

NAVAL POSTGRADUATE SCHOOL

Empirical Cost Modeling

Dr. Johnathan Mun (NPS)

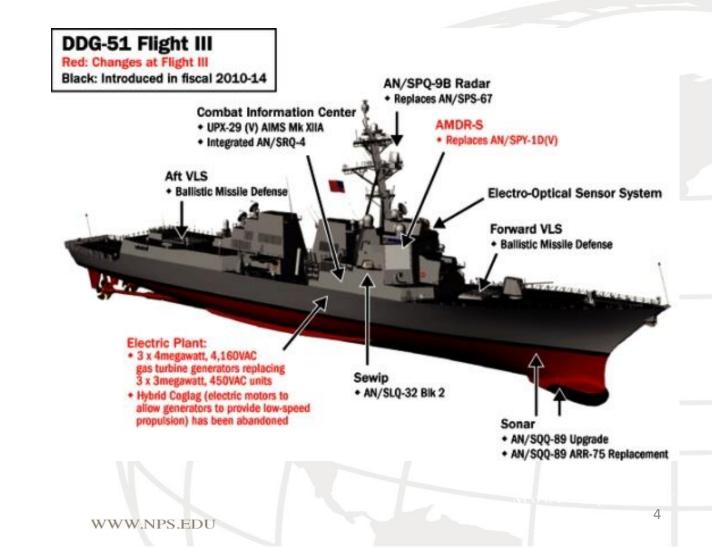
Monterey, California WWW.NPS.EDU

Overview

- Goal: Develop alternative or additional ship cost modeling methodologies
 - develop a comprehensive cost modeling strategy and approach
 - can be used to empirically predict, forecast, and model ship costs
 - not based on weight alone but complements weight-based methods
 - helps triangulate actual cost that may be stochastic
- Used the Arleigh Burke Class Guided Missile Destroyer DDG 51 Flight I, Flight II, Flight IIA, and Flight III as a basis for the cost and schedule assumptions
 - information and data were obtained via publicly available sources and were collected, collated, and used in an integrated riskbased cost and schedule modeling methodology (using high-level publicly available data; need more specific data to ensure accuracy)
 - results will be used to develop recommendations and develop a cost modeling toolset on how to implement ship cost forecasts
- Methodology provides a roadmap for modeling costs for any ship to be developed and built by the U.S. Navy
 - should result in improved cost savings without sacrificing effectiveness
- Related to Flexible Ships project (Thursday presentation) where we identify, model and justify the higher costs to prebuild growth margins and flexibility for implementing future unknown requirements to face future unknown threats

Summary Points

- Current approaches are usually weight-based methods although other approaches are considered or used
- Weight-based is efficient and simpler to model and approximate but in most cases inadequate as a stand-alone approach (e.g., buying apples at the store)
- Weight alone does not account for complexity (e.g., density)
- Modularity and flexibility may not be linked to weight alone modular and flexible ships as a case example
- LCS mission bays (steel is heavy and expensive but air is free) cost alone may not imply value
- Bottom-up Process Cost Model approaches may also be important as these account for efficiency and complexity vs. Top-down Econometric Models
- Total Ownership Cost (TOC), Lifecycle Cost, Acquisition Cost, Ship-Alt Cost are important in justifying strategic options and margins for flexible ships
- Cost Risk and Schedule Risk are the two related and major uncertainties
- Analyzed multiple approaches: ARIMA, Econometric Modeling, Fuzzy Logic, GARCH, Genetic Algorithms, Monte Carlo Risk Simulations, Multivariate Nonlinear Regression, Process Models...


Overview of U.S. Navy Ships (DDG 51 Destroyer Class)

Cost Modeling

The Navy Ship Models Reviewed: **Arleigh Burke Class Guided Missile Destroyer DDG 51 Flight I, Flight II, Flight IIA, Flight III**, and also the Joint High Speed Vessel (JHSV), CG 47 Ticonderoga, DDG 1000 Zumwalt, LPD 17 San Antonio Class, LHA 6 America Class, and Nimitz Class Aircraft Carrier (CVN 68), among others warship models.

In the cost analysis models, we will consider the full build of the ship, with its accoutrements such as weapons systems, electrical systems, radar and electronic warfare systems, communication and navigation systems, aircraft, and other extra add-ons.

Cost-Schedule estimation follows a **bottom-up** approach, and the Multivariate Analysis (parametric) follows a **top-down** approach.

Department of Defense (DoD) Budget Data (DDG 51 Destroyer)

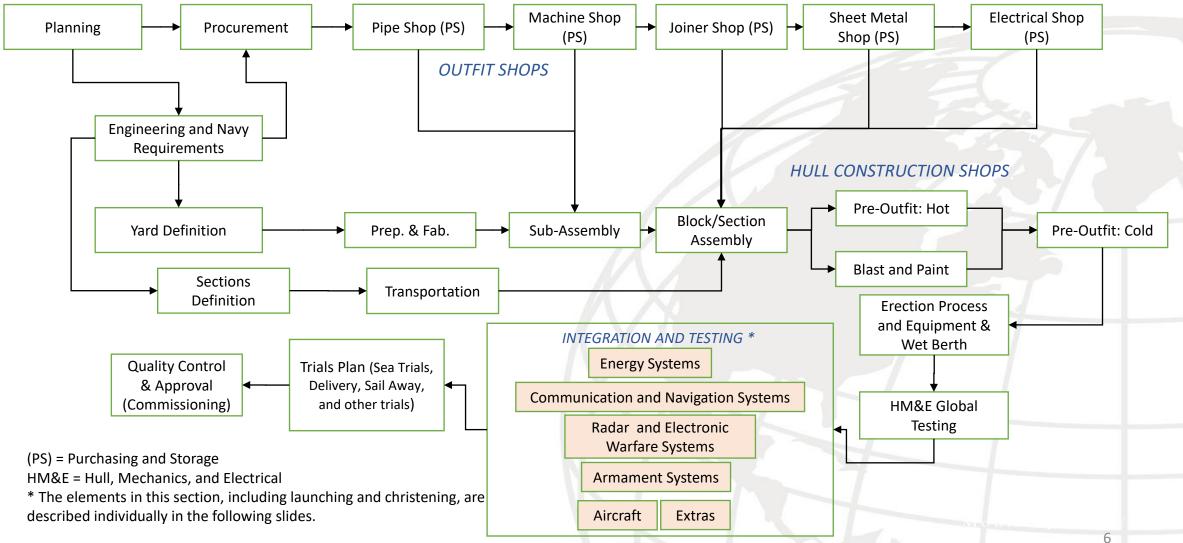
Information and data were obtained via publicly available sources and were collected, collated, and used in an integrated cost modeling methodology. Due to lack of proprietary data, we used publicly sourced information and applied subject matter expert opinions. The objective of this study is to develop a comprehensive cost modeling strategy and approach, and Notional Data were used to perform Rough Order Magnitude (ROM) estimates.

DoD Spending, Procurement and RDT&E: FY 2012/13/14 + Budget for FYs 2015 + 2016 Go to Top

		A	CTUAL	A	CTUAL	A	CTUAL	PRE	LIMINARY	REG	UESTED	
DDG 51 AEGIS Destroyer		FY20	12 Total	FY20)13 Total	FY20	14 Total	FY20)15 Total	FY20)16 Total	iii PY2
DDU OT ALUIS DEStroyer		QTY	Million \$	QTY	Million \$	QTY	Million \$	QTY	Million \$	QTY	Million \$	무의
Procurement												-F-
Shipbuilding & Conversion	NAVY	1	2,081.43	3	4,497.01	1	1,985.12	2	2,795.95	2	3,149.70	bel 202
Ship Modifications	NAVY		126.37		407.71		285.99		324.22		364.16	OW E
Completion Costs	NAVY		-		_0		100.00		129.14		-	क हिं
Outfitting & Post Delivery	NAVY		49.10		7.30		1.30		6.50		62.10	e je
Total Procurement		1	2,256.91	3	4,912.02	1	2,372.41	2	3,255.81	2	3,575.96	¥ □at
RDT&E (Hybrid Electric Drive)	NAVY		-			at a	Phile Phile		7.95		4.22	¥ [∞]
Total RDT&E			-		-	S 2	S	$\sim 1 \sim$	7.95		4.22	
Total Program Spending		1	2,256.91	3	4,912.02	1	2,372.41	2	3,263.76	2	3,580.18	

Download Official U.S. Department of Defense (DoD) Budget Data:

Shipbuilding & Conversion | DDG-51 AEGIS Destroyer


NAVAL

SCHOOL

POSTGRADUATE

NPS

Applied Analytics and Risk Analysis (Bottom-Up Cost & Schedule Estimations)*

*Based on publicly available cost data

WWW.NPS.EDU

7

NAVAL

.....

