
Acquisition Research Program 
Graduate School of Business & Public Policy 
Naval Postgraduate School 

SYM-AM-17-082 

 

Proceedings 
of the 

Fourteenth Annual 
Acquisition Research 

Symposium 

Thursday Sessions 
Volume II  

Acquisition Research: 
Creating Synergy for Informed Change 

April 26–27, 2017 

Published March 31, 2017 

Approved for public release; distribution is unlimited. 

Prepared for the Naval Postgraduate School, Monterey, CA 93943. 



Acquisition Research Program: 
Creating Synergy for Informed Change - 273 - 

Decision-Based Metrics for Test and Evaluation 
Experiments 

Dashi Singham—is a Research Assistant Professor of Operations Research at the Naval 
Postgraduate School, where she researches, teaches, and advises student theses. Dr. Singham’s 
primary areas of focus include simulation modeling, simulation analysis, and applied statistics, with 
most of her work on developing new methods and metrics for analyzing simulation output. Her areas 
of application include energy and intelligence systems. She received her PhD in Industrial 
Engineering and Operations Research from the University of California Berkeley in 2010. 
[dsingham@nps.edu] 

Abstract 
We develop a new decision-based metric for determining sample sizes in Test and 
Evaluation experiments. Traditional confidence intervals for the mean can be used, and we 
present sequential confidence interval procedures as a way to derive efficient intervals. We 
discuss decision rules for analyzing the observed output and how to choose confidence 
interval methods for calibrating these decision rules. The metric presented can help 
determine if a fast decision on the quality of the system can be made or if many more tests 
are needed to ensure an accurate estimate of performance relative to a desired standard. 

Introduction 
Test and Evaluation (T&E) experiments are often conducted with the intent of 

answering a question about the feasibility of a new system. This system may have 
properties that are unknown, so rigorous testing is required to ensure the safety and 
performance of the system before it is adopted. We will use the term “system” to include any 
object under scrutiny via testing, be it a weapon, computer program, or piece of equipment. 
This work mainly applies to Developmental T&E where different performance metrics are 
analyzed individually, though it could also apply to Operational T&E where many varying 
factors are jointly tested. 

In this paper, we will assume that there is a quantifiable non-binary metric for 
evaluating system performance so that averages and confidence intervals can be easily 
constructed. The intent of this work is to show how to better use quantifiable metrics to 
answer research questions or make a decision about the quality of the system in 
Developmental T&E. We will outline basic metrics for quantifying uncertainty in system 
output and show how these metrics can be mapped to a decision rule. 

The main goal of data analysis is often to estimate the performance of a system 
using experimental data, sometimes using the sample mean or a confidence interval for the 
mean as the metric for evaluating the quality of the system. While these metrics are useful, 
they would be even more useful if they could be mapped directly to a decision. For example, 

 If the system mean performance is greater than some value D, then we 
should adopt the system. 

 If the system mean performance is greater than some value D with probability 
x, then we should adopt the system. 

 f a 95% confidence interval for mean performance has a lower bound greater 
than D, then we should adopt the system. 

In the examples above, D is the decision threshold that is used to determine whether 
or not to implement the system. It is important to decide beforehand the metrics for success 
and determine what D should be to ensure that the system is selected only if it will satisfy its 
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intended purpose. Waiting to choose D until after the system has been tested can lead to 
bias based on initial test results, and these initial results can be misleading if the system has 
a high variance. 

In this paper, we will describe how confidence interval procedures can be used to 
design statistical test rules that link the data analysis to the decision threshold. By making a 
simple change to standard confidence interval procedures, new rules can be developed that 
incorporate the decision threshold D. These new rules will enable a better determination of 
whether the system should be implemented and can potentially save testing costs.  

Confidence Intervals 
A simple way to evaluate the effectiveness of the system is by taking the average of 

the test results. Let ̅ݔ௡ be the sample mean of n test replications. This average can be 
compared to the status quo, to the averages of competing systems, or to a decision 
threshold. However, looking at the average alone does not account for variability and 
uncertainty in system behavior. Assuming that the system will always perform near the 
mean when it is implemented could significantly underestimate risk.  

Confidence intervals provide a method for assessing the uncertainty in mean results. 
Let ݏ௡ be the estimate of the standard deviation of the data based on n samples. Define 
  ௡ଶas the variance estimate based on n samples, calculated asݏ

௡ଶݏ ൌ
∑ ሺ௫೔ି௫̅೙ሻమ
೙
೔సభ

௡ିଵ
.		      

