
14th Annual Acquisition Research Symposium

10 – 11 May 2017

Be Careful What You Pay For:
Applying the Fundamentals of Quality to

Software Acquisition

Rick Spiewak

The MITRE Corporation

rspiewak@mitre.org

Copyright 2012 The MITRE Corporation

Approved for Public Release; Distribution Unlimited. Case Numbers: 11-2921, 09-1262

2

■Define what we mean by quality

■Understand how quality is achieved

■Apply this to the acquisition process:

– Specify quality processes

– Select the right developer

– Follow the acquisition process rules

How to acquire quality software

3

What is Software Quality?:
An Application of the Basic Principles of Quality Management

Spoiler alert:

I can’t do this without

showing you some of my

favorite quotes first

4

What is Software Quality?:
An Application of the Basic Principles of Quality Management

“Quality is free. It’s not a gift, but

it is free. What costs money are

the unquality things – all the

actions that involve not doing

jobs right the first time.” 1

1 “Quality Is Free: The Art of Making Quality Certain”, Philip B. Crosby.

McGraw-Hill Companies (January 1, 1979)

5

What is Software Quality?:
An Application of the Basic Principles of Quality Management

“You can’t inspect quality into a

product.” 2

2 Harold F. Dodge, as quoted in “Out of the Crisis”, W. Edwards Deming.

MIT, 1982

6

What is Software Quality?:
An Application of the Basic Principles of Quality Management

“Trying to improve software

quality by increasing the amount

of testing is like trying to lose

weight by weighing yourself more

often.” 3

3 “Code Complete 2” Steve McConnell. Microsoft Press 2004

7

■ Define quality:
– Quality is:

“Meeting the requirements.”

– Quality is not:
“Exceeding the customer’s expectations.”

■ Quality improvement requires changes in processes
– Fixing problems earlier in the process is more effective and

less costly than fixing them later.

– The causes of defects must be identified and fixed in the

processes

– Fixing defects without identifying and fixing the causes does

not improve product quality

A Fundamental Approach

Setting higher standards will help drive better

development practices

8

■ Classical Quality Management: start fresh in

identifying and fixing process defects which may be

unique to your organization

■ Richard Hamming: “How do I obey Newton’s rule?
He said, ‘If I have seen further than others, it is because

I’ve stood on the shoulders of giants.’ These days we

stand on each other’s feet”

Ways to Get Started

If we want to profit from the work of

pioneers in the field of software quality,

we owe it to ourselves and them to

stand on their shoulders.

9

■Requirements Definition
■Architecture

■Design

■Construction

■Testing

■Documentation

■Training

■Deployment

■Sustainment

Phases of Software Development

Doing the right thing now

Can give better results later

10

What’s Wrong With Software Construction?

■Historically a “write-only” exercise:
If it doesn’t break, no one else reads it

■Ad-hoc or absent standards

■Testing is a separate activity

■Re-work (patch) to fix defects (“bugs”)

■Features take precedence over quality

■Definition of quality is not rigorous

Standards and best practices are not

uniformly followed because they are

not normally stated as requirements

11

If we built buildings this way….

What’s Missing in Software Construction?

They might not stay standing

Or, we might not

12

Typical Building Code Requirements:

– Building Heights and Areas

– Types of Construction

– Soils and Foundations

– Fire-Resistance and Fire Protection Systems

– Means of Egress

– Accessibility

– Interior Finishes and Environment

– Energy Efficiency

– Exterior Walls

– Roof Assemblies

– Rooftop Structures

– Structural Design

– Materials (Concrete, Steel, Wood, etc.)

– Electrical, Mechanical, Plumbing….

Buildings are not built this way
Building construction has standards!

13

■There is a lack of uniformity and

standards

■Historically, these are created ad hoc

by each organization

■There is no penalty for inadequate

standards

■Best practices are often discarded

under cost and schedule pressure

Missing: the “Building Code” for software

14

■We must identify and implement

industry best practices

■We must enforce best practices
–Requirements (acquisition)

–Rules (implementation)

■This is the way to make sure our

software doesn’t burn up or fall down!

How Do We Fix This?

15

■ Uniform Coding Standards

– References

– Tools

– Practices

■ Automated Unit Testing

– Design for test

– Tools for testing

– An Enterprise approach

■ Root Cause Analysis and Classification

– Analytic methods

– Taxonomy

■ Code Reuse

– Development techniques

– Reliable sources

Improving Development Practices:
Best Practices in Software Development

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

16

Improving Development Practices:
Uniform Coding Standards

■ References
– .NET

■ Framework Design Guidelines: Conventions, Idioms,

and Patterns for Reusable .NET Libraries

■ Practical Guidelines and Best Practices for Microsoft

Visual Basic and C# Developers

– Java
■ Effective Java Programming Language Guide

■ The Elements of Java Style

■ Tools and Techniques

– Static Code Analysis
■ .NET

●FxCop

●DevPartner Studio

■ Java
●FindBugs (Eclipse plug-in)

●ParaSoft JTest

– Code Review (with Government audit)

17

■ Preparation requires inspection of code by developer – may
uncover defects

■ Review by other programmers – leads to sharing of ideas,
improved coding techniques

■ Review by others may uncover defects or poor techniques

■ To be effective, focus should be on determining causes of
defects, fixing causes.

■ Government audit provides needed assurance on the level
of conduct

Improving Development Practices:
Coding Standards – Code Review

18

■ Design Impact

– Design for Test

– Test Driven Development

■ Tools and Techniques

– .NET

■ NUnit/NCover/NCover Explorer

■ Visual Studio

– Java

■ JUnit/Cobertura (etc.)

■ Enterprise Impact

– Extension to Enterprise

– Uniform Tool Usage

– Use by Test Organizations

Improving Development Practices:
Automated Unit Testing

19

■ A CMMI 5 practice area – but this should be a

requirement regardless of CMMI level.

■ Find the cause
– “Five Whys”

– Kepner-Trego Problem Analysis

– IBM: Defect Causal Analysis

■ Fix the cause => change the process

■ Fix the problem: use the changed process

■ Problem: How to Preserve Knowledge?
– Answer: Classify Root Causes

– Look for patterns

– Metrics
■ Statistics

■ Pareto Diagrams

Improving Development Practices:
Root Cause Analysis

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

20

■Two areas of focus:
– Instructions for Proposal Preparation

■ IFPP, or Section L

– Evaluation Criteria
■EC, or Section M

■Why:
– You can’t use what you haven’t asked for!

– It’s too late to adjust your evaluation criteria after

the proposals are delivered.

■“Standing on the shoulders…”
– There is existing work you can leverage to build

your RFP

– There is precedent for using these criteria

Acquisition: How to Require Best Practices

21

■ USAF Weapon Systems Software Management Guide, August
2008.

– Appendix C Example Software Content for RFP Section L

– Appendix D Example Software Content for RFP Section M

■ Guidebook for Acquisition of Naval Software Intensive
Systems, September 2008.

– 7.5 Section L - Instructions, Conditions, and Notices to Offerors

– 7.6 Section M - Evaluation Factors for Award

Shoulders of Giants

There is a lot of useful information in these guides

– here we’re focusing on just these two areas.

22

■ Require a Software Development Plan (SDP)
– Describes the offeror’s approach to software development

– Tools and techniques to be used:
■ Development

■ Unit testing

■ Component testing

■ Integration

■ Configuration management

■ Managing defect reports and analysis

■ Root cause analysis

■ Require that this be used as the basis for a final plan
– SDP to be made available as a deliverable item, subject to

review and approval

– Provisions of the plan to be followed as described

Key Recommendations:
Instructions for Proposal Preparation

23

■ Number and type of peer reviews

■ Use of automated unit testing, code coverage

■ Use of automated syntax analysis tools

■ Comprehensiveness of integration and test methods

■ Readiness requirements for code check-in
– Unit test

– Syntax analysis

– Peer Reviews

■ Configuration Management and Source Code Control

■ Use of Root Cause Analysis

■ Code Re-use
– Sources

– Quality assurance

– Government rights

Key Recommendations:
Evaluation Criteria

24

How to Rate the SDP

Parameter/rating Unaccep

table

Marginal Acceptable Superior

The number and

type of peer

reviews

none 1 (any) 2 (design,code) 3 or more

(requirements,

design,code,test)

The use of

automated unit

testing including

test coverage

requirements

none unit tests written

after manual

testing or only

on selected

code

automated tests

75% code

coverage on new

or modified code

automated tests

85% or more

code coverage

on all delivered

code. The use of

Test Driven

Development.

The use of

automated syntax

analysis tools and

adherence to the

rules

incorporated by

them

none used selectively

or with heavily

modified rules

used consistently

with standard

rules

additional rules

or tools specific

to security

analysis

25

How to Rate the SDP – Cont’d

Parameter/rating Unaccep

table

Marginal Acceptable Superior

The

comprehensive-

ness of

integration and

test methods

including

continuous

integration tools

if used

ad-hoc formal

integration and

test

automated

processes

applied

periodically

continuous

integration

including syntax

analysis and unit

tests

The use of

readiness

requirements

such as unit test

and syntax

analysis for code

check-in

none individual

manual testing

integrated

testing by

developer

Automated part

of check-in and

continuous

integration

process

26

How to Rate the SDP – Cont’d

Parameter/rating Unaccep

table

Marginal Acceptable Superior

Configuration

management and

source code

control tools and

techniques

manual/

paper

trail

by individual

developer

system-wide

repository

managed tool

with pre-check-in

requirements

The extent to

which root cause

analysis of

defects is part of

the development

process

none “red-team” only serious defects routine periodic

analysis of

defect pool

The selection of

software source

code to be

reused, replaced,

or re-written from

previous

implementations

none or

no

response

replacement

with contractor’s

previous work

rework of

selected items

showing good

knowledge of

base software

innovative

approach to

maximum reuse

and

modernization

27

■The use of known best practices can

improve the quality of software

■Better results can be achieved at the same

time as lower costs

■By including an evaluation of development

practices at the proposal evaluation stage,

these can be used as source selection

criteria

Summary

Selecting the right developer is the starting

point for getting the right results

28

Questions

29

■ Spiewak, Rick and McRitchie, Karen. Using Software Quality

Methods to Reduce Cost and Prevent Defects, CrossTalk, Dec 2008.