272

SCHOOL

POSTGRADUATE

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 2.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL File Edit Projects Report Tools Language Decimals Help Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints. Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center Ship Building ICT Navigation Weapon Systems Aircraft Electrical Systems Radar Systems Extra Systems Support Processes Portfolio Analysis Select the Project Schedule & Cost Risk Model to use: O Sequential Path Complex Network Path Project Name/Notes: Network Diagram Schedule & Cost Create Model Edit Model Copy Diagram Joiner Shop Sheet Metal Electrical Shop Planning Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Machine Shop Procurement Pipe Shop Added Sub Task 8 Task 9 Task 11 Task 12 Requirements Assembly Yard Definition Prep & Fab Assembly Task 13 Task 14 Task 10 Preoutfit Cold Sections Definition Transport Erect/Wet Task 15 Task 17 Task 18 Berth Preoutfit Hot Task 16 Electrical Blast & Paint HME Global Task 20 Task 19 Testing Task 21 Radar & EWS Comm & Nav System Task 22 Sea Trials Task 27 Task 26 Task 23 Weapon Systems QC & Approval Aircraft Task 24 Task 25 Extras

 \times

Cost Modeling (Research and Data Analysis)

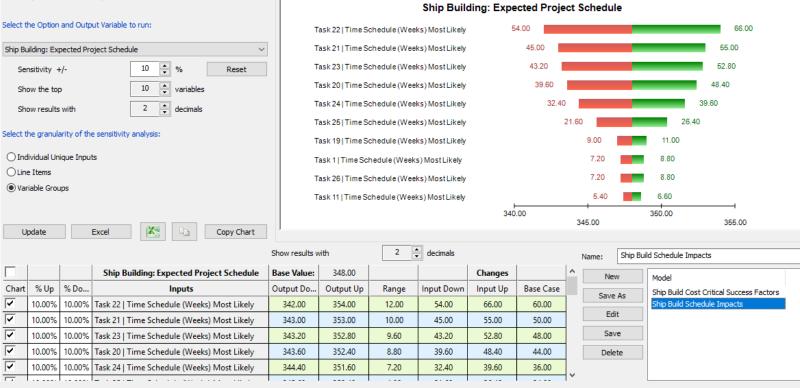
Cost information on Navigation, Weapons, and Aircraft were obtained and is illustrated below:

Navigational Equipment AN/WSN-5 Inertial Navigation System; AN/WRN-6; ANISRN-25 (V); MK 4 1 8 14 20 14.00 MK 6 MOD 4D Digital Dead Reckoning Tracer AN/URN-25 TACAN; AN/SPS-64 (V) 91 Band Radar 1 15.84 19.8 23.76 19.80 Navy Standard No. 3 Magnetic Compass; Total Navigation system 1 15.84 19.8 23.76 19.80 Chronometer Size 85; Flux Compass 2 23.84 33.80 43.76 33.80 Weapons RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; MK 41 Vertical Missile SM-3 74 3 3.24 10.07 239.76 MK 41 Vertical Missile SM-3 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missile; 1 0.4552 0.569 0.6828 0.57 MK 41 Vertical Missile Information (TWO triple tube mounts); 6 1 0.4552 0.569 0.6828 0.57 MK 41 Vertical Missile (GUMS), 1 3.04 3.8 4.56 3.80 MK-45 (Mod. 1/2) 5″/54 3.0				Min Unit	Aveg Unit	Max Unit	
MK 6 MOD 4D Digital Dead Reckoning Tracer AN/URN-25 TACAN; AN/SPS-64 (V) 9 I Band Radar Navy Standard No. 3 Magnetic Compass; Total Navigation system 1 Ital Navigation system 1 Chronometer Size 85; Flux Compass 1 Weapons 2 23.84 33.80 43.76 33.80 Weapons 2 33.80 43.76 33.80 23.76 Vertical Launch Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2 33.80 23.76 29.76 Vertical Launch ASROC (VLA) missiles; 1 10.4552 0.66828 0.70 MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 11.01 182 22.02.00 MK-46 torpedoes (from two triple tube mounts);	Category	Items	Quantity	Cost	Cost	Cost	Total Cost (\$M)
AN/URN-25 TACAN; AN/SPS-64 (V) 9 I Band Radar Navy Standard No. 3 Magnetic Compass; Total Navigation system 1 15.84 19.8 23.76 19.80 Chronometer Size 85; Flux Compass 2 23.84 33.80 43.76 33.80 Weapons 2 23.84 33.80 43.76 33.80 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 1 0.4552 0.569 0.6828 0.57 MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 11.01 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK 45 torpedoes (from two triple tube mounts); 1 3.04 3.8 4.56 3.80 Mk-45 (Mod.1/2) 5"/54 1 3.04 3.8 4.56 3.80 MK 38 selfdefense guns 1 0.84 0.905 0.97 0.91 MK 38 selfdefense guns 1 0.84 0.905 0.97 0.91 <td>Navigational Equipment</td> <td>AN/WSN-5 Inertial Navigation System; AN/WRN-6 ; ANISRN-25 (V); MK 4</td> <td>1</td> <td>8</td> <td>14</td> <td>20</td> <td>14.00</td>	Navigational Equipment	AN/WSN-5 Inertial Navigation System; AN/WRN-6 ; ANISRN-25 (V); MK 4	1	8	14	20	14.00
Navy Standard No. 3 Magnetic Compass; 1 15.84 19.8 23.76 19.80 Chronometer Size 85; Flux Compass 2 23.84 33.80 43.76 33.80 Weapons RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missile; 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missile; 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6		MK 6 MOD 4D Digital Dead Reckoning Tracer					
Total Navigation system 1 15.84 19.8 23.76 19.80 Chronometer Size 85; Flux Compass 2 23.84 33.80 43.76 33.80 Weapons RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 74 3 3.24 10.07 239.76 MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-45 torpedoes (from two triple tube mounts); 6		AN/URN-25 TACAN; AN/SPS-64 (V) 9 I Band Radar					
Chronometer Size Si; Flux Compass 2 23.84 33.80 43.76 33.80 Weapons RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER RIM-161 Standard Missile SM-3 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 3 3.24 10.07 239.76 Wetapons MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6		Navy Standard No. 3 Magnetic Compass;					
Total 2 23.84 33.80 43.76 33.80 Weapons RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER Image: Constraint of the standard Missile SM-3 (Standard Missile SM-2ER) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-2ER) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-2ER) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-2ER) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-2ER) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-2ER) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-3 (Standard Missile Launch ASROC (VLA) missiles; Image: Constraint of the standard Missile SM-3 (Standard Missile Launch Systems (VLS)) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-109 Tomahawk) Image: Constraint of the standard Missile Missile SM-3 (Standard Missile SM-109 Tomahawk) Image: Constraint of the standard Missile SM-3 (Standard Missile SM-109 Tomahawk) Image: Constraint of the standard Missile Missile SM-3 (Standard Missile SM-109 Tomahawk) Image: Constraint of the standard Missile Missile SM-3 (Standard Missile SM-109 Tomahawk) Image: Constraint of the standard Missile Missile Missile SM-3 (Standard Missid Missile SM-3		Total Navigation system	1	15.84	19.8	23.76	19.80
Weapons RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER 3.24 10.07 239.76 RIM-161 Standard Missile SM-3 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 74 3 3.24 10.07 239.76 MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6		Chronometer Size 85; Flux Compass					
RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ER ZER RIM-161 Standard Missile SM-3 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 7 3 3.24 10.07 239.76 MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6 7	Total		2	23.84	33.80	43.76	33.80
2ER RIM-161 Standard Missile SM-3 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6	Weapons						
RIM-161 Standard Missile SM-3 74 3 3.24 10.07 239.76 Vertical Launch ASROC (VLA) missiles; 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-45 torpedoes (from two triple tube mounts); 6		RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-					
Vertical Launch ASROC (VLA) missiles; 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6		2ER					
MK 41 Vertical Missile Launch Systems (VLS) 2 38.2 110.1 182 220.20 BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6		RIM-161 Standard Missile SM-3	74	3	3.24	10.07	239.76
BGM-109 Tomahawk 1 0.4552 0.569 0.6828 0.57 MK-46 torpedoes (from two triple tube mounts); 6 6 5 5 Close In Weapon System (CIWS), 1 3.04 3.8 4.56 3.80 Mk-45 (Mod.1/2) 5"/54 1 0.84 0.905 0.97 0.91 RIM Evolved Sea Sparrow Missile (ESSM) 1 0.84 0.905 0.97 0.91 MK 38 selfdefense guns 1 0.025 0.0375 0.05 0.38 Cher type of Guided Missiles (Guided shell) 10 0.025 0.0375 0.05 0.38		Vertical Launch ASROC (VLA) missiles;					
MK-46 torpedoes (from two triple tube mounts); 6 Close In Weapon System (CIWS), 1 3.04 3.8 4.56 3.80 Mk-45 (Mod.1/2) 5"/54 1 0.84 0.905 0.97 0.91 MK 38 selfdefense guns 1 0.84 0.905 0.97 0.91 Other type of Guided Missiles (Guided shell) 10 0.025 0.0375 0.05 0.38		MK 41 Vertical Missile Launch Systems (VLS)	2	38.2	110.1	182	220.20
Close In Weapon System (CIWS), 1 3.04 3.8 4.56 3.80 Mk-45 (Mod.1/2) 5"/54 1 0.84 0.905 0.97 0.91 RIM Evolved Sea Sparrow Missile (ESSM) 1 0.84 0.905 0.97 0.91 MK 38 selfdefense guns 1 0.025 0.0375 0.05 0.38 Cher type of Guided Missiles (Guided shell) 10 0.025 0.0375 0.05 0.38		BGM-109 Tomahawk	1	0.4552	0.569	0.6828	0.57
Mk-45 (Mod.1/2) 5"/54 RIM Evolved Sea Sparrow Missile (ESSM) 1 0.84 0.905 0.97 0.91 MK 38 selfdefense guns 1 0.84 0.905 0.97 0.91 Land-Attack Guns 0 0.025 0.0375 0.05 0.38		MK-46 torpedoes (from two triple tube mounts);	6				
RIM Evolved Sea Sparrow Missile (ESSM) 1 0.84 0.905 0.97 0.91 MK 38 selfdefense guns 1 10 0.025 0.0375 0.05 0.38 Land-Attack Guns 10 0.025 0.0375 0.05 0.38		Close In Weapon System (CIWS),	1	3.04	3.8	4.56	3.80
MK 38 selfdefense guns Land-Attack Guns Other type of Guided Missiles (Guided shell) 10 0.025 0.0375 0.05 0.38		Mk-45 (Mod.1/2) 5"/54					
Land-Attack Guns Other type of Guided Missiles (Guided shell) 10 0.025 0.0375 0.05 0.38		RIM Evolved Sea Sparrow Missile (ESSM)	1	0.84	0.905	0.97	0.91
Other type of Guided Missiles (Guided shell) 10 0.025 0.0375 0.05 0.38		MK 38 selfdefense guns					
		Land-Attack Guns					
		Other type of Guided Missiles (Guided shell)	10	0.025	0.0375	0.05	0.38
Other type of defined Guns and Torpedoes, missiles, being part of the ship's 1 641.40344 796.77 1296.242 796.77		Other type of defined Guns and Torpedoes, missiles, being part of the ship's	1	641.40344	796.77	1296.242	796.77
Total 96 686.96 915.42 1494.57 1262.38	Total		96	686.96	915.42	1494.57	1262.38
AircraftMH-60 B/R Seahawk LAMPS III helicopters with Penguin/ Hellfire missiles227.69330.776061.54	Aircraft	MH-60 B/R Seahawk LAMPS III helicopters with Penguin/ Hellfire missiles	2	27.693	30.77	60	61.54
MK 46/MK 50 torpedoes							