The value of ݏ௡ଶ estimates the real variance of the system ߪଶ, which is usually 
unknown. Let ݐఈ,௡ିଵ be the t-value associated with the t-distribution with n-1 degrees of 
freedom and tail probability α/2. Furthermore, let η be the confidence coefficient desired in 
the resulting confidence interval. This coefficient is usually 90%, 95%, or 99% and α is 1-η. 
The Type I error associated with the test is often denoted using α. If the data is normally 
distributed and the variance is estimated, then the confidence interval for mean system 
performance using n samples takes the following form: 

ቂ̅ݔ௡ േ ఈ,௡ିଵݐ
௦೙
√௡
ቃ      

This confidence interval can be compared to the desired system performance D, or 
to confidence intervals for other systems, as will be discussed later. The center point of the 
confidence interval giving the estimate of mean performance can be compared to D, as well 
as the width of the confidence interval. Formally, we can define the half-width of the 
confidence interval as  

half-width ൌ ቂݐఈ,௡ିଵ
௦೙
√௡
ቃ      

where narrower half-widths imply less uncertainty in the mean performance of the system. If 
the assumption of normality in the data is met, repeated collections of confidence intervals 
from new experiments will result in (1-α)x100% of the intervals including the true mean of 
the data μ, and ideally this value will be around 90%, 95%, or 99%, depending on the choice 
of η. 

Confidence intervals help determine the quality of a mean estimate. A narrow 
confidence interval (small half-width) implies less variability around the estimated system 
mean and is desirable, while a wide confidence interval makes it more difficult to predict the 
behavior of the system. When fixing the sample size used for testing ahead of time, there is 
no control over the half-width.  
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Let ߜ be the desired precision in the resulting confidence interval, which is the 
maximum half-width that is acceptable to the T&E analyst. Smaller values of ߜ are desirable 
because narrower confidence intervals provide more precise information on mean 
performance of the system. Suppose we have an estimate of the standard deviation s, and 
have some desired upper bound on the precision in our confidence interval ߜ. Then we can 
choose the smallest sample size such that 

݊ ൒ ቀ
௧ഀ,೙షభ∙௦

ߜ ቁ
ଶ
,       (1) 

and this sample size will ideally (though not necessarily) yield a confidence interval for μ that 
has a half-width smaller than ߜ. This method can be used to estimate a sample size ahead 
of time that would be needed to produce a small confidence interval. Oftentimes, budgetary 
constraints are the driving force behind the choice of n. A quick comparison between the 
budgeted number of samples with the ideal choice of n using Equation 1 can help determine 
ahead of time whether the experiment will yield enough precision to get an adequate idea of 
the true performance.  

We note that many methods exist for choosing the sample size for T&E experiments, 
and guidelines incorporating sampling for different settings are presented in the Test and 
Evaluation Management Guide (2005), the 2010 Integrated Test and Evaluation Handbook 
(United States Marine Corps [USMC], 2010), and the Operational Test and Evaluation 
Manual (USMC, 2013). This work aims to deliver specific sequential sampling techniques 
that can be used in conjunction with these guidelines to better inform the sample size 
decision so that appropriate budgetary effects can be considered.  

Sequential Sampling 
Sequential sampling rules can be an improvement over fixed sample-size testing 

because they allow for adjustments to the sample size conditional on system performance 
as it is observed. Thus, after each test is conducted, the cumulative results are aggregated 
and an estimated confidence interval is computed. The decision to continue testing depends 
on the confidence interval produced from past samples. Sequential testing avoids the issue 
associated with Equation 1 where knowledge of the sample variance is required. 

For example, if after 30 test runs of a system the confidence interval for the mean is 
very narrow, it may be unlikely that more runs will produce any additional information or 
variety in the results. In this case, testing could stop to avoid wasting money on future 
samples. However, if the confidence interval is quite wide, more tests should be conducted 
to better understand the uncertainty in the system. Additional tests will narrow the 
confidence interval to give more precision in the results and will also help better assess the 
risk in the system. Sequential rules check the confidence interval after each sample, and 
determine whether testing should continue. In this section, we provide the mathematical 
notation for understanding sequential confidence interval procedures.  

