.00, 1.05, and 1.53 for positions 1, 2, and 3, 
respectively. In the absence of additional information, these estimates represent our “best 
guess” for the cost to attach a new subsystem to the existing architecture, and they help to 
quantify the likelihood of excessive cost growth. 

Limitations and Future Work 
Although our use of blockmodeling to identify and exploit an SV-3’s globally optimal 

macrostructure provides a useful generalization, the algorithm and its supporting methods 
have several limitations, and these represent opportunities for future research. Starting with 
insufficient data, SV-3s are not currently weighted by interface complexity, and the validity of 
using the observed interface complexity distribution to estimate future interface complexity 
could not be assessed. Accordingly, sponsored research is required to generate the 
necessary data for statistical investigation. 

Moving on to the algorithm’s internal steps, Connection Option A assigns incoming 
subsystems to positions using a uniform distribution. If we assume unforeseen architectural 
growth is equally likely in all positions, this is appropriate. That said, other possibilities are 
worth exploring. For example, the probability subsystem X is assigned to position  could be 
modeled as either a function of position ’s size or a function of subsystem X’s number of 
interfaces. Additionally, although the algorithm is currently limited to estimating internal 
architectural growth, modifying it to address external architectural growth is natural, 
especially when we consider that its optimal macrostructure was obtained from the 
interfaces between its internal and external subsystems.  

Finally, in a more general sense, mixed-mode blockmodeling remains a fruitful area 
for future research, as it suffers from scalability challenges, especially as the number of 
internal and external positions grow. Possible solutions to address this include improved 
integer programming formulations and the use of high throughput/high performance 
computing.  

Conclusion 
MDAPs are notoriously prone to cost overruns and schedule delays, and 

requirements volatility is at least partially to blame. In particular, when the desired 
capabilities of a system change during its life cycle, substantial reengineering and cost 
growth can result, especially when a new subsystem must be incorporated into an existing 
architecture. Of course, the likelihood and specifics of such additions are rarely known 
ahead of time, and predicting integration costs is challenging. 

In this paper, we presented a novel algorithm to address this issue. Specifically, 
leveraging an integer programming implementation of the social network analysis technique 
blockmodeling, we optimally partitioned the subsystems represented in the SV-3 into 
architectural positions. Using this abstracted structure, we subsequently grew the 
architecture according to its statistical properties, and we estimated this unforeseen cost of 
evolutionary architectural growth via COSYSMO. Although our approach has limitations, the 
algorithm provides a useful prototype for pre–MS A cost risk analysis, and it continues to 
reinforce the potential of viewing DoDAF’s models as computational objects.  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 44 - 

References 
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 

286(5439), 509–512. doi:10.1126/science.286.5439.509 

Blanchard, B., & Fabrycky, W. (1998). Systems engineering and analysis (3rd ed.). Upper 
Saddle River, NJ: Prentice Hall. 

Bolten, J. G., Leonard, R. S., Arena, M. V., Younossi, O., & Sollinger, J. M. (2008). Sources 
of weapon system cost growth: Analysis of 35 major defense acquisition programs. 
Santa Monica, CA: RAND. Retrieved from 
http://www.rand.org/content/dam/rand/pubs/monographs/2008/RAND_MG670.pdf   

Boorman, S. A., & White, H. C. (1976). Social structure from multiple networks. II. Role 
structures. American Journal of Sociology, 81(6), 1384–1446. Retrieved from 
http://www.jstor.org/stable/2777009 

Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: Software for 
social network analysis (Ver. 6.488) [Software]. Harvard, MA: Analytic Technologies. 
Retrieved from http://www.analytictech.com/ucinet  

Brusco, M., & Steinley, D. (2009). Integer programs for one- and two-mode blockmodeling 
based on prespecified image matrices for structural and regular equivalence. Journal of 
Mathematical Psychology, 53(6), 577–585. doi:10.1016/j.jmp.2009.08.003 

CJCS. (2012, January 19). Manual for the operation of the Joint Capabilities Integration and 
Development System. Retrieved from 
https://dap.dau.mil/policy/Documents/2012/JCIDS%20Manual%2019%20Jan%202012.
pdf  

Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research 
(Ver. 1.0.0) [Software]. Retrieved from http://igraph.org  

Cole, R. (2012, October). Proxy estimation costing for systems (PECS). Paper presented at 
the 27th International Forum on COCOMO and Systems/Software Cost Modeling, 
Software Engineering Institute, Pittsburgh, PA. Retrieved from 
http://csse.usc.edu/csse/event/2012/COCOMO/presentations/CIIforum_2012_Reggie_
Cole.pptx  

Dabkowski, M., Fan, N., & Breiger, R. (2015). Exploratory blockmodeling for one-mode, 
unsigned, deterministic networks using integer programming. Manuscript submitted for 
publication. 