Expected Project Schedule (Shipbuilding)

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 2.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL – 🗌 🗙

File Edit Projects Report Tools Language Decimals Help


Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

Static Tornado Scenario Analysis

Tornado or static sensitivity analysis is performed by perturbing the inputs a preset amount one at a time to determine the impact on the output variable. Start by selecting the Option and Output Variable to test, then set the sensitivity levels and click Compute to run.

🖻 🖬 🖨 💼 🔻 🕼 💠 🖶 🕀 🖓 🏆 뉴 뉴 井 旭 🗇 🗇 20 🎐 🚽 🛞 🐜 Abc... 💌 📽 💌

WWW.NPS.EDU

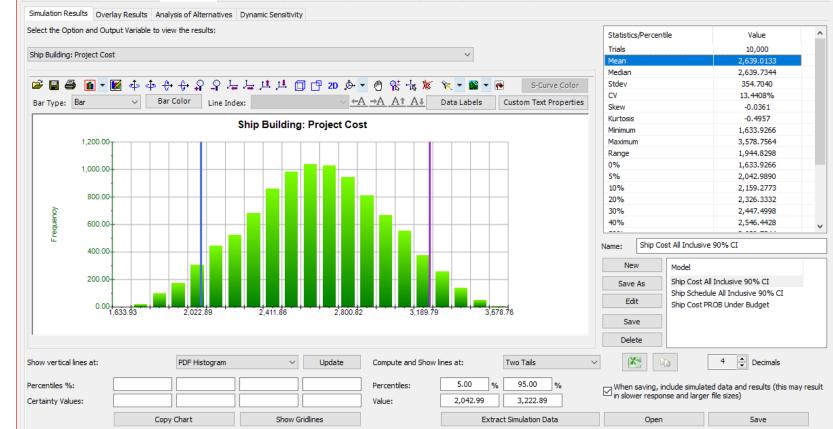
Risk Simulation with the U.S Air Force Cost Analysis Handbook

						Fitt	ed Distributi	ons
Distribution	PEI	Probability	15%	Mode	85%	Min	Likely	Max
Triangular Low Left	Mode	1.0 (75%)	0.695	0.878	1.041	0.482	0.878	1.247
Triangular Low	Mode	1.0 (50%)	0.834	1	1.166	0.633	1.000	1.367
Triangular Low Right	Mode	1.0 (25%)	0.959	1.122	1.305	0.753	1.122	1.518
Triangular Medium Left	Mode	1.0 (75%)	0.492	0.796	1.069	0.137	0.796	1.412
Triangular Medium	Mode	1.0 (50%)	0.723	1	1.277	0.388	1.000	1.612
Triangular Medium Right	Mode	1.0 (25%)	0.931	1.204	1.508	0.588	1.204	1.863
Triangular High Left	Mode	1.0 (75%)	0.347	0.754	1.103	0.000	0.754	1.550
Triangular High	Mode	1.0 (50%)	0.612	1	1.388	0.142	1.000	1.858
Triangular High Right	Mode	1.0 (25%)	0.903	1.236	1.711	0.442	1.236	2.225
Triangular EHigh Left	Mode	1.0 (75%)	0.3	0.745	1.15	0.000	0.745	1.657
Triangular EHigh	Mode	1.0 (50%)	0.509	1.004	1.5	0.000	1.004	2.100
Triangular EHigh Right	Mode	1.0 (25%)	0.876	1.367	1.914	0.258	1.367	2.553

U.S. Air Force Cost Analysis Handbook (AFCAH)

11

- CE


Expected Project Cost (Risk Profile)

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL – 🗌

File Edit Projects Report Tools Language Decimals Help

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

X

NAVAL

.....

22

SCHOOL

POSTGRADUATE

🜌 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL X File Edit Projects Report Tools Language Decimals Help Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints. Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center Simulation Results Overlay Results Analysis of Alternatives Dynamic Sensitivity Select multiple Option and Output Variables to view the simulated probabilistic chart results side by side. Copy Chart Name 🔟 - 🔟 추 추 순 승 유 우 뉴 뉴 브 브 🗇 🗗 20 🎐 - 🕐 왔 뉴 🕷 🔨 🗃 - 🖻 ൙ 🔛 🎒 Data Labels Ship Building: Project Cost Ship Building: Project Schedule S-Curve Color Line Index: ←A →A A↑ A↓ Custom Text Properties ✓ ICT Navigation: Project Cost ICT Navigation: Project Schedule PDF Curve Overlay - ICT Navigation: Project Cost Weapon Systems: Project Cost Aircraft: Project Cost 1.400 Weapon Systems: Project Schedule Electrical Systems: Project Cost Aircraft: Project Cost Aircraft: Project Schedule 1.200 Electrical Systems: Project Cost Electrical Systems: Project Schedule Radar Systems: Project Cost 1.000 1**9** PDF Curve Overlay \sim 800 Selected S-Curve: Electrical Systems: Project Cost Percentiles %: 600 400 Certainty Values: 200 Update Show Gridlines ICT-Electrical-Aircraft Name: 40 100 120 140 160 New Model ICT-Electrical-Aircraft Save As Weapons-Radar has Major Impact Edit ICT Navigation: Project Cost and Aircraft: Project Cost Overlap 98.51% Save ICT Navigation: Project Cost and Electrical Systems: Project Cost Overlap 0.98% Aircraft: Project Cost and Electrical Systems: Project Cost Overlap 43.35% Delete

Project Schedule (Sensitivity Analysis)