The benefits of sequential sampling can be immediate when applied to a T&E 
setting. It is cost effective to stop as early as possible and may be wasteful to continue to 
test after prior tests have established the performance of the system. However, there is a 
potential for statistical bias associated with sequential sampling, as will be discussed at the 
end of this section. In this paper, we will not address this statistical bias directly for brevity, 
but we acknowledge that when sequential sampling stops with only a few test results, there 
is a high potential for bias in the results. This bias decreases as the number of samples 
increases. 
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Another benefit of sequential sampling is that the tester may have no idea ahead of 
time how many samples are needed to generate a narrow confidence interval for mean 
performance. If the underlying variance of the system is known, or can be estimated, then a 
formula such as Equation 1 can be used. But for new systems, the variance is usually not 
known and must be estimated as data is collected. Thus, it is difficult to know ahead of time 
how many tests are needed. Sequential sampling removes the need to make this decision 
and allows the sample size to be variable and adjust to the conditions of the data.  

Sequential sampling rules allow for the tester to stop when some specified criterion is 
reached. This criterion is often a statistical property of the data collected up to that point. 
The main example we will use is to stop sampling when a confidence interval with a half-
width smaller than some precision value can be generated from the data. Instead of a fixed 
sample size n, let ݊∗be the number of samples collected as the result of a sequential 
stopping procedure. This value is random, in that it will vary depending on the output values 
of the test. The values of ݊∗ can be represented using 

݊∗ ൌ argmin
௡

ఈ,௡ିଵݐ
௦೙
√௡
൑  (2)     ߜ

where ݊∗ is the smallest value of n (the first time the criterion is observed) where the half-
width of the confidence interval collected with n samples is smaller than the desired 
precision ߜ. This value of ߜ is similar to the one used in Equation 1 and represents the 
allowable uncertainty in the sample mean estimate (the confidence interval). Recall that ݏ௡ is 
calculated as samples are collected, and this will make ݊∗ random and depend on the 
particular values of the samples observed up to that point. Equation 2 is called an absolute 
precision rule, because the desired precision in the confidence interval is fixed ahead of 
time. Another type of rule is relative precision, where the precision can depend on the mean 
of the data. An example of a relative precision rule is:   

݊∗ ൌ argmin
௡

ఈ,௡ିଵݐ
௡ݏ
√݊

൑  ௡ݔ̅ߜ

where the required precision of the confidence interval will be smaller for data that have 
smaller values (when ̅ݔ௡ is small). Relative precision is useful when the tester does not have 
any information on what the mean of the data will be, but wants the error in the mean 
estimate to be within some percentage of the overall performance (for example the half-
width should be within 5% of the estimated mean performance value). Note that for both 
absolute and relative precision rules, the variance must be estimated with each additional 
sample.  

As an example, some specifications for small-arms tests involve absolute precision 
rules while others involve relative precision. The report TOP 3-2-045 outlines the maximum 
permissible error of measurement for small arms tests (United States Army Developmental 
Test Command, 2007). Some metrics require absolute precision in the results (thermograph 
reading measurement error must be within 0.6 degrees Celsius) while others require relative 
precision (the viscometer error should be within 0.5% of the full-scale reading). These error 
values provided are presumed to be two standard deviations over the data, and these 
values can be used as is or modified to be used as the input ߜ in a sequential procedure.  

Decision-Based Performance 
Simulation experiments are often used to help make decisions on whether to 

implement or modify a system. Because computer models allow for systems that have not 
yet been constructed to be tested, we can experiment with lower costs than building a 
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physical model. Test and evaluation plans can include simulation system tests, as well as 
physical tests of real systems.  

A common question is “How should we determine what metrics to use in collecting 
experimental output?” If the system exhibits variable and uncertain behavior, we usually 
seek to estimate some measure of performance, ߤ. Confidence intervals are used to 
measure variability of an estimate. The risk of the confidence interval estimate is measured 
using its confidence coefficient (η), and the precision is measured using the interval half-
width (ߜ). Estimates of the mean are collected using a sampling rule, and a confidence 
interval is constructed to help make a decision.  

However, the experimental parameters used are often independent of system 
performance. We ask for the same risk and precision regardless of the data output and even 
if the output gives mixed results. We would expect a user to want more strict requirements 
on the precision when the system performance is close to the boundary between deciding to 
implement or not. Or, a risk-averse individual may want more confidence in a result 
suggesting that the system be implemented, and may be quicker to decline to implement a 
system that is unlikely to be better than the status quo.  