■ McConnell, Steve. Code Complete 2. Microsoft Press, 2004.

■ Crosby, Philip B. Quality Is Free: The Art of Making Quality Certain.

McGraw-Hill Companies, 1979.

■ Jones, Capers. Software Engineering Best Practices. McGraw-Hill,

2010

■ USAF Weapon Systems Software Management Guide, August 2008.

■ Guidebook for Acquisition of Naval Software Intensive Systems,

September 2008.

Selected References

http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-Spiewak.pdf
https://acc.dau.mil/adl/en-US/24374/file/49721/USAF WSSMG ABRIDGED.pdf
https://acquisition.navy.mil/rda/content/download/5657/25845/version/1/file/Guidebook+for+Acquisition+of+Naval+Software+Intensive+SystemsSEP08.pdf

30

Backup

31

■ Beizer Taxonomy

– Classification System for Root Causes of Software Defects

– Developed by Boris Beizer

– Published in 1990 in “Software Testing Techniques 2nd Edition”

– Modified by Otto Vinter (around 1998)

– Based on the Dewey Decimal System

– Extensible Classification

– The uniform use of this taxonomy provides an Enterprise view
of problem areas in software development.

■ Orthogonal Defect Classification

■ Defect Causal Analysis

Improving Development Practices:
Root Cause Classification

32

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

Classifying Root Causes: Beizer* Taxonomy

* Boris Beizer, "Software Testing Techniques", Second edition, 1990, ISBN-0-442-20672-0

33

How Much Does It Cost?

??

?

? ??
?

?

?
?

34

■ Cost and Benefits of Automated Unit Testing

■ The situation:

– Organizations either use AUT or don’t

– No one will stop to compare

(or, if they do, they won’t tell anyone what they found out!)

■ The basic cost problem:

– To test n lines of code, it takes another n to n + 25% lines

– Why wouldn’t it cost more than twice as much to do this?

– If there isn’t any more to it, why use this technique?

■ The solution:

– Use a more complete model

– There’s more to the cost of software than lines of code!

Cost/Benefit Analysis Example:
Automated Unit Testing (AUT)

35

■Based on analysis of thousands of projects

■Takes into account a wide variety of factors:
– Sizing

– Technology

– Staffing

– Tool Use

– Testing

– QA

■Delivers outputs:
– Effort

– Duration

– Cost

– Expected Defects

The SEER-SEM1 Modeling tool

1SEER® is a trademark of Galorath Incorporated

36

■Consider the cost of defects:
– Legacy defects to fix

– New defects to fix

– Defects not yet fixed (legacy and new)

■Model costs using SEER-SEM scenarios
– Cost model reflecting added/modified code

– Comparison among scenarios with varying

development techniques

– Schedule, Effort for each scenario

– Probable undetected remaining defects after

FQT for each scenario

Cost/Benefit Analysis: Technique

37

■ The Project:
– Three major applications

– Two vendor-supplied applications

– Moderate criticality

■ The cases:
– Baseline: no AUT

■ Nominal team experience with environment, tools, practices

– Introducing AUT
■ Increases automated tool use parameter

■ Decreases development environment experience

■ Increases volatility

– Introducing AUT and Added Experience
■ Increases automated tool use parameter

■ Previous changes to experience and volatility are eliminated

Cost-Benefit Analysis: Example

38

■ Estimated schedule months

■ Estimated effort
– Effort months

– Effort hours

– Effort costs

■ Estimate of defect potential
– Size

– Complexity

– ….

■ Estimate of delivered defects
– Project size

– Programming language

– Requirements definition formality

– Specification level

– Test level
– …

Cost-Benefit Analysis: Results

39

Defect Prediction Detail*

Baseline Introducing

AUT

Difference AUT +

Experience

Difference

Potential Defects 738 756 2% 668 -9%

Defects

Removed 654 675 3% 600 -8%

Delivered Defects 84 81 -4% 68 -19%

Defect Removal

Efficiency 88.60% 89.30% 89.80%

Hours/Defect

Removed 36.52 37.41 2% 35.3 -3%

* SEER-SEM Analysis by Karen McRitchie, VP of Development, Galorath Incorporated

40

Cost Model*

Baseline Introducing

AUT

Difference AUT +

Experience

Difference

Schedule

Months 17.09 17.41 2% 16.43 -4%

Effort Months 157 166 6% 139 -11%

Hours 23,881 25,250 6% 21,181 -11%

Base Year Cost 2,733,755 2,890,449 6% 2,424,699 -11%

Defect

Prediction 84 81 -4% 68 -19%

* SEER-SEM Analysis by Karen McRitchie, VP of Development, Galorath Incorporated