[M:\Client Projects\Navy and Department of	Defense\2016-06 Cost Estimation for Ship Building\	Models\Cost Estimation Models - Alternatives - Draft 3.rovp	projecon] - PROJEC	T ECONOMICS ANAL
le Edit Projects Report Tools Langua				
elcome to the ROV Project Economics Analysis Tool odeling, and optimize your investment portfolio sub		or capital investment options, model their cash flows, simulate th	eir risks, and run adv	anced analytics, perform forecasting and prediction
Project Management Applied Analytics Risk Simi	Ulation Options Strategies Options Valuation Forecas	t Prediction Dashboard Knowledge Center		
Simulation Results Overlay Results Analysis of	Alternatives Dynamic Sensitivity			
Dynamic Sensitivity is run by first performing a Mor Output Variable you wish to test and click Compute		and impacts on the selected output variables. To get started, ma	ake sure you have a s	simulation already run, then choose the Option and
Select the Option and Output Variable to run:				
Ship Stripped Down: Project Schedule		✓ Show 15 ♣ Row	ws	Copy Charts
			Name:	
🗃 🖬 🎒 🚺 🛛 🕼 💠 💠 🔶 🔶	유 유 뉴 뉴 井 井 🗇 🗗 20 🎐 🕷) 👫 🕂 🔆 🌾 💌 🖬 🔻 🚱 🛛 Abc		
			New	Model
Ship Stripped Down: Project	t Schedule		Save As	
	Nonlinear Rank Correlation	Contribution to Variance		
	Noniniear Rank Correlation	contribution to variance	Edit	
Task 19 Time Schedule (Weeks)	0.54	31,45%	Save	
Task 26 Time Schedule (Weeks)	0.45	21.04%	- 1 -	
Task 1 Time Schedule (Weeks)	0.44	20.44%	Delete	
Task 14 Time Schedule (Weeks)	0.28	8.07%		
Task 2 Time Schedule (Weeks)	0.16	2.70%		
Task 27 Time Schedule (Weeks)	0.16	2.66%		
Task 11 Time Schedule (Weeks)	0.16	2.56%		
Task 18 Time Schedule (Weeks)	0.14	2.10%		
Task 7 Time Schedule (Weeks)	0.12	1.62%		
Task 12 Time Schedule (Weeks)	0.12	1.55%		
Task 8 Time Schedule (Weeks)	0.11	1.29%		
Task 9 Time Schedule (Weeks)	0.10	1.01%		
Task 16 Time Schedule (Weeks)	0.09	0.91%		
Task 16 Time Schedule (Weeks) Task 17 Time Schedule (Weeks)	0.09	0.91% 0.88%		
		F		
Task 17 Time Schedule (Weeks)	0.09	0.88%		
Task 17 Time Schedule (Weeks)	0.09	0.88%		
Task 17 Time Schedule (Weeks)	0.09	0.88%		
Task 17 Time Schedule (Weeks)	0.09	0.88%		

Econometric Analysis (Top-Down Cost Estimations)

NAVAL

SCHOOL

POSTGRADUATE

JPS

Multivariate Analys	lultivariate Analysis (Warship Prices)									
ID	Navy Ship	Unit Cost (\$M)	Displacement (Tons)	Speed (KMH)	Length (M)	Crew	Year	Value	Q	
1 DDG 51		2133	9648	56	155.3	276	2012	2,133	1	
2 DDG 51		1553	9648	56	155.3	276	2012	3,106	2	
3 DDG 51		1884	9648	56	155.3	276	2012	1,884	1	
4 DDG 51		1423	9648	56	155.3	276	2013	4,269	3	
5 DDG 51		2372	9648	56	155.3	276	2014	2372	1	
6 DDG 51		1615	9648	56	155.3	276	2015	1,615	1	
7 DDG 51		1330.5	9648	56	155.3	276	2016	2,661	2	
8 DDG 100	00	3554	15730	56	185.9	148	2007	3554	1	
9 DDG 100	00	3010	15730	56	185.9	148	2008	3010	1	
10 Joint Hig	h Speed Vessel (JHSV)	185	2397	80	103	41	2010	185	1	
11 Joint Hig	h Speed Vessel (JHSV)	184	2397	80	103	41	2011	184	1	
12 Joint Hig	h Speed Vessel (JHSV)	376	2397	80	103	41	2012	376	1	
13 Joint Hig	h Speed Vessel (JHSV)	207	2397	80	103	41	2013	207	1	
14 LHA 6 Ar	nerica	3204	45695	37	114.91	1,687	2007	3,204	1	
15 LHA 6 Ar	nerica	3213	45695	37	114.91	1,687	2011	3,213	1	
16 Littoral C	combat Ship	1077	3292	87	115.3	45	2010	1,077	1	
17 Littoral C	combat Ship	1147	3293	87	115.3	45	2011	1,147	1	
18 Littoral C	combat Ship	1858	3294	87	115.3	45	2012	1,858	1	
19 Littoral C	combat Ship	1821	3295	87	115.3	45	2013	1,821	1	
20 LPD 17 S	an Antonio Class	1903	25300	39	208.5	360	2009	1,903	1	
21 LPD 17 S	an Antonio Class	2088	25300	39	208.5	360	2012	2,088	1	
22 USS Tico	nderoga (CG 47)	1000	9754	56	173	30	2008	1,000	1	
23 DD-21 Z	umwalt	2700	16000	56	170	150	1996	2,700	1	
24 Nimitz C	lass Aircraft Carrier (CVN 68)	4045	99800	56	332.8	558	2009	4,045	1	
25 Nimitz C	lass Aircraft Carrier (CVN 68)	3421.3	99800	56	332.8	558	2011	3,421	1	
26 Nimitz C	lass Aircraft Carrier (CVN 68)	4568.8	99800	56	332.8	558	2012	4,569	1	
27 Nimitz C	lass Aircraft Carrier (CVN 68)	4738.2	99800	56	332.8	558	2016	4,738	1	

Similar methodology in "Why Has the Cost of Navy Ships Risen?" RAND National Defense Research Institute 2006

Data Source: http://www.bga-aeroweb.com/Defense/DDG-51-AEGIS-Destroyer.html

http://www.globalsecurity.org/military/systems/ship/ddg-51.htm

http://www.defenseindustrydaily.com/adding-arleigh-burkes-northrop-grumman-underway-06007/

WWW.NPS.EDU

Regression Analysis Report

Regression Statistics	
R-Squared (Coefficient of Determination)	0.8260
Adjusted R-Squared	0.7943
Multiple R (Multiple Correlation Coefficient)	0.9088
Standard Error of the Estimates (SEy)	585.1570
Number of Observations	27

Pegrossion Peculte

NAVAL

SCHOOL

POSTGRADUATE

The R-Squared or Coefficient of Determination indicates that 0.83 of the variation in the dependent variable can be explained and accounted for by the independent variables in this regression analysis. However, in a multiple regression, the Adjusted R-Squared takes into account the existence of additional independent variables or regressors and adjusts this R-Squared value to a more accurate view of the regression's explanatory power. Hence, only 0.79 of the variation in the dependent variable can be explained by the regressors.

The Multiple Correlation Coefficient (Multiple R) measures the correlation between the actual dependent variable (Y) and the estimated or fitted (Y) based on the regression equation. This is also the square root of the Coefficient of Determination (R-Squared).

The Standard Error of the Estimates (SEy) describes the dispersion of data points above and below the regression line or plane. This value is used as part of the calculation to obtain the confidence interval of the estimates later.

Regression Results						
		Displacement				
	Intercept	(Tons)	Speed (KMH)	Length (M)	Crew	
Coefficients	-11837.1869	-0.1034	80.4366	55.5622	6.0975	
Standard Error	4077.1440	0.0365	29.5533	15.4242	1.7271	
t-Statistic	-2.9033	-2.8328	2.7217	3.6023	3.5306	
p-Value	0.0082	0.0097	0.0125	0.0016	0.0019	
Lower 5%	-20292.6660	-0.1791	19.1467	23.5743	2.5158	
Upper 95%	-3381.7078	-0.0277	141.7265	87.5501	9.6793	

Degrees of Freedom		Hypothesis Test	
Degrees of Freedom for Regression	4	Critical t-Statistic (99% confidence with df of 22)	2.8188
Degrees of Freedom for Residual	22	Critical t-Statistic (95% confidence with df of 22)	2.0739
Total Degrees of Freedom	26	Critical t-Statistic (90% confidence with df of 22)	1.7171

The Coefficients provide the estimated regression intercept and slopes. For instance, the coefficients are estimates of the true; population b values in the following regression equation Y = b0 + b1X1 + b2X2 + ... + bnXn. The Standard Error measures how accurate the predicted Coefficients are, and the t-Statistics are the ratios of each predicted Coefficient to its Standard Error.

The t-Statistic is used in hypothesis testing, where we set the null hypothesis (Ho) such that the real mean of the Coefficient = 0, and the alternate hypothesis (Ha) such that the real mean of the Coefficient is not equal to 0. A t-test is performed and the calculated t-Statistic is compared to the critical values at the relevant Degrees of Freedom for Residual. The t-test is very important as it calculates if each of the coefficients is statistically significant in the presence of the other regressors. This means that the t-test statistically verifies whether a regressor or independent variable should remain in the regression or it should be dropped.

The Coefficient is statistically significant if its calculated t-Statistic exceeds the Critical t-Statistic at the relevant degrees of freedom (df). The three main confidence levels used to test for significance are 90%, 95% and 99%. If a Coefficient's t-Statistic exceeds the Critical level, it is considered statistically significant. Alternatively, the p-Value calculates each t-Statistic's probability of occurrence, which means that the smaller the p-Value, the more significant the Coefficient. The usual significant levels for the p-Value are 0.01, 0.05, and 0.10, corresponding to the 99%, 95%, and 90% confidence levels.

The Coefficients with their p-Values highlighted in blue indicate that they are statistically significant at the 90% confidence or 0.10 alpha level, while those highlighted in red indicate that they are not statistically significant at any other alpha levels.

Auto Econometrics

Regression Statistics	
R-Squared (Coefficient of Determination)	0.9383
Adjusted R-Squared	0.9198
Multiple R (Multiple Correlation Coefficient)	0.9687
Standard Error of the Estimates (SEy)	365.4465
Number of Observations	27

NAVAL

SCHOOL

POSTGRADUATE

The R-Squared or Coefficient of Determination indicates that 0.94 of the variation in the dependent variable can be explained and accounted for by the independent variables in this regression analysis. However, in a multiple regression, the Adjusted R-Squared takes into account the existence of additional independent variables or regressors and adjusts this R-Squared value to a more accurate view of the regression's explanatory power. Hence, only 0.92 of the variation in the dependent variable can be explained by the regressors.

The Multiple Correlation Coefficient (Multiple R) measures the correlation between the actual dependent variable (Y) and the estimated or fitted (Y) based on the regression equation. This is also the square root of the Coefficient of Determination (R-Squared).

The Standard Error of the Estimates (SEy) describes the dispersion of data points above and below the regression line or plane. This value is used as part of the calculation to obtain the confidence interval of the estimates later.

Regression Res	ults						
	Intercept	var2	var4	var5	In(var2)	In(var3)	In(var4)
Coefficients	86373.8318	-0.3741	302.1790	4.3956	7108.9055	9778.0160	-46327.8077
Standard Error	47165.1982	0.1184	108.1814	2.0715	1589.3175	1852.4014	16303.5560
t-Statistic	1.8313	-3.1603	2.7933	2.1220	4.4729	5.2786	-2.8416
p-Value	0.0820	0.0049	0.0112	0.0465	0.0002	0.0000	0.0101
Lower 5%	-12011.0457	-0.6211	76.5165	0.0746	3793.6472	5913.9744	-80336.4289
Upper 95%	184758.7092	-0.1272	527.8414	8.7166	10424.1637	13642.0575	-12319.1865

Degrees of Freedom		Hypothesis Test	
Degrees of Freedom for Regression	6	Critical t-Statistic (99% confidence with df of 20)	2.8453
Degrees of Freedom for Residual	20	Critical t-Statistic (95% confidence with df of 20)	2.0860
Total Degrees of Freedom	26	Critical t-Statistic (90% confidence with df of 20)	1.7247

TRADUCTION AND A CONTRACT OF A

.....

Data Analysis and Probability Distribution Fitting

Multivariate Analysis (Warship Prices) Unit Cost Displacement Speed ID Navy Ship Length (M) Year Value Q Crew (\$M) (KMH) (Tons) 1 DDG 51 2133 9648 1 R Distribution Fitting Result × 2 DDG 51 1553 2 9648 Distribution Test Statistics P-Value Rank \land 3 DDG 51 1884 9648 1 Gumbel Maximum 0.07 99.84 % 1 4 DDG 51 1423 9648 3 98.49 \$ Normal 0.0 98.33 % 5 DDG 51 Cosine 0.09 2372 9648 PERT 0.09 97.49 % 6 DDG 51 1615 9648 Parabolic 0.10 92.70 % 0.11 89.30 % Laplace 7 DDG 51 1330.5 9648 Lognormal 0.11 84.59 % 8 DDG 1000 3554 15730 Triangular 0.12 84.40 % 0.12 84.29 % Gumbel Minimum 9 DDG 1000 3010 15730 0.12 83.33 % 10 Gamma 82.27 % 10 Joint High Speed Vessel (JHSV) 185 2397 Lognormal 3 0.12 11 12 0.12 79.54 % Cauchy 11 Joint High Speed Vessel (JHSV) 2397 184 1 Uniform 0.13 70.73 % 13 14 Pearson VI 0.14 60.74 % 12 Joint High Speed Vessel (JHSV) 376 2397 1 15 0.15 55.93 % Exponential 2 13 Joint High Speed Vessel (JHSV) 207 2397 1 16 0.16 46.45 % Double Log v 14 LHA 6 America 3204 45695 < 1 15 LHA 6 America 3213 45695 1 Statistical Summary 16 Littoral Combat Ship 1077 3292 Normal 1 Theoretical vs. Empirical Distribution Mean = 1990 74 17 Littoral Combat Ship 1147 3293 1 Standard Deviation = 1290.26 3.5 18 Littoral Combat Ship 1858 3294 1 3.0 19 Littoral Combat Ship 1821 3295 1 Kolmogorov-Smirnov Test Statistic 2.5 Test Statistic: 0.09 20 LPD 17 San Antonio Class 1903 25300 1 2.0 P-Value: 98.49 % 21 LPD 17 San Antonio Class 2088 25300 1 1.5 Actual Theoretical 22 USS Ticonderoga (CG 47) 1000 9754 1 1.0 2096.70 1990.74 Mean 23 DD-21 Zumwalt 2700 16000 0.5 1 Stdev 1290.26 1290.26 24 Nimitz Class Aircraft Carrier (CVN 68) 4045 99800 0.0 1 0.39 0.00 Skewness -4000 -2000 0 2000 4000 6000 800 Kurtosis -0.510.00 25 Nimitz Class Aircraft Carrier (CVN 68) 3421.3 99800 1 26 Nimitz Class Aircraft Carrier (CVN 68) 4568.8 99800 1 Automatically Generate Assumption OK Cancel 27 Nimitz Class Aircraft Carrier (CVN 68) 4738.2 99800 1

Similar methodology in "Why Has the Cost of Navy Ships Risen?" RAND National Defense Research Institute 2006 Data Source: http://www.bga-aeroweb.com/Defense/DDG-51-AEGIS-Destroyer.html http://www.globalsecurity.org/military/systems/ship/ddg-51.htm http://www.defenseindustrydaily.com/adding-arleigh-burkes-northrop-grumman-underway-06007/

18

Monte Carlo Simulation and Uncertainty Analysis

	同 同 如 办
▰▤◍◍◍◍◍▱▱▱▱▱▫▯▯▯▯▯	
Parametric Simulated Cost (1000000 Trials)	Statistics Resu
60000 T	1.1 Number of Trials 100000
	1.0 Mean 2,248.289
	0.9 을 Median 2,197.529
40000	Median 2,197.329 0.8 Standard Deviation 812.117 0.7 Variance 659.534.762
40000	0.6 Coefficient of Variation 0.361
ě	0.5 3 Maximum 3,999.980
20000-	0.5 7 Maximum 3,999,90 0.4 8 Minimum 850,009 0.3 € Range 3,149,971
	0.210
	0.1 Kurtosis -0.921
0 932 1,932 2,932 3,932 4,93	0.0 25% Percentile 1,582.801 75% Percentile 2,867.684
	75% Percentile 2,867.684 Percentage Error Precision at 95% Confidence 0.0708
Type Two-Tail 💌 1,018.509 3,660.618 Certainty % 90	
Chart Type Bar View View	Data Filter
, _ , _ ,	Show all data
Min Max Auto Title Parametric Simulated Cost	
X-Axis	(10) Show only data between -Infinity and Infinity
Y-Axis Save Default Colors	O Show only data within 6
	Statistic
Distribution Fitting Actual Theoretical (Continuous	Precision level used to calculate the error: 95 + %
Distribution Mean O Discrete	
Fit Stats: Stdev 2 Discrete	Show the following statistic(s) on the histogram:
экеш	🛛 Mean 🗌 Median 🗌 1st Quartile 🗌 3rd Quartile
P-Value: Kurt Fit	Show Decimals
Histogram Resolution	Chart X-Axis () 🜩 Confidence 3 🜩 Statistics 4 🜩
Faster Higher	Display Control
Simulation , , , , , , , , , , , , , , , , , , Resolution	
Data Update Interval	Semitransparent When Inactive Minimize All
Faster Faster	
Update	n Copy Chart

WWW.NPS.EDU

Yes, there's tons of advanced math involved...

	$Z_t \sim \text{Normal Distribution}$	$Z_t \sim$ T-Distribution
GARCH-M	$y_t = c + \lambda \sigma_t^2 + \varepsilon_t$	$y_t = c + \lambda \sigma_t^2 + \varepsilon_t$
Variance in	$\mathcal{E}_t = \sigma_t Z_t$	$\mathcal{E}_t = \sigma_t Z_t$
Mean Equation	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
GARCH-M	$y_t = c + \lambda \sigma_t + \varepsilon_t$	$y_t = c + \lambda \sigma_t + \varepsilon_t$
Standard	$\varepsilon_t = \sigma_t Z_t$	$\mathcal{E}_t = \sigma_t Z_t$
Deviation in Mean Equation	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
GARCH-M	$y_t = c + \lambda \ln(\sigma_t^2) + \varepsilon_t$	$y_t = c + \lambda \ln(\sigma_t^2) + \varepsilon_t$
Log Variance	$\mathcal{E}_t = \sigma_t Z_t$	$\mathcal{E}_t = \sigma_t Z_t$
in Mean Equation	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
GARCH	$y_t = x_t \gamma + \varepsilon_t$	$y_t = \varepsilon_t$
GARCH	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$	$\varepsilon_t = \sigma_t Z_t$
		$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$
	$y_t = \varepsilon_t$	$y_t = \varepsilon_t$
	$\mathcal{E}_t = \sigma_t Z_t$	$\mathcal{E}_t = \sigma_t Z_t$
	$\ln\left(\sigma_{t}^{2}\right) = \omega + \beta \cdot \ln\left(\sigma_{t-1}^{2}\right) +$	$\ln\left(\sigma_{t}^{2}\right) = \omega + \beta \cdot \ln\left(\sigma_{t-1}^{2}\right) +$
EGARCH	$\alpha \left[\left \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right - E(\varepsilon_t) \right] + r \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$	$\alpha \left[\left \frac{s_{t-1}}{\sigma_{t-1}} \right - E(s_t) \right] + r \frac{s_{t-1}}{\sigma_{t-1}}$
	$E(\varepsilon_t) = \sqrt{\frac{2}{\pi}}$	$E(\varepsilon_t) = \frac{2\sqrt{\nu-2} \Gamma((\nu+1)/2)}{(\nu-1)\Gamma(\nu/2)\sqrt{\pi}}$
	$y_t = \varepsilon_t$	$y_t = \varepsilon_t$
	$\mathcal{E}_t = \sigma_t Z_t$	$\mathcal{E}_t = \sigma_t Z_t$
CIP CARCI	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + $	$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \varepsilon_$
GJR-GARCH	$r\varepsilon_{t-1}^2 d_{t-1} + \beta \sigma_{t-1}^2$	$r\varepsilon_{t-1}^2 d_{t-1} + \beta \sigma_{t-1}^2$
	$d = \int 1$ if $\varepsilon_{t-1} < 0$	$d_{t-1} = \begin{cases} 1 & \text{if } \varepsilon_{t-1} < 0 \\ 0 & \text{otherwise} \end{cases}$
	$d_{t-1} = \begin{cases} 1 & \text{if } \mathcal{E}_{t-1} < 0 \\ 0 & \text{otherwise} \end{cases}$	$a_{t-1} = \begin{cases} 0 & \text{otherwise} \end{cases}$

NAVAL

SCHOOL

POSTGRADUATE

The Brownian motion random walk process takes the form of $\frac{\delta S}{S} = \mu(\delta t) + \sigma \varepsilon \sqrt{\delta t}$ for regular options simulation, or a more generic version takes the form of $\frac{\delta S}{S} = (\mu - \sigma^2 / 2)\delta t + \sigma \varepsilon \sqrt{\delta t}$ for a geometric process. For an exponential version, we simply take the exponentials, and as an example, we have $\frac{\delta S}{S} = \exp\left[\mu(\delta t) + \sigma \varepsilon \sqrt{\delta t}\right]$.

The following are the variable definitions:

- S as the variable's previous value
- δS as the change in the variable's value from one step to the next
- μ as the annualized growth or drift rate
- σ as the annualized volatility

In order to estimate the parameters from a set of time-series data, the drift rate and volatility can be found by setting μ to be the average of the natural logarithm of the relative returns $ln \frac{S_t}{S_{t-1}}$, while σ is the standard deviation of all $ln \frac{S_t}{S_{t-1}}$ values.

Autoregressive Integrated Moving Average or ARIMA(p,d,q) models are the extension of the AR model that uses three components for modeling the serial correlation in the time series data. The first component is the autoregressive (AR) term. The AR(p) model uses the p lags of the time series in the equation. An AR(p) model has the form: $y_t = a_1y_{t,1} + ... + a_2y_{t,p} + e_t$. The second component is the integration (d) order term. Each integration order corresponds to differencing the time series. I(1) means differencing the data once. I(d) means differencing the data d times. The third component is the moving average (MA) term. The MA(q) model uses the q lags of the forecast errors to improve the forecast. An MA(q) model has the form: $y_t = e_t$ $+ b_1e_{t-1} + ... + b_qe_{t-q}$. Finally, an ARMA(p,q) model has the combined form: $y_t = a_1y_{t-1} + ... + a_p$ $y_{t-p} + e_t + b_1e_{t-1} + ... + b_qe_{t-q}$.

Conclusions

- This Cost Modeling methodology and supporting toolset can be used to monitor project activities, costs (total, fixed, and variable), and schedule to build U.S. Navy Ships within an integrated risk management approach.
- Based on publicly available information and aligned to our estimations (*bottom-up* and *top-down*), the next generation of U.S. Navy Destroyer Ships could cost between \$2.04B and \$3.18B each (90% confidence) including managerial, administrative, support, and commissioning activities. Prices decrease with bulk orders due to synergy and flatter learning curves.
- The project implementation (schedule), considering the complex integration of the Air and Missile Defense Radar (AMDR) systems, the Electronic Warfare Systems (EWS), and the Fire Control Systems (e.g., in the AEGIS and MK), could be completed between 107 and 147 weeks (90% confidence).
- The literature and our estimations reveal that the development and integration of Radar and Weapons Systems, and the assembly and erection of Warship sections are critical to successfully develop U.S. Navy Destroyers.

Recommendations

- Although this study relies on publicly available information for the cost and schedule modeling, it requires updated and more specific project management information from the incumbent decision makers, previous DDG projects and Navy Ships specifications, and Contractors & U.S. Navy project controls and deliverables to better calibrate the models and to improve the estimations.
- Using the proposed methodology and cost modeling approach, decision makers can accurately visualize the milestones and risks in U.S. Navy shipbuilding. Therefore, the U.S. Navy can make use of these project economic analysis tools (cost and schedule, multivariate analysis and auto econometrics, risk analysis, simulations, and project portfolios and sections management, among other aspects) to better control its acquisitions, capital investments, and capital budgeting in warship building.

Next Steps

- Collecting and using actual cost data and better cost estimates going forward in order to better calibrate the inputs based on real-life conditions. (We can provide inputs and suggestions on how to generate a database and methods to capture said required data.)
- Using the simulated probability distributions to determine how well the vendors are performing (e.g., running at 92% efficiency etc.), thus creating level of performance metrics for the organization.
- Using control charts (based on simulated results) to determine if any processes and tasks are incontrol or out-of-control over time.
- Identifying critical success factors to start collecting cost and schedule data for better estimates.
- Incorporating learning curves and synergies when more than one ship is in order and the unit cost per ship would be lower.

NAVAL POSTGRADUATE SCHOOL

APPENDIX Analytical Details

Monterey, California www.N#S.EDU

Abstract

This research project pertains to the development of alternative ship cost modeling methodologies. Most ship cost modeling has been traditionally weight-based. This approach drives the U.S. Navy to select smaller ships that, consequently, require custom-designed shipboard components. This research project is intended to help determine if there is a more accurate way to empirically predict, forecast, and model ship cost. Current and forecasted Department of Defense (DOD) budgets require identifying, modeling, and estimating the costs of shipbuilding. Information and data were obtained via publicly available sources and were collected, collated, and used in an integrated risk-based cost and schedule modeling methodology. The objective of this study is to develop a comprehensive cost modeling strategy and approach, and, as such, notional data were used. Specifically, we used the Arleigh Burke Class Guided Missile Destroyer DDG 51 Flight I, Flight II, Flight III, and Flight III as a basis for the cost and schedule assumptions, but the modeling approach is extensible to any and all other ships within the U.S. Navy. The results will be used to develop recommendations and develop a cost modeling tool on how to implement ship cost forecasts. This example will provide a roadmap for other new ship cost modeling by the U.S. Navy, thereby improving effectiveness and increasing cost savings.

