
1
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2017 Carnegie Mellon University

[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

REV-03.18.2016.0

Software Vulnerabilities,
Defects, and Design Flaws:
A Technical Debt Perspective

Robert L. Nord, Ipek Ozkaya, Forrest Shull

2
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development

center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,

provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic

form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for

permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM17-0147

3
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Is technical debt real?

Popular media is recognizing major software failures as technical debt.

• United Airlines failure (July 8, 2015, “network connectivity”)

• New York Stock Exchange glitch (July 8, 2015, “configuration issue”)

• Healthcare.gov (February 2015, “users cannot access functionality”)

Researchers conservatively estimate $361,000 of technical debt / 100 KLOC as

the cost to eliminate structural-quality problems that seriously threaten an

application’s business viability.

Are we being fooled by scare tactics?

How do we understand the real problem, and why should we care?

4
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Technical Debt Defined

Our legacy software has code without exception handling, which made
sense for lower capacity processors, today we can’t find and track these
issues. These areas in the code have become nightmares.

Technical debt is a software design issue that:

Exists in an executable system artifact, such as code, build

scripts, data model, automated test suites;

Is traced to several locations in the system, implying issues are

not isolated but propagate throughout the system artifacts.

Has a quantifiable effect on system attributes of interest to

developers (e.g., increasing defects, negative change in

maintainability and code quality indicators).

5
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Technical Debt in Security Issues

10977: Crash due to large negative number

"We could just fend off negative numbers near the crash site or
we can dig deeper and find out how this -10000 is happening."

"Time permitting, I'm inclined to want to know the root cause.
My sense is that if we patch it here, it will pop up somewhere
else later."

“There have been 28 reports from 7 clients… 18 reports from 6
clients.”

“Hmm ... reopening. The test case crashes a debug build, but
not the production build. I have confirmed that the original
source code does crash the production build, so there must be
multiple things going on here.”

6
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Impacts of Technical Debt

Defects

Technical

Debt

Vulnerabilities

Defect proneness implies increased

vulnerability risks.

Technical debt increases vulnerability

risks.

Technical debt as it lingers in the system

increases defect proneness.

Some issues just overlap, making it hard

to tease apart!

defect – error in coding or logic that

causes a program to malfunction or to

produce incorrect/ unexpected results

vulnerability – system

weakness in the intersection

of three elements:

• system flaw,

• attacker access to the flaw,

• attacker capability to

exploit the flaw

technical debt – design

or implementation construct

traced to several locations

in the system, that make

future changes more costly

7
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

This view suffers from the following shortcomings:

• Focuses only on customer-visible, functional aspects of

system problems

• Results in overlooking underlying contributors to defects and

vulnerabilities that can be design issues

• Fails to recognize accumulating interest of technical debt that

defects and vulnerabilities might be signaling

Misconception: Eliminating defects & vulnerabilities
eliminates technical debt

8
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Defects and vulnerabilities, especially recurring ones

that have been open for a long time or reopen and

that accumulate around particular aspects of the

system, are symptoms of technical debt to address.

The quantity of resources and processes that go into

defect and vulnerability management indicates the

accumulating side effects of technical debt.

Correction: Defects and vulnerabilities are key symptoms
of technical debt

9
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Question

Are software components with accrued technical debt more likely to be defect and

vulnerability defect prone?

Comp. 2

V3

V1

V2
Vn

Comp. 1 Comp. 2Comp. 1

Operation Time
(are there defects &
vulnerabilities?)

V3

V1

V2Vn

Comp. 2Comp. 1

Maintenance / Evolution Time
(will fixing debt fix defects &
vulnerabilities?)

Design Time
(debt introduced)

$ $

10
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Technical Debt Indicators: Design flaws

Technical debt examples

“We have a model-view controller framework. Over

time we violated the simple rules of this framework

and had to retrofit many functions later.”

Modularity violation, pattern conformance

“There were two highly coupled modules that should

have been designed separately from the beginning”

Modularity violation, pattern conformance

“A simple API call turned into a nightmare [due to not

following guidelines]”

Framework, pattern conformance

Example design flaws:

Unstable Interface

Modularity Violation

Improper Inheritance

Cycle

Xiao, L., Cai, Y., Kazman, R. Design rule spaces: A new form of

architecture insight. Proceedings of the 36rd International

Conference on Software Engineering, 967–977. ACM, 2014.

11
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Indicator: Design Flaws - 1

Unstable Interface, Modularity Violation, Improper Inheritance, Cycle

Xiao, L., Cai, Y., Kazman, R. “Design rule spaces: A new form of architecture insight.”

Proceedings of the 36rd International Conference on Software Engineering, 967–977. ACM, 2014.

1 2 3 4 5 6 7 8 9 10 11

1 ui.gfx.size.cc (1) Use,3 ,2 ,3 ,3 ,1 ,1 ,2

2 ui.gfx.size.h Call,3 (2) ,5 ,4 ,2 ,1 ,2 ,1 ,1

3 ui.gfx.point.h ,2 ,5 (3) ,5 ,3 ,1 ,1 ,2 ,1 ,1

4 ui.gfx.rect.h Call,3 Call,4 Call,5 (4) Call,6 ,2 ,2 ,2 ,5 ,2 ,2

5 ui.gfx.rect.cc Call,3 Call,2 Call,3 Call,6 (5) ,1 ,1 ,1 ,3 ,1 ,2

6 webkit.plugins.ppapi.ppapi_plugin_instance.cc Call,1 Call, Call, Call,2 Call,1 (6) ,1 ,5 ,2 ,2 ,2

7 content.renderer.paint_aggregator.cc Call,1 Call,1 Call,2 Call,1 ,1 (7) ,2 ,2 ,2 ,1

8 content.renderer.render_widget.cc Call,1 Call,2 Call,1 Call,2 Call,1 Call,5 Call,2 (8) ,3 ,1 ,1

9 ui.gfx.rect_unittest.cc ,2 Call,1 ,2 Call,5 Call,3 ,2 ,2 ,3 (9) ,2 ,2

10 webkit.plugins.webview_plugin.cc ,1 ,1 Call,2 ,1 ,2 ,2 ,1 ,2 (10) ,1

11 ui.gfx.blit.cc Call, Call,1 Call,2 Call,2 ,2 ,1 ,1 ,2 ,1 (11)

12
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Indicator: Design Flaws - 2

Unstable Interface, Modularity Violation, Improper Inheritance, Cycle

Shared secret between files

Should be extracted as design rules

1 2

1 ContextConfig.java (1) ,31

2 TldConfig.java ,31 (2)

Xiao, L., Cai, Y., Kazman, R. “Design rule spaces: A new form of architecture insight.”

Proceedings of the 36rd International Conference on Software Engineering, 967–977. ACM, 2014.

13
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Analysis

Classified

Not TD
Classified TD

No

Design

Flaw

8 6

Design

Flaw
50 15

Affinity CWE #Issues

interface 200: Information Exposure 1

resource
arbitrati
on

362: Concurrent Execution
using Shared Resource with
Improper Synchronization

3

400: Uncontrolled Resource
Consumption 3

invalid
result

20: Improper Input Validation 2

451: User Interface (UI)
Misrepresentation of Critical
Information

2

476: NULL Pointer Dereference 1

704: Incorrect Type Conversion
or Cast 1

825: Expired Pointer
Dereference 1

boundar
y
conditio
ns

125: Out-of-bounds Read 1

703: Improper Check or
Handling of Exceptional
Conditions

4

787: Out-of-bounds Write 2

privilege

250: Execution with
Unnecessary Privileges 2

269: Improper Privilege
Management 1

285: Improper Authorization 1

Project
Bug/Design Flaw

Correlation
Change/Design

Flaw Correlation Sec Bug/Design Flaw Correlation

Chrome 0.987 0.988 0.979

Increased rates of design flaws and code churn are strongly
correlated with increased rates of security bugs. The more types of
design flaws a file is involved in, the higher the likelihood that it also
has vulnerabilities; files with vulnerabilities tend to have more code
churn.

Not all files with design flaws
demonstrate technical debt.

14
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Regardless of the SDLC process, technical debt

needs to be explicitly managed:

• Technical debt items should be explicitly recorded,

similar to new user stories, defects, and the like.

• Discussion of the items in the backlog should

include an explicit focus on any technical debt

items to include or postpone.

• Resolving technical debt should be part of planning

(allocate one sprint, integrate into multiple sprints,

etc.).

One simple practice

Next sprint

stories

New story

Breakdown

epic

Delete obsolete

items

Epic (tbd)

Product backlog grooming

T
o
p
-p

ri
o
ri
ty

 i
te

m
s
 =

 f
in

e
r

g
ra

n
u
la

ri
ty

TD item

15
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Start today!

• Make architecture features and technical debt visible. Incentivize teams,

contractors, acquisition personnel to communicate the debt clearly.

• Differentiate strategic technical debt from technical debt that emerges from low

code quality.

• Invest in tools and techniques that help elicit and track leading indicators.

• Engage business and technical staff in making tradeoffs.

• Integrate technical debt management into standard operating procedures

(e.g., planning, reviews, retrospectives, risk management).

16
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Further Resources

N. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord: What to Fix? Distinguishing between design and non-design rules in
automated tools, International Conference on Software Architecture, 2017.

R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, R. Kazman: Can Knowledge of Technical Debt Help Identify Software
Vulnerabilities? CSET @ USENIX Security Symposium 2016

S. Bellomo, R. L. Nord, I. Ozkaya, M. Popeck: Got Technical Debt? Surfacing Elusive Technical Debt in Issue
Trackers, to appear in proceedings of Mining Software Repositories 2016, collocated @ICSE 2016.

R. L. Nord, R. Sangwan, J. Delange, P. Feiler, L, Thomas, I. Ozkaya: Missed Architectural Dependencies: The
Elephant in the Room, WICSA 2016.

P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, C. B. Seaman: Reducing Friction in Software Development. IEEE
Software Future of Software Engineering Special Issue 33(1): 66-73 (2016)

L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng: Identifying and Quantifying Architectural Debts, ICSE 2016.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton: Measure it? Manage it? Ignore it? software practitioners
and technical debt. ESEC/SIGSOFT FSE 2015: 50-60

Managing Technical Debt Research Workshop Series 2010-2016
https://www.sei.cmu.edu/community/td2017/series/

Technical Debt Publications and other resources available at
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm

https://www.sei.cmu.edu/community/td2017/series/
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm

17
Software Vulnerabilities, Defects, and Design Flaws:

A Technical Debt Perspective

© 2017 Carnegie Mellon University
[[DISTRIBUTION STATEMENT A]

This material has been approved for public release and unlimited distribution.

Contact Information

Robert Nord rn@sei.cmu.edu

Ipek Ozkaya ozkaya@sei.cmu.edu

Forrest Shull fshull@sei.cmu.edu

URL: http://www.sei.cmu.edu/architecture/research/arch_tech_debt/

mailto:rn@sei.cmu.edu
mailto:ozkaya@sei.cmu.edu
mailto:fshull@sei.cmu.edu
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/