Dabkowski, M., Fan, N., & Breiger, R. (2016). Exact exploratory blockmodeling of multiple 
relation, mixed-mode networks using integer programming. Manuscript in preparation. 

Dabkowski, M., Reidy, B., Estrada, J., & Valerdi, R. (2013). Network science enabled cost 
estimation in support of model-based systems engineering. Procedia Computer 
Science, 16, 89–97. doi:10.1016/j.procs.2013.01.010 

Dabkowski, M., & Valerdi, R. (2014, April). The budding SV3: Estimating the cost of 
architectural growth early in the life cycle. In D. A. Nussbaum (Chair of Panel 22—
Enhancing Cost Estimating Techniques), Proceedings of the 11th Annual Acquisition 
Research Symposium. Retrieved from 
http://www.acquisitionresearch.net/files/FY2014/NPS-AM-14-C11P22R02-076.pdf  

Dabkowski, M., & Valerdi, R. (2016). Modeling evolutionary architectural growth in major 
defense acquisition programs. Manuscript submitted for publication. 

Dabkowski, M., Valerdi, R., & Farr, J. (2014). Exploiting architectural communities in early 
life cycle cost estimation. Procedia Computer Science, 28, 95–102. 
doi:10.1016/j.procs.2014.03.013 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 45 - 

Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling. New York, NY: 
Cambridge University Press. 

Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Non-equilibrium networks. In Evolution of 
networks: From biological nets to the Internet and WWW. New York, NY: Oxford 
University Press. doi:10.1093/acprof:oso/9780198515906.003.0006  

Driels, M. R., & Shin, Y. S. (2004, April). Determining the number of iterations for Monte 
Carlo simulations of weapon effectiveness (Technical Report No. NPS-MAE-04-005). 
Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a423541.pdf  

Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological 
networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. 
doi:10.1073/pnas.122653799 

GAO. (2011). DoD cost overruns: Trends in Nunn-McCurdy breaches and tools to manage 
weapon systems acquisition costs. Retrieved from 
http://www.gao.gov/assets/130/125861.pdf  

GAO. (2015). Defense acquisitions: Assessments of selected weapon programs. Retrieved 
from http://www.gao.gov/assets/670/668986.pdf  

Honour, E. C. (2004). Understanding the value of systems engineering. Retrieved from 
http://www.seintelligence.fr/content/images/2015/12/ValueSE-INCOSE04.pdf  

Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R. New York, 
NY: Springer. 

Maier, M., & Rechtin, E. (2000). The art of systems architecting (2nd ed.). New York, NY: 
CRC Press. 

Mrvar, A., & Batagelj, V. (2013). Pajek64: Program for analysis and visualization of very 
large networks (Ver. 3.12) [Software]. Retrieved from http://mrvar.fdv.uni-lj.si/pajek  

Newman, M. E., & Leicht, E. A. (2007). Mixture models and exploratory analysis in networks. 
Proceedings of the National Academy of Sciences, 104(23), 9564–9569. 
doi:10.1073/pnas.0610537104 

Peña, M., & Valerdi, R. (2015). Characterizing the impact of requirements volatility on 
systems engineering effort. Systems Engineering, 18(1), 59–70. doi:10.1111/sys.21288 

Under Secretary of Defense for Acquisition, Technology, and Logistics (USD[AT&L]). (2013, 
November 25). Operation of the defense acquisition system (DoD Instruction 5000.02). 
Washington, DC: Author.  

Valerdi, R. (2008). The Constructive Systems Engineering Cost Model (COSYSMO): 
Quantifying the costs of systems engineering effort in complex systems. Saarbrücken, 
Germany: VDM Verlag. 

Valerdi, R., Dabkowski, M., & Dixit, I. (2015). Reliability improvement of major defense 
acquisition program cost estimates—Mapping DoDAF to COSYSMO. Systems 
Engineering, 18(5), 530–547. doi:10.1002/sys.21327 

Wang, G., Valerdi, R., Roedler, G., Ankrum, A., & Gaffney, J. (2012). Harmonising software 
engineering and systems engineering cost estimation. International Journal of 
Computer Integrated Manufacturing, 25(4–5), 432–443. 
doi:10.1080/0951192X.2010.542182  

Weapon Systems Acquisition Reform Act of 2009 (WASRA), Pub. L. No. 111-23. 123 Stat. 
1704 (2009). 

White, H. C., Boorman, S. A., & Breiger, R. L. (1976). Social structure from multiple 
networks. I. Blockmodels of roles and positions. American Journal of Sociology, 81(4), 
730–780. Retrieved from http://www.jstor.org/stable/2777596  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 46 - 

Acknowledgments 
This material is based upon work supported by the Naval Postgraduate School 

Acquisition Research Program under Grant No. N00244-13-1-0032, and the Office of the 
Secretary of Defense. 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net 

 