For example, it may be critical that a system has performance greater than some 
threshold D (recall the examples from the Introduction). If the first set of experiments shows 
conclusively that ̅ݔ௡> D so that it is highly likely that μ>D, then it is not necessary to obtain a 
narrower confidence interval. However, if ̅ݔ௡ is close to D, the original value of ߜ might be 
too wide to differentiate if μ is actually better than D. In this case, a smaller value of ߜ should 
be used to drive up the number of samples needed. The type of output confidence interval 
should depend on the potential effect on the final decision to be made. More precise 
intervals with higher confidence coefficients should be required when the results of system 
experiments are close to the boundary between implementation or not. Less strict 
confidence intervals are needed if the system is performing exceptionally well or poorly, in 
which case the implementation decision is clear.  

While we do not know what the true performance of the system is (hence requiring a 
T&E study), we do know what the decision would be if the true performance were known. 
We can choose confidence interval parameters based on the type of risk and precision we 
wish to have for different levels of performance. The confidence coefficient and precision are 
usually chosen before starting a simulation experiment and are static in that they do not 
change based on the resulting observations collected. We propose changing the precision 
parameter depending on the values of the observations collected as the procedure is 
running. This means we could obtain high-precision results for systems that are close to the 
decision point D, while stopping earlier with less precise results if it becomes clear early in 
the experiment that the system should not be implemented.  

As a way of measuring the effectiveness of sequential confidence interval 
procedures, confidence interval coverage is often used, where coverage is the proportion of 
intervals generated by the procedure that cover the true mean ߤ. Nominal coverage is 
important for establishing validity of a procedure. However, here we consider the possibility 
that while a confidence interval may not cover the true system performance mean ߤ, it still 
may cover values that would lead to the same decision. There is usually some asymmetry in 
the type of error the tester will accept. For example, overestimating cost may be better than 
underestimating cost. But, if the procedure overestimates cost so much that an otherwise 
profitable system is no longer implemented, then the procedure has failed in two ways: in 
estimating the true cost and in failing to lead to the correct decision.  
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Let ߤ be the unknown true mean performance of the system. The threshold point D 
determines a binary decision for whether or not to implement the system. Suppose higher 
values correspond to better performance. If ߤ > D, then we might choose to implement the 
system, and if ߤ > D, we might decline to implement the system. The confidence interval can 
help determine the decision by comparing the values it covers to D. For example, if an 
interval lies completely above D, the decision would be to implement the system, while if the 
interval contained D and values below it, then the decision may be to delay or decline 
implementing the system.  

In addition to an interval covering ߤ, we want to estimate the probability that the 
procedure results in an interval that leads to a correct decision being made. Consider the 
following four possibilities for an interval in Figure 1. The interval can either cover (include) ߤ 
or not, and it can either lead to the correct decision or not depending on its location relative 
to D.  

 

Figure 1. Four Possible Confidence Interval Situations 

Figure 2 illustrates the four situations presented in Figure 1. We assume that the 
mean performance of the system, ߤ, is greater than the decision threshold D. Thus the 
“correct” result of the experiment is that the system should be implemented. The top-left plot 
shows a confidence interval using parentheses that covers the true mean ߤ, and also lies on 
the right side of the decision threshold, thus making the correct decision. The top-right figure 
shows a different confidence interval that also covers the true mean ߤ. However, it fails to 
correctly predict that performance is greater than the decision threshold, because the 
confidence interval includes values on the left and right of D. The bottom-left confidence 
interval fails to cover the true mean ߤ. However, it is so far to the right that it still correctly 
estimates performance as greater than D. The bottom-right confidence interval not only fails 
to include μ, but it lies on the wrong side of D, so it will incorrectly predict that system 
performance is worse than D. 

 

Figure 2. Visual Representation of Confidence Interval Situations 

The goal of most confidence interval procedures is to provide adequate coverage of 
 with probability 1-α. However, in ߤ so that the procedure produces an interval that includes ߤ
the decision context, the correctness of the decision is potentially even more important. Both 
coverage and correctness are likely correlated, but correctness usually has more of an 
immediate impact than the effects of confidence interval coverage, which are only realized in 
the long term.  
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Implementation 
The main result of this analysis is that we should choose ߜ to be small enough to 

distinguish ߤ from D in a sequential procedure. A confidence interval that is larger than |	ߤ - 
D| may include ߤ, but may not be able to distinguish system performance from ߜ, as seen in 
the top-right plot of Figure 2. The catch is that we do not know ߤ at the start of the 
experiment. However, as samples are collected, ̅ݔ௡can be used to estimate ߤ and will be 
updated with each sample. This value of ̅ݔ௡ will be the center of each confidence interval. 
Thus, the sequential stopping rule can be changed to:  

݊∗ ൌ argmin
௡

ఈ,௡ିଵݐ
௡ݏ
√݊

൑ ௡ݔ̅| െ  |ܦ

so that the stopping criterion is such that the experiment will not end until an interval that is 
small enough to distinguish ̅ݔ௡	from the decision threshold D can be formed.  