- Overview of U.S. Navy Ships (DDG 51 Destroyer Class)
- Department of Defense (DoD) Budget Data
- Global Costs and Scheduling Perspective
- Scheduling Information from BIW Contractor (GAO)
- Process Flow: Planning, Design, Construction, Integration, Trials & Commissioning

Cost Modeling (Research and Data Analysis)

Cost Information on Electrical, Radars (AMDR), Electronic Warfare, Fire Control, and Additional Systems

Category	Items	Quantity	Min Unit Cost	Aveg Unit Cost	Max Unit Cost	Total Cost (\$M)
Energy Systems	LM2500 GE Marine Gas Turbines 105,000 shp (90,000 sust.)	4	2.000	2.5	3.000	10.00
Lifeigy systems	3 Allison 2500 KW Gas Turbine Generators	3	0.280	0.35	0.420	1.05
	2 Shafts with CRP (Controllable Reversible Pitch) Propellers	2	0.200	0.00	01420	1.00
	2 5-blade CP Rudders	2				
	SSGTG (Ship Service Gas Turbine Generators)	1				
	High Power Generation Plants	1				
	High Power Efficiency AC Plants	1				
	Total	14.00	2.28	2.85	3.42	11.05
	AN/SPY-6(V) Air and Missile Defense Radar (AMDR)					
Radar Systems	Air & Missile Defense Radar (A&MD Radar) and Combat System Integrator	1	308.560	385.70	462.840	385.70
	Total	1.00	308.56	385.70	462.84	385.70
Electronic warfare & decoys	AN/SLQ-32(V)2 Electronic Warfare System	1	2.000	2.5	3.000	2.50
	AN/SLQ-25 Nixie Torpedo Countermeasures					
	MK 36 MOD 12 Decoy Launching System					
	AN/SLQ-39 CHAFF Buoys					
	Total	1.00	2.00	2.50	3.00	2.50
Fire control	AEGIS Weapon System MK-7	1	51.240	42.7	51.240	42.70
	MK116 MOD 7 Underwater Fire Control System					
	AN/SQQ-89 ASW Combat System					
	AN/SWG-I A (V) Harpoon Launcher Control System					
	AN/SWG-3A TOMAHAWK Weapon Control System					
	MK 99 Fire Control System					
	Total	1.00	51.24	42.70	51.24	42.70
Extra capabilities	Helo landing capability	1.00	51.24	42.70	51.24	42.70
LAGA Capabilities	Dual Hangars for organic Helo support					
	Rigid hull inflatable boats (Defender)	2	0.01	0.0175	0.025	0.04
	Total	2.00	0.01	0.0175	0.025	0.04
Support	Suppor services and Yard Admin	1	7	10	20	10.00
Support	Total	1.00	7.00	10.00	20.00	10.00
	i otur	1.00	7.00	10.00	20.00	10.00

23.

Schedule and Costs of Global Warship Building

🜌 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 2.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL —

File Edit Projects Report Tools Language Decimals Help

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

Ship Building ICT Navigation Weapon Systems Aircraft Electrical Systems Radar Systems Extra Systems Support Processes Portfolio Analysis

Select the Project Schedule & Cost Risk Model to use:		Model to use:	O Sequential Path		Complex Network Path		Project Name/Note	s:		
Network Diagram Schedule & Cost										
Include Schedule-Based Cost Analysis										
Include Budget Overrun & Buffers			Perform Risk Simulation					R	un	Run All Projects
	Show 27	Tasks with	Weekly	\sim	Simulation	Trials: 1,000,000	Apply Seed Value:		123 Triangular	· ·
Task 6	Sheet Metal	19.70	24.62	29.55	27	1.27	2.00	2.73	0.04	10.00%
Task 7	Electrical Shop	19.70	24.62	29.55	29	3.17	5.00	6.84	0.40	10.00%
Task 8	Added Requirements	2.36	3.07	4.76	4	2.53	4.00	5.47	0.16	10.00%
Task 9	Yard Definition	2.63	3.41	5.29	4	2.53	4.00	5.47	0.16	10.00%
Task 10	Sections Definition	2.89	3.75	5.82	4	1.27	2.00	2.73	0.16	10.00%
Task 11	Prep & Fab	1.84	2.38	3.70	4	3.80	6.00	8.20	0.16	10.00%
Task 12	Sub Assembly	21.01	27.25	42.33	31	2.53	4.00	5.47	0.24	10.00%
Task 13	Transport	13.13	17.03	26.45	20	1.90	3.00	4.10	0.24	10.00%
Task 14	Assembly	31.51	40.88	63.49	47	3.17	5.00	6.84	0.40	10.00%
Task 15	Preoutfit Hot	13.13	17.03	26.45	20	1.90	3.00	4.10	0.24	10.00%
Task 16	Blast & Paint	3.15	4.09	6.35	5	1.90	3.00	4.10	0.24	10.00%
Task 17	Preoutfit Cold	2.63	3.41	5.29	4	1.27	2.00	2.73	0.16	10.00%
Task 18	Erect/Wet Berth	39.39	51.10	79.36	57	1.90	3.00	4.10	0.24	10.00%
Task 19	HME Global Testing	55.14	71.54	111.10	87	6.33	10.00	13.67	0.79	10.00%
Task 20	Electrical	4.40	11.05	17.70	20	17.07	44.00	70.93	0.16	10.00%
Task 21	Comm & Nav System	19.64	47.07	74.50	61	19.40	50.00	80.60	0.16	10.00%
Task 22	Radar & EWS	158.16	385.70	613.24	435	23.28	60.00	96.72	0.16	10.00%
Task 23	Weapon Systems	514.54	1,262.38	2,010.21	1,397	18.62	48.00	77.38	0.16	10.00%
Task 24	Aircraft	24.56	61.54	98.52	71	13.97	36.00	58.03	0.08	10.00%
Task 25	Extras	18.03	45.24	72.44	52	9.31	24.00	38.69	0.08	10.00%
Task 26	Sea Trials	42.01	54.50	84.65	74	5.06	8.00	10.94	1.59	10.00%
Task 27	QC & Approval	26.26	34.07	52.91	38	1.90	3.00	4.10	0.24	10.00%

 \times

WBS and Network Diagram (Weapons Systems)

[M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 2.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL –
Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.
Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center
Ship Building ICT Navigation Weapon Systems Aircraft Electrical Systems Radar Systems Extra Systems Support Processes Portfolio Analysis
Select the Project Schedule & Cost Risk Model to use: O Sequential Path O Complex Network Path Project Name/Notes:
Network Diagram Schedule & Cost
Image: Image
Integration with Existing Systems
WEAPONS SYSTEM
Task 6 Electrical Systems
Planning Procurement
Task 1 Task 3 Task 4 Task 5 Task 7
Systems AC Systems
AEGIS Weapons System (AWS Standard Missile (SM-2MR)
Vertical Launch ASROC (VLA) missiles; 96 cell MK 41 VLS Fire Control
Navy requirements Tomahawk; six MK-46 torpedos (from two triple tube mounts); Close In Weapon System (CIWS),
5-in. MK 45 Gun, Evolved Sea Sparrow Missile (ESSM)
MK 38 selfdefense guns ICT Systems QC & Approval Land-Attack Guns Other and Control of the Mercine
Other type of Guided Missiles Other type of defined Guns and Torpedoes
Arrange Machinery
Task 11
Enclose Area

WWW.NPS.EDU

Schedule and Costs of Global Warship Building (Weapons Systems)

🜌 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 2.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL – 🗌 🗙

File Edit Projects Report Tools Language Decimals Help

NAVAL

.....

22

SCHOOL

POSTGRADUATE

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

Ship Building ICT Navigation Weapon Systems Aircraft Electrical Systems Radar Systems Extra Systems Support Processes Portfolio Analysis

Select the	Project Schedule & Cost Ri	sk Model to use:	◯ Sequer	ntial Path	Complex Netwo	ork Path	Project Name/Notes:				
Network	Diagram Schedule & Cos	st									
Includ	e Schedule-Based Cost Ana	alysis			lude Probabilities of Succ	ess of Each Task an	d Model Their Impacts				
Includ	e Budget Overrun & Buffer	s		🗹 Per	form Risk Simulation			Run		Run All Projects	
	Show 16 🚔	Tasks with	Weekly	\sim	Simulation 1	Trials: 1,000,000	Apply Seed Value:		123	Triangular	\
			Cost (Fixed Cost)		Computed		Time Schedule (Weeks))		Variable	Overrun
Task	Task Name	Minimum	Most Likely	Maximum	Cost	Minimum	Most Likely	Maximum	v	Veekly Cost	Assumption
Task 1	Planning	15.98	25.25	34.51	30	1.27	2.00	2.73		0.94	10.00%
Task 2	Navy Requirements	15.98	25.25	34.51	30	1.27	2.00	2.73		0.94	10.00%
Task 3	Procurement	7.35	18.94	30.52	25	1.55	4.00	6.45		0.94	10.00%
Task 4	Systems	342.86	883.66	1,424.46	997	9.31	24.00	38.69		0.94	10.00%
Task 5	Installation	12.25	31.56	50.87	39	1.55	4.00	6.45		0.94	10.00%
Task 6	Electrical Systems	19.59	50.50	81.40	62	2.33	6.00	9.67		0.94	10.00%
Task 7	AC Systems	9.80	25.25	40.70	36	3.10	8.00	12.90		0.94	10.00%
Task 8	Fire Control	14.69	37.87	61.05	48	2.33	6.00	9.67		0.94	10.00%
Task 9	ICT Systems	22.04	56.81	91.57	71	3.10	8.00	12.90		0.94	10.00%
Task 10	Arrange Machinery	19.98	31.56	43.14	43	5.06	8.00	10.94		0.94	10.00%
Task 11	Enclose Area	11.99	18.94	25.89	23	1.27	2.00	2.73		0.94	10.00%
Task 12	Testing	14.69	37.87	61.05	45	1.16	3.00	4.84		0.94	10.00%
Task 13	QC & Approval	7.35	18.94	30.52	22	0.39	1.00	1.61		0.94	10.00%
					[
] [
	Project Total Cost	515	1,262	2,010	1,469						
	Expected Total Duration	on				34	48.00	122			

