IDA

Determining the Value of a Prototype

Zachary Strider McGregor-Dorsey

What are prototypes worth?

Setting the Stage - A program is proposed

A decisionmaker has three options:

1. Start the program
2. Do not start the program
3. Make a prototype, and then start or do not start the program
An alternative program option exists with a known cost Cost is the discriminator

Prototypes give us information

Prototypes give us information

Prototypes give us information

Prototypes give us information...but we know a little of what to expect

Prototypes give us information...but we know a little of

 what to expect

The Preposterior Distribution

The distribution of the means of all possible cost distributions after a prototype outcome

Properties of the Preposterior Distribution

The mean (expected value):

$$
\mathrm{E}[\text { preposterior }]=\mathrm{E}[\text { prior }]
$$

The mean of the preposterous is equal to the mean of the prior

Properties of the Preposterior Distribution

The mean (expected value):

$$
\mathrm{E}[\text { preposterior }]=\mathrm{E}[\text { prior }]
$$

The variance:

$$
\operatorname{Var}[\text { preposterior }]=\operatorname{Var}[\text { prior }]-\mathrm{E}_{d \in \text { posteriors }}[\operatorname{Var}[d]]
$$

The variance of the preposterous is equal to the variance of the prior less the mean of the posterior variances

Properties of the Preposterior Distribution

The mean (expected value):

$$
\mathrm{E}[\text { preposterior }]=\mathrm{E}[\text { prior }]
$$

The variance:

$$
\operatorname{Var}[\text { preposterior }]=\operatorname{Var}[\text { prior }]-\mathrm{E}_{d \in \text { posteriors }}[\operatorname{Var}[d]]
$$

The shape:
Dist $[$ preposterior $] \rightarrow \operatorname{Dist}[$ prior $]$ as experiments $\rightarrow \infty$

The shape of the preposterous approaches that of the prior with increased experimental data

Properties of the Preposterior Distribution

The mean (expected value):

$$
\mathrm{E}[\text { preposterior }]=\mathrm{E}[\text { prior }]
$$

The variance:

$$
\operatorname{Var}[\text { preposterior }]=\operatorname{Var}[\text { prior }]-\mathrm{E}_{d \in \text { posteriors }}[\operatorname{Var}[d]]
$$

The shape:
Dist $[$ preposterior $] \rightarrow \operatorname{Dist}[$ prior $]$ as experiments $\rightarrow \infty$

In other words, the preposterior distribution looks a lot like the prior distribution

How to use the preposterior distribution

Suppose the alternative costs \$1.5B
Prototype
\$1.2B

No Prototype
\$1.5B

$$
\Delta=\$ 0.3 \mathrm{~B}
$$

Value of information from prototype

How to use the preposterior distribution

No Prototype
\$1.5B

Value of information
from prototype

Only the means matter

Prepostior to the rescue

Prior distribution

We can even make a decent guess as to the shape of the distribution of these means!

If we can estimate the variance of these distributions, we know the variance of these means!

Steps to estimate Value of Information for prototype

1. Estimate distribution of costs (prior)
2. Estimate reduction in variance of cost due to prototype (posteriors)
3. Model preposterior distribution as prior distribution with mean held constant (from 1) and variance equal to reduction in variance (from 2)
4. Perform decision tree on preposterior distribution with some given alternative cost

Example

From Prototyping Defense Systems

Derived prior distribution from percent cost overruns of systems without prototypes

Example

From Prototyping Defense Systems

Derived a posterior variance from percent cost overruns of systems with prototypes

Example

From Prototyping Defense Systems

Derived a preposterior distribution as prior with variance decreased by 0.02

Mean still \$1B

Example

Suppose alternate cost is \$0.7B

For costs less than \$0.7B, find partial expected value

$$
\int_{0}^{0.7} x p(x) d x
$$

Sum is cost after
prototype For costs more than $\$ 0.7 \mathrm{~B}$,
(\$0.665B)

$$
\text { find } 0.7 * P(x>0.7)
$$

Prototype is worth \$0.035B

Example

Letting cost of alternative vary

Example

Letting cost of alternative vary

Thanks to the Air Force Research Laboratory for their inspiration and help in this project. And thanks to you!

Backup

IDA

Bayes tells us something about what we can expect

$$
P(A \mid B)
$$

$$
=\quad \frac{P(B \mid A) P(A)}{P(B)}
$$

We want the distribution of

- the cost given some prototype outcome

We need the distribution of

- the prototype givencost
- the cost
- the prototypes

Just a scaler!

So, not great.

But what if we look at attributes that incorporate all possible prototype outcomes?