Making this adjustment would increase the efficiency in standard sequential stopping 
rules (the absolute and relative precision rules defined above) in a few ways. Sequential 
stopping rules can be “efficient” because they allow the user to stop as early as possible 
without wasting effort once a narrow confidence interval has been achieved. However, 
stopping depends on the choice of ߜ, which could be arbitrary. What we propose is choosing 
௡ݔ̅|=ߜ െ  in an absolute precision rule so that the threshold for the half-width updates and |ܦ
adjusts based on how far away ̅ݔ௡ is relative to D. This way it will be impossible to end with 
a confidence interval that looks like the top-right plot of Figure 2, because the half-width of 
the confidence interval will always be smaller than the distance between ̅ݔ௡ and D, so it will 
never include D. 

If it turns out the sample mean is close to D, then |̅ݔ௡-D| will be small. This will force 
the number of samples to increase in order to decrease the confidence interval half-width 
enough to distinguish whether the system performance is better or worse than D. If the 
sample mean is far away from D, then |̅ݔ௡-D| will be large so it will be easy to meet the 
stopping criterion after a few samples. Effort will not be wasted when it is clear that ߤ is on 
one side or the other of D. 

The end result is that with this simple change, we can better allocate effort to test 
systems with a clear idea of the decision threshold. Our decision-making criterion informs 
the sequential test, and this means we only need to exert the minimum test effort to make a 
decision. The choice of D is very important and should not be made lightly. If ̅ݔ௡is close to D, 
even if the confidence interval can distinguish system performance, there may still be high 
levels of risk that require more tests before making a decision about the system.  

Of course, standard caveats associated with confidence interval coverage still apply. 
If too few samples are taken in a sequential procedure, confidence interval coverage can be 
poor, so the actual confidence could be much lower than the nominal 90% or 95% expected. 
This is a problem that can be addressed (e.g., in increasing the sample size or changing the 
expectation in confidence). Chow and Robbins (1965) is the classic reference showing that 
this bias in coverage decreases to zero as the sample size increases to infinity. However, 
large sample sizes are often not available in a T&E setting. The other option is to adjust 
expectations. For example, the tester can run the procedure trying for a 95% confidence 
interval, while acknowledging that in reality only a 90% interval will be achieved. For more 
details on calculating and preventing this bias in confidence interval procedures, see 
Singham and Schruben (2012) and Singham (2014).  

Confidence intervals and sampling rules play a major role in determining whether 
systems meet specified performance thresholds using T&E experiments. For example, in 
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evaluating the performance of body armor in terms of resistance to penetration and 
deformation, confidence intervals are calculated, and the lower and upper confidence limits 
are compared to the requirements (Office of the Secretary of Defense, 2010). Specific 
methods, such as the Clopper-Pearson method, are suggested as a way to calculate 
confidence interval for probabilities when the output of the experiment is a binary measure 
of success/failure. We note that other sequential rules may exist for evaluating binary 
outputs or comparing two hypotheses (Wald, 1973).  

While sequential testing may be useful in establishing sampling rules that have the 
desired precision, adding the decision component D would be an easy way of ensuring that 
the output confidence interval is not only precise but also useful for making the final 
decision.  

Conclusion 
Confidence intervals are a useful tool for evaluating T&E data. Sequential confidence 

interval procedures are a type of sequential testing that determines the sample size by 
computing a confidence interval after each sample is collected. These procedures 
potentially allow for a more efficient way of choosing the sample size than fixing it ahead of 
time. This paper proposes a new type of sequential confidence procedure using a decision 
threshold that determines whether or not a new system should be implemented based on 
observed samples. This new metric can potentially be used to either save testing costs or 
encourage more sampling when system performance is close to the decision threshold. 
Future work will test the statistical properties of this new metric and simulate the application 
of decision-based sequential testing using data from past experiments. 
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