Expected Project Costs (Shipbuilding)

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 2.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL

File Edit Projects Report Tools Language Decimals Help

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

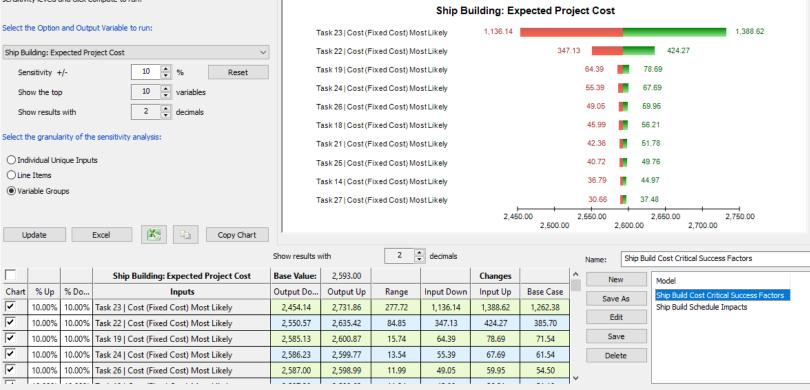
Static Tornado Scenario Analysis

2

~

1

~


~

.....

272

Tornado or static sensitivity analysis is performed by perturbing the inputs a	
preset amount one at a time to determine the impact on the output variable.	
Start by selecting the Option and Output Variable to test, then set the	
sensitivity levels and click Compute to run.	

🖻 🛢 🗿 📲 🕷 💠 💠 🐥 🖓 ♀ ಓ ಓ 比 比 🗇 👎 20 歩 ▼ 🤭 👯 👍 Labe... ▼ 🛍 ▼ 🍺

WWW.NPS.EDU

 \times

det.

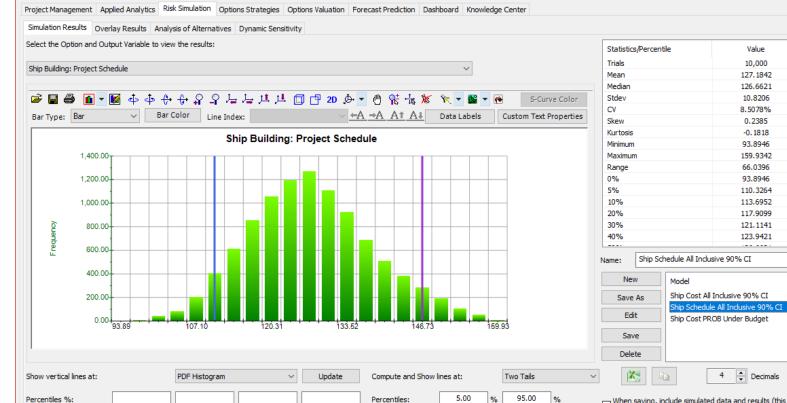
-COL

Expected Project Cost (Risk Profile)

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL _ × File Edit Projects Report Tools Language Decimals Help Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints. Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center Simulation Results Overlay Results Analysis of Alternatives Dynamic Sensitivity Select the Option and Output Variable to view the results: Statistics/Percentile Value Trials 10,000 Ship Building: Project Cost Mean 2,639.0133 Median 2,639.7344 유 우 뉴 뉴 브 브 🗇 🗗 20 & 🗸 🖱 😤 🖡 🗯 🚔 🛄 Stdev 354.7040 **€** € S-Curve Color -T-Yr 📼 CV 13.4408% Bar Color ←A →A A↑ A↓ Data Labels Bar Type: Bar Line Index: **Custom Text Properties** Skew -0.0361 Kurtosis -0.4957 Ship Building: Project Cost Minimum 1,633.9266 1,200.00 Maximum 3,578.7564 1,944.8298 Range 0% 1,633.9266 1.000.00 5% 2,042.9890 10% 2,159.2773 800.00 20% 2,326.3332 30% 2,447.4998 40% 2,546,4428 600.00 Ship Cost PROB Under Budget Name: 400.00 New Model 200.00 Ship Cost All Inclusive 90% CI Save As Ship Schedule All Inclusive 90% CI Edit 0.00 1,633.93 Ship Cost PROB Under Budget Save Delete 4 🔶 Decimals X. Show vertical lines at: PDF Histogram Update Compute and Show lines at: Left Tail <= \sim When saving, include simulated data and results (this may result 11.94 95.00 % Percentiles %: Percentiles: % in slower response and larger file sizes) Certainty Values: Value: 2,200.00 3,222.89 Copy Chart Show Gridlines Extract Simulation Data Open Save

1232

Expected Project Schedule (Risk Profile)


🜌 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL

File Edit Projects Report Tools Language Decimals Help

Certainty Values:

Copy Chart

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Value:

Show Gridlines

When saving, include simulated data and results (this may result in slower response and larger file sizes)

Open

X

Value

10,000

127.1842

126.6621

10.8206

8.5078%

0.2385

-0.1818

93.8946

159.9342

66.0396

93.8946

110.3264

113.6952

117.9099

121.1141

123.9421

Save

WWW.NPS.EDU

110.33

146.71

Extract Simulation Data

1230

Expected Project Schedule (Risk Profile)

🜌 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL 🛛 🗌 🗌

File Edit Projects Report Tools Language Decimals Help

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

X

1230

Expected Project Schedule (Risk Profile)

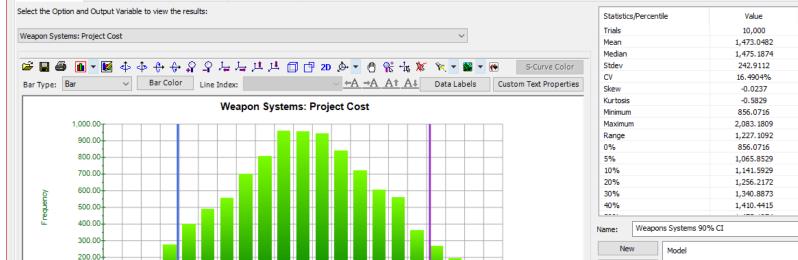
🜌 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL – 🗌 🗙

File Edit Projects Report Tools Language Decimals Help

100.00

Show vertical lines at:

Percentiles %:


Certainty Values:

0.00

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

Simulation Results Overlay Results Analysis of Alternatives Dynamic Sensitivity

Ship Schedule All Inclusive 90% CI Edit Ship Cost PROB Under Budget eapons Systems 90% CI Save Delete 4 🔶 Decimals X PDF Histogram Update Compute and Show lines at: Two Tails \sim When saving, include simulated data and results (this may result 5.00 95.00 Percentiles: % in slower response and larger file sizes) Value: 1,065.85 1,878.89 Copy Chart Show Gridlines Extract Simulation Data Open Save

Ship Cost All Inclusive 90% CI

Save As

Project Cost by Sections (Overlays and Stochastic Dominance)

NAVAL

.....

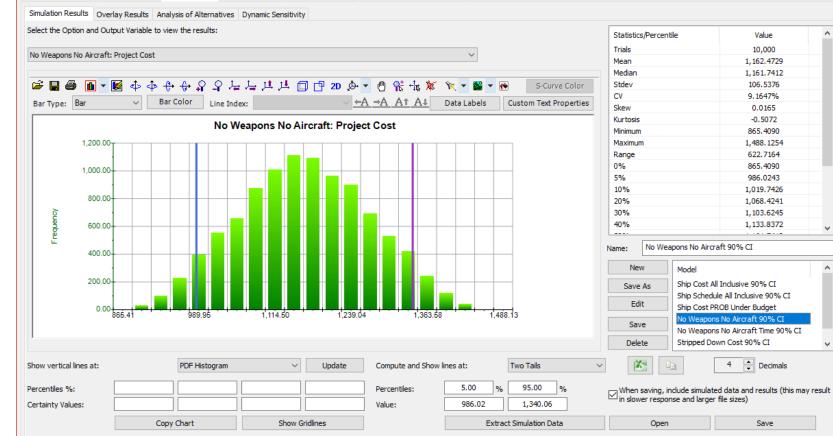
83%

SCHOOL

POSTGRADUATE

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Draft 3.rovprojecon] - PROJECT ECONOMICS ANALYSIS TOOL × File Edit Projