

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-06-070

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

qÜáêÇ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

DEVELOPING PERFORMANCE BASED REQUIREMENTS FOR OPEN
ARCHITECTURE DESIGN

Published: 30 April 2006

by

Brad Naegle

3rd Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Acquisition Research:
Creating Synergy for Informed Change

May 17-18, 2006

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - i -
=

=

Proceedings of the Annual Acquisition Research Program

The following article is taken as an excerpt from the proceedings of the annual

Acquisition Research Program. This annual event showcases the research projects

funded through the Acquisition Research Program at the Graduate School of Business

and Public Policy at the Naval Postgraduate School. Featuring keynote speakers,

plenary panels, multiple panel sessions, a student research poster show and social

events, the Annual Acquisition Research Symposium offers a candid environment

where high-ranking Department of Defense (DoD) officials, industry officials,

accomplished faculty and military students are encouraged to collaborate on finding

applicable solutions to the challenges facing acquisition policies and processes within

the DoD today. By jointly and publicly questioning the norms of industry and academia,

the resulting research benefits from myriad perspectives and collaborations which can

identify better solutions and practices in acquisition, contract, financial, logistics and

program management.

For further information regarding the Acquisition Research Program, electronic

copies of additional research, or to learn more about becoming a sponsor, please visit

our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - ii -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 174 -
=

=

Developing Performance Based Requirements for Open
Architecture Design

Presenter: Brad Naegle, Lieutenant Colonel, US Army (Ret), is a Lecturer and
Academic Associate at the Naval Postgraduate School, Monterey, California. While on active
duty, LTC (ret.) Naegle was assigned as the Product Manager for the US Army 2½-Ton
Extended Service Program (ESP) and the USMC Medium Tactical Vehicle Replacement
(MTVR) from 1994 to 1996, and the Deputy Project Manager for Light Tactical Vehicles from
1996 to 1997. He was the 7th Infantry Division (Light) Division Materiel Officer from 1990 to
1993 and the 34th Support Group Director of Security, Plans and Operations from 1987 to 1988.
Prior to that, Naegle held positions in Test and Evaluations and Logistics fields. He earned a
Master’s Degree in Systems Acquisition Management (with Distinction) from the Naval
Postgraduate School and a Bachelor of Science degree from Weber State University in
Economics. He is a graduate of the Command and General Staff College, Combined Arms and
Services Staff School, and Ordnance Corps Advanced and Basic Courses.

Brad Naegle
Lecturer, Naval Postgraduate School
Ph: 831-656-3620
E-mail: bnaegle@nps.edu

Abstract
To implement the capabilities conceptualized in Joint Vision 2020, complex, secure

networks of weapon systems, intelligence platforms, and command and control mechanisms
must be seamlessly integrated and maintained over time. Accurate and timely information will
enable Joint Vision 2020 key tenets: Dominant Maneuver, Precision Engagement, Focused
Logistics, and Full Dimensional Protection. These networks are central warfighting platforms in
the information age.

As these capabilities are developed over time in an evolutionary manner, interoperability
on the Net-Centric Warfare (NCW) networks is essential, and both hardware and software
systems must be designed in an Open-systems Architecture (OA) fashion to accommodate the
vast number of changes anticipated. Professional Program Management will be needed to
successfully develop these key warfighting platforms.

Materiel Developers will need to recognize the relatively immature nature of the software
engineering domains and actively compensate for this immaturity. System software
performance capabilities must be much more detailed than typical hardware-centric systems, as
the current state of software engineering disciplines is unlikely to satisfy implied, yet critical
performance requirements. Essential OA performance characteristics including Maintainability,
Upgradability, Interfaces/Interoperability, Reliability, Safety and Security (MUIRSS) must be fully
analyzed and clearly communicated to the software developer to ensure the DoD obtains the
flexibility and longevity desired from NCW systems.

Keywords: Net-Centric Warfare, Interoperability, Open Systems Architecture, Software
Requirements, System of Systems, Family of Systems

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 175 -
=

=

Introduction
Joint Vision 2020 is the Chairman of the Joint Chiefs of Staff’s guiding document for

development of the future force and warfighting capabilities. It states, “If our Armed Forces are
to be faster, more lethal, and more precise in 2020 than they are today, we must continue to
invest in and develop new military capabilities.” It continues, dictating, “The overall focus of this
vision is full spectrum dominance—achieved through the interdependent application of dominant
maneuver, precision engagement, focused logistics, and full dimensional protection” (CJCS,
2000, pp. 1-2). The key word is ”interdependent,” as it prescribes interoperability requirements
to a level never before achieved. Flexible networks of complex system-of-systems must be
successfully developed to realize this vision.

To implement the concepts presented in Joint Vision 2020, the Director of Force
Transformation anticipates a new era:

As the world enters a new millennium, our military simultaneously enters a new era in
warfare—an era in which warfare is affected by a changing strategic environment and
rapid technological change. The United States and our multinational partners are
experiencing a transition from the Industrial Age to the Information Age. Simultaneously,
we are fully engaged in a global war on terrorism set in a new period of globalization.
These changes, as well as the experiences gained during recent and ongoing military
operations, have resulted in the current drive to transform the force with network-centric
warfare (NCW) as the centerpiece of this effort. (2005, p. 3)

This quote from The Implementation of Network-centric Warfare clearly indicates the
direction that the DoD is taking in developing the next generation’s warfighting capabilities. The
success of the initial NCW systems deployed since Desert Storm, as limited as they were,
revealed the potential battlespace domination offered through networked systems providing
situational and information superiority. One major challenge in constructing effective NCW
systems is designing the network to seamlessly integrate existing, planned and future platforms
and systems into a secure, fully interoperable, near real-time information system. The network
will need to accommodate complex systems that may or may not have been designed to
interoperate. The networked systems themselves are extremely complex and will have been
developed decades apart. The network design must be open, flexible and able to adapt to this
wide disparity of system-of-systems.

It is well understood that an Open-systems Architecture (OA) design is required to meet
both current and future warfighting needs and is a critical element in net-centric warfare
systems-of-systems concepts. These highly integrated systems are increasingly dependent on
software solutions for integration into the net-centric scheme; therefore, software interfaces are
one of the main keys for achieving the tactical and strategic synergies of the net-centric system.
This paper will focus on the challenges presented when the Department of Defense (DoD)
conducts capabilities analysis and derives performance specifications for a software-intensive,
net-centric, system-of-systems architecture that meets OA needs throughout the life of the
system.

You got to be careful if you don’t know where you’re going, because you might not get
there! – Yogi Berra

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 176 -
=

=

The DoD Performance Specification development process transforms the warfighter
requirements into terms that are more understandable for the system developer, usually the
prime contractor. Typically, the system performance requirements are decomposed through at
least three levels using the Work Breakdown Structure (WBS) methodology. The concept is to
provide the contractor sufficient detail with regard to performance, constraints, and intended
environments without stifling innovative solutions to meeting those requirements. The number
of WBS levels developed by the DoD is dependent on the complexity of the system and the
engineering domain maturity. For example, the automotive engineering discipline is very
mature, and a level three WBS for a tactical truck system would most probably be sufficient. To
determine whether the WBS is ready to hand off to a contractor, the Materiel Developer must
continue WBS development to a point where either the contractor has enough information to
develop the system needed by the warfighter, or any contractor derived solution that meets the
stated performance requirements is acceptable. While easily stated, this presents a daunting
challenge in complex systems, especially those that are software-intensive.

Software engineering is not mature, and there are few industry-wide standards for
languages, tools, architectures, reuse, or procedures. Software developed for complex weapon
systems is typically started from scratch with each new system; very little existing software code
is reused. In addition, new languages and associated tools are introduced every few years. For
this and other reasons, software programs grow exponentially in size and complexity, expanding
desired capabilities but limiting the maturation process. The DoD Materiel Developer must
recognize the relative immaturity of software engineering when developing the WBS for
software-intensive systems and, more importantly, compensate for that immaturity.

The current state of software engineering maturity drastically impacts an area of extreme
DoD concern—Supportability. Hardware-centric performance specifications rely heavily on
mature engineering environments to account for a significant portion of the system’s
supportability performance. Using the automotive engineering example, there is little need of
specifying supportability requirements such as features for oil, filter, tire and coolant
replacement as they are industry-standard features that would be included in any competent
design. There are few corresponding software engineering standards for supportability
features, and most commercially based software is not designed for long-term use as is typically
the requirement for DoD systems. There are literally hundreds of ways to build the architecture
and construct the code for even the most basic software function. Without physical or
established engineering techniques, the software developer is bounded only by his or her
imagination and creativity in satisfying broad specifications. The resulting software may function
correctly, but may not possess the OA design needed to effectively maintain, upgrade, or
interface it with the constantly changing net-centric systems and environment.

DoD acquisition professionals must recognize that the warfighter capabilities needed
require software development techniques that differ significantly when compared to their
commercially based counterparts. The software engineering techniques used in short-lived
software products may not prove effective in developing long-lived DoD software-intensive,
warfighting systems. DoD systems are designed to have a very long life span, including
software-intensive systems, in direct contravention with most commercially based software
designs. The need for OA design—upgradeable, flexible, and highly reliable software that is
maintainable over a long life span—is paramount to DoD’s warfighting systems, but industry-
standard software engineering techniques do not necessarily incorporate those features.

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 177 -
=

=

What this means to the DoD is that the capabilities analysis and resulting system
performance specifications must be completed in significantly more detail to achieve software
performance that meets warfighter’s needs. The software developer needs to be driven to OA
design by the performance specifications because software engineering discipline and state of
the practice are unlikely to provide sufficient architectural designs without explicit performance
requirements clearly communicated. Providing more detailed performance specifications seems
to run counter to acquisition reforms implemented to allow industry flexibility and innovation in
achieving performance thresholds and goals, but that is not the intent. The detailed
performance specifications provide the software developer much more information about areas
that the customer—the DoD—sees as critical to the overall system performance. This will have
a significant impact on the system software design supporting OA performance and will provide
the basis for a much more accurate cost and schedule estimate in the proposal received.

Near-term Challenges
The net-centric warfare concepts feature system-of-systems in an elaborate network

requiring a significant number of critical interfaces. As each system is added or later upgrades
its capabilities, it likely drives an interface change with other interfaced systems, necessitating
the need for flexibility in accommodating interface changes from affected interoperating or
networked systems. It is easy to visualize dozens of software changes driven by upgrades in
the interfaced components of the network and the critical need for effective OA designs to
quickly and economically accommodate change over a long life span. Again, this level of
design flexibility is not a software industry norm for most commercially designed systems.

Safety and Security requirements for DoD weapon system software have few
commercial counterparts. Obviously, commercially based critical medical equipment, aviation
systems, and banking systems would also require a high degree of safety and security, but the
combat environment weapon systems are intended to operate within, and the military lives that
are always at stake adds to criticality of the need. The net-centric warfare environment will
necessarily require unprecedented security measures. Software must be designed to continue
to operate critical weapon systems in degraded modes, reject spurious input without freezing or
failing, and resist intrusion, viruses and other attacks. Anything short of that will put military
members and the critical missions they perform at risk. Most commercially based software
engineering disciplines do not consider such stringent safety and security requirements. The
system’s OA design must allow for the flexibility needed while simultaneously ensuring safety
and security requirements. These two forces are rarely in concert and usually are in conflict.

Considering the state of immature software engineering that exists today, it is clear that
the DoD will not achieve the level of software-intensive system performance necessary if the
WBS and performance specification are not developed more fully before hand-off to the
developer or contractor. Due to the pressure to shorten the acquisition timeline, there is a
tendency to rush the Request for Proposal (RFP) to the prospective contractors without
developing the WBS below level three or including the performance specification with sufficient
detail. This approach works with systems based in mature engineering environments as the
contractor understands that all of those unstated requirements will be satisfied through the
established engineering standards; thus, the proposed schedule and cost estimates will be fairly
accurate. With a software-intensive system, this is not the case due to many of the reasons
presented earlier. The most diligent contractor can only provide cost and schedule estimates
based on what is presented in the RFP. If a significant portion of the software development
effort is not evident in the RFP, the contractor estimates may be grossly understated, causing

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 178 -
=

=

substantial—and avoidable—funding shortfalls and schedule overruns that plague the
development effort throughout the acquisition phase and well into the system’s lifecycle.

A Methodology for Software OA Capabilities Analysis
For DoD software-intensive systems to attain the broad spectrum of warfighter

performance and long-term supportability with predictable costs and schedules, the Materiel
Developer must provide performance specifications in the RFP that are detailed in areas that
hardware-centric systems with mature engineering environments need not be. In addition to the
system’s software performance issues, the OA areas of Maintainability, Upgradeability,
Interfaces/Interoperability, Reliability, Safety, and Security (MUIRSS) must be carefully analyzed
to ensure that the potential contractors understand the Government requirements and
constraints in each of these areas. It is likely that the WBS will have to be developed several
more levels in order to capture essential requirements; potential contractors would need to see
such WBS development to form a realistic proposal with an executable schedule and an
accurate cost estimate.

The Systems Engineering Process (SEP) is the preferred technique for analysis within
each of the MUIRSS categories as it provides a highly structured and comprehensive
methodology for developing the WBS. This will be a key tool for the DoD Materiel Developer in
developing capabilities requirements and communicating them to the software developer via the
performance specifications. Recognizing the existing shortfalls in software engineering
maturity, this methodology will greatly assist the software developer in understanding OA-
related performance requirements; this, in turn, will significantly influence the software
architecture design and the level of effort estimated to build the desired system. The alternative
leaves the software developer estimating these requirements without the background or
experience to do so, or worse yet, discovering the extent of the actual requirements after the
work has begun.

The capabilities analysis process must capture the OA performance needed for
supporting the system throughout its lifecycle. This analysis should drive a robust Post
Production Software Support (PPSS) plan addressing the MUIRSS elements of the OA design.
The MUIRSS elements are interdependent and tend to apply across the system and software
architecture. Each MUIRSS element is discussed in the following paragraphs to provide a basis
for analyzing capability requirements within the area and capturing performance characteristics
that are essential to the DoD.

Maintainability
The amount of elapsed time between initial fielding and the first required software

maintenance action can probably be measured in hours, not days. The effectiveness and
efficiency of these required maintenance actions is dependent on several factors, but the
software architecture that was developed from the performance specifications provided is
critical. The DoD must influence the software architecture through the performance
specification process to minimize the cost and time required to perform essential maintenance
tasks.

Maintenance is one area where software is fundamentally different from hardware.
Software is one of the very few components where we know that the fielded product has

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 179 -
=

=

shortcomings, and we field it anyway. There are a number of reasons why this happens; for
instance, there typically is not enough time, funding or resources to find and correct every error,
glitch, or bug, and not every one is worth the effort of correcting. Knowing this, there must be a
sound plan and resources immediately available to quickly correct those shortcomings that do
surface during testing and especially those that arise during warfighting operations. Even when
the system software is operating well, changes and upgrades in other, interfaced hardware and
software systems will drive some sort of software maintenance action to the system software. In
other words, there will be a continuous need for software maintenance in the planned complex
system-of-systems architecture envisioned for net-centric warfare.

Because the frequency of required software maintenance actions is going to be much
higher than in other systems, the cost to perform these tasks is likely to be higher as well. One
of the reasons for this is that software is not maintained by ”maintainers,” as are most hardware
systems, but is maintained by the same type of people that originally developed it—software
engineers. These engineers will be needed immediately upon fielding, and a number will be
needed throughout the lifespan of the system to perform maintenance, add capabilities, and
upgrade the system. There are several models available to estimate the number of software
engineers that will be needed for support; planning for funding these resources must begin very
early in the process. As the DoD has a very limited capability for supporting software internally,
typically, early software support is provided by the original developer and is included in the RFP
and proposal for inclusion into the contract or as a follow-on Contractor Logistics Support (CLS)
contract.

Upgradeability
A net-centric environment composed of numerous systems developed in an evolutionary

acquisition model will create an environment of almost continuous change as each system
upgrades its capabilities over time. System software will have to accommodate the changes
and will have to, in turn, be upgraded to leverage the consistently added capabilities. The
software architecture design will play a major role in how effective and efficient capabilities
upgrades are implemented, so communicating the known, anticipated and likely system
upgrades will impact how the software developer designs the software for known and unknown
upgrades.

Trying to anticipate upgrade requirements for long-lived systems is extremely
challenging to Materiel Developers, but is well worth their effort. Unanticipated software
changes in the operational support phase cost 50 to 200 times the cost in early design; so, any
software designed to accommodate an upgrade that is never realized costs virtually nothing
when compared to changing software later for a capability that could have been anticipated.
For example, the Army Tactical Missile System (ATACMS) Unitary was a requirement to modify
the missile from warhead air delivery to surface detonation—that is, flying the warhead to the
ground. The contract award was for $119 million for the modification. The warhead was not
new technology, nor particularly challenging to integrate with the missile body. The vast
majority of this cost was to reengineer the software to guide the missile to the surface. Had
there been an upgrade requirement for this type of mission in the original performance
specification, this original cost (including potential upgrades, even if there were ten other
upgrade requirements that were never applied) would have been a fraction of this modification
cost.

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 180 -
=

=

Interfaces/Interoperability
OA design focuses on the strict control of interfaces to ensure the maximum flexibility in

adding or changing system modules, whether they are hardware or software in nature. This
presupposes that the system modules are known—which seems logical, as most hardware
modules are well defined and bounded by both physics and mature engineering standards. In
sharp contrast to hardware, software modularity is not bounded by physics, and there are very
few software industry standards for the modular architecture in software components. This is
yet another area where the software developer needs much more information about operational,
maintenance, reliability, safety and security performance requirements, as well as current,
planned and potential system upgrades. These requirements, once well-defined and clearly
communicated, will drive the developer to design a software modular architecture supporting OA
performance goals. For example, if a system uses a Global Positioning System (GPS) signal, it
is likely that the GPS will change over the life of the system. Knowing this, the software
developer creates a corresponding discrete software module that is much easier and less
expensive to interface, change and upgrade as the GPS system does so.

With the system software modular architecture developed, the focus returns to the
interfaces between hardware and software modules, as well as the external interfaces needed
for the desired interoperability of the net-centric force. Software is, of course, one of the
essential enablers for interoperability and provides a powerful tool for interfacing systems,
including systems that were not designed to work together. Software performing the function of
”middleware” allows legacy and other dissimilar systems to interoperate. Obviously, this
interoperation provides a significant advantage, but comes with a cost in the form of
maintainability, resources and system complexity. As software interfaces with other
components and actually performs the interface function, controlling it and ensuring the
interfaces provide the desired OA capability becomes a major software-management and
software-discipline challenge.

One method being employed by the DoD attempts to control the critical interfaces
through a set of parameters or protocols rather than active management of the network and
network environment. This method falls short on several levels. It fails to understand and
control the effects of aggregating all of the systems in a net-centric scheme. For instance, each
individual system may meet all protocols for bandwidth, but when all systems are engaged on
the network, all bandwidth requirements are aggregated on the network—overloading the total
bandwidth available for all systems. In addition, members of the Software Engineering Institute
(SEI) noted:

While these standards may present a step in the right direction, they are limited in the
extent to which they facilitate interoperability. At best, they define a minimal
infrastructure that consists of products and other standards on which systems can be
based. They do not define the common message semantics, operational protocols, and
system execution scenarios that are needed for interoperation. They should not be
considered system architectures. For example, the C4ISR domain-specific information
(within the JTA) identifies acceptable standards for fiber channels and radio transmission
interfaces, but does not specify the common semantics of messages to be
communicated between C4ISR systems, nor does it define an architecture for a specific
C4ISR system or set of systems. (Morris, Levine, Meyers, Place, & Plakosh, 2004, p. 38)

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 181 -
=

=

Clearly, understanding and controlling the interfaces is critical for effective interoperation
at both the system and system-of-systems level. The individual program manager must actively
manage all systems’ interfaces impacting OA performance, and a network PM must do the
same for the critical network interfaces. Due to this necessity of constant management, a
parameters and protocols approach to net-centric OA performance is unlikely to produce the
capabilities and functionality expected by the warfighter.

Understanding the software interfaces begins with the software architecture; controlling
the interfaces is a unique challenge encompassing the need to integrate legacy and dissimilar
systems and the lack of software interface standards within the existing software engineering
environment. As stated earlier, the architecture needs to be driven through detailed
performance specifications, which will help define the interfaces to be controlled. An effective
method for controlling the interfaces is to intensely manage a well-defined Interface Control
Document (ICD), which should be a Contract Data Requirements List (CDRL) deliverable on
any software-intensive or networked system.

Reliability
While the need for highly reliable weapon systems is obvious, the impact on total system

reliability of integrating complex software components is not so obvious. Typically, as system
complexity increases, maintaining system reliability becomes more of a challenge. Add the
complexity of effectively networking a system-of-systems (all of which are individually complex)
to a critical warfighting capability that is constantly evolving over time, and reliability becomes
daunting.

Once again, the software developer must have an understanding of reliability
requirements before crafting the software architecture and developing the software applications.
Highly reliable systems often require redundant capability, and this holds true for software
components as well. In addition, software problems tend to propagate, resulting in a
degradation of system reliability over time. For example, a Malaysian Airlines Boeing 777
suffered several flight control problems resulting in: a near stall situation, contradicting
instrument indications, false warnings, and difficulty controlling the aircraft in both autopilot and
manual flight modes. The problem was traced to software in an air data inertial reference unit
that was feeding erroneous data to the aircraft’s primary flight computer (PFC), which is used in
both autopilot and manual flight modes. The PFC continued to try to correct for the erroneous
data received, adjusting flight control surfaces in all modes of flight, displaying indications that
the aircraft was approaching stall speed and overspeed limits simultaneously, and causing wind
shear alarms to sound close to landing (Dornheim, 2005, p. 46). It is critical for system reliability
that the software developers understand how outputs from software applications are used by
interfaced systems so that appropriate reliability safeguards can be engineered into the
developed software.

Software that freezes or shuts down the system when an anomaly occurs is certainly not
reliable nor acceptable for critical weapon systems; yet, these characteristics are prevalent in
commercially based software systems. Mission reliability is a function of the aggregation of the
system’s subcomponent reliability, so every software subcomponent is contributing to or
detracting from that reliability. The complexity of software makes understanding all failure
modes nearly impossible, but there are many techniques that software developers can employ
when designing the architecture and engineering the applications to improve the software
component reliability. Once requirements are clearly communicated to the developers, the

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 182 -
=

=

software can be engineered with redundancy or ”safe mode” capabilities to vastly improve
mission reliability when anomalies occur. The key is identifying the reliability requirements and
making them clear to the software developers.

Safety
Very few software applications have the required safety margins associated with critical

weapon systems used by warfighters in combat situations—where they are depending on these
margins for their survival. Typically, the software developers have only a vague idea of what
their software is doing and how critical that function is to the warfighter employing the weapon
system. Safety performance must be communicated to the software developers from the
beginning of development so they have the link between software functionality and systems
safety. For example, suppose a smart munition senses that it does not have control of a critical
directional component, and it calculates that it cannot hit the intended target. The next set of
instructions the software provides to the malfunctioning system may well be critical to the safety
of friendly troops, so software developers must have the necessary understanding of
operational safety to decide how to code the software for what will happen next.

Software safety is clearly linked with reliability, as software that is more reliable is
inherently safer. It is critical that the software developer understands how the warfighter
expects the software to operate in abnormal situations, degraded modes, and when inputs are
outside of expected values. Much commercially based software simply ceases to function
under these conditions or gives error messages that supercede whatever function was being
performed, none of which are acceptable in combat operations.

Security
With software performing so many critical functions, there is little doubt that software

applications are a prime target for anyone opposing US and Allied forces. Critical weapon
system and networking software must be resistant to hacking, spoofing, mimicking, and all other
manner of attack. There must be capabilities of isolating attacks and portions of networks that
have been compromised without losing the ability to continue operations in critical combat
situations. The software developer must know all these capabilities are essential before he/she
constructs software architectures and software programs, as this knowledge will be very
influential for the software design and application development.

Interoperability challenges are increased when the system-of-systems have the type of
security requirements needed by the DoD. Legacy systems and existing security protocols will
likely need to be considered before other security architecture can be effectively designed. OA
capabilities will be hampered by the critical need for security; both must be carefully balanced to
optimize system performance and security. This balance of OA and security must be managed
by the DoD and not the software developer.

Physical security schemes and operating procedures will also have an impact on the
software architecture. For example, many communication security (COMSEC) devices need
only routine security until the keys, usually software programs, are applied; then, much more
stringent security procedures are implemented. Knowledge of this security feature would be a
key requirement of the developer; he/she must understand how and when the critical software

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 183 -
=

=

pieces are uploaded to the COMSEC device. The same holds true for weapon systems that
upload sensitive mission data just prior to launch.

Residual software on equipment or munitions that could fall into enemy hands presents
another type of security challenge that needs to be addressed during the application
development. For example, the ATACMS missile air-delivers some of its warheads, leaving the
missile body to freefall to the surface. It is very conceivable that the body could be intact and, of
course, unsecured. If critical mission software was still within the body and found by enemy
forces, valuable information may be gleaned from knowing how the system finds its targets. We
would certainly want the developer to design the applications in a way that would make anything
recovered useless to the enemy, but this is a capability that is not intuitive to the software
developers.

Network Development
The network is a lynchpin for the combat effectiveness of NCW architecture, and as

such, should be developed under a professional Program Management (PM) organization. The
US Navy has achieved optimal results by assigning a PM for the Link 16 Program as noted by
SEI: “The Navy created a PMO and funded it with money from affected programs. These
monies were returned to programs specifically to work toward Link 16 capability” (Morris et al.,
2004, p. 33). SEI goes on to describe the need for professional program management by
stating, “What is needed are processes that help to reach agreements, blinders that avoid
getting distracted by things that are not related (e.g., portability), and to be agnostic about
specific technologies (e.g., CORBA or Message Oriented Middleware)” (p. 34). A network PM
would help facilitate and broker those agreements to the benefit of the network, vastly
increasing the probability that the NCW asset will provide the warfighter the capability and
advantage visualized by DoD.

Summary
To get the needed Open Architecture performance the DoD is seeking for software

components, the Material developer will have to specify it in the RFP and Performance
Specification. Unlike many hardware-centric engineering environments, the immature software
engineering environment is unlikely to compensate for essential performance that is not
specified. With the Materiel Developer performing the capabilities analysis using the MUIRSS
approach outlined above, the potential software developers will be provided a much more
detailed understanding of critical capabilities the DoD expects from its software components.

This same technique should result in significantly more accurate proposals as much
more of the software development work can be estimated from the RFP and Performance
Specification provided. Yes, proposals will likely continue to be overly optimistic, especially in a
competitive environment. And yes, changes and details will still be revealed after the contract is
signed—but the cost growth should be in the range of ten percent of the cost, not the current
average of one-hundred percent of the original proposal. Schedule estimates will also be much
more accurate as the scope of the software work is better understood by the contractors,
keeping schedule slippage to under fifteen percent of the original proposal estimate.

Conducting this analysis will be as challenging as it is time-consuming, especially since
it is applied in the early stages of the acquisition process when there is great pressure to “get

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======
= - 184 -
=

=

the RFP on the street.” The enormous potential time and cost savings realized throughout the
remaining development and the system’s lifecycle by completing the thorough MUIRSS
capability analysis warrants the needed analysis time. There is an old carpenter’s adage that
applies well in this case: “measure twice, cut once.”

List of References
Army RDT&E. (2005, February). Army RDT&E budget item justification (R2a Exhibit). Other

missile product improvement programs. PE Number 0203802A.

Chairman of the Joint Chiefs of Staff (CJCS). (2000, June). Joint Vision 2020.

Chaos: A Recipe for Success. (1999). The Standish Group International.

Director, Force Transformation. (2005, January). The implementation of net-centric warfare.
Washington, DC: Office of the Secretary of Defense.

Dornheim, M. A. (2005, September). A wild ride. Aviation Week & Space Technology, 163, 46.

Forsberg, K., Mooz, H., & Cotterman, H. (2000). Visualizing project management: A model for
business and technical success (2nd ed.). New York: John Wiley & Sons.

Humphrey, W. S. (1990). Managing the software process. Reading, MA: Addison-Wesley.

Lewis, G. A., Morris, E. J. & Wrage, L. (2004, December). Promising technologies for future
systems. Carnegie Mellon Software Engineering Institute.

Morris, E., Levine, L., Meyers, C., Place, P., & Plakosh, D. (2004, April). System of systems
interoperability (SOSI): Final report. Carnegie Mellon Software Engineering Institute.

Pracchia, L. (2004, April). Improving the DoD software acquisition process. Crosstalk, 4-7.

US Air Force Software Technology Support Center (STSC). (2000, May). Guidelines for
successful acquisition and management of software intensive systems (GSAM) (Version
3).

US General Accountability Office. Defense acquisitions: Stronger management practices are
needed to improve DoD’s software-intensive weapon acquisition. Report to the
Committee on Armed Services, US Senate. GAO 04-393. Washington, DC: author.

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ========
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ
=

=

2003 - 2006 Sponsored Acquisition Research Topics

Acquisition Management
 Software Requirements for OA
 Managing Services Supply Chain
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard

Planning Processes
 Portfolio Optimization via KVA + RO
 MOSA Contracting Implications
 Strategy for Defense Acquisition Research
 Spiral Development
 BCA: Contractor vs. Organic Growth

Contract Management
 USAF IT Commodity Council
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Navy Contract Writing Guide
 Commodity Sourcing Strategies
 Past Performance in Source Selection
 USMC Contingency Contracting
 Transforming DoD Contract Closeout
 Model for Optimizing Contingency Contracting Planning and Execution

Financial Management
 PPPs and Government Financing
 Energy Saving Contracts/DoD Mobile Assets
 Capital Budgeting for DoD
 Financing DoD Budget via PPPs
 ROI of Information Warfare Systems
 Acquisitions via leasing: MPS case
 Special Termination Liability in MDAPs

Logistics Management
 R-TOC Aegis Microwave Power Tubes

=
=
===================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ
=

=

 Privatization-NOSL/NAWCI
 Army LOG MOD
 PBL (4)
 Contractors Supporting Military Operations
 RFID (4)
 Strategic Sourcing
 ASDS Product Support Analysis
 Analysis of LAV Depot Maintenance
 Diffusion/Variability on Vendor Performance Evaluation
 Optimizing CIWS Life Cycle Support (LCS)

Program Management
 Building Collaborative Capacity
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Terminating Your Own Program
 Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research within the Acquisition
Research Program are available on our website: www.acquisitionresearch.org

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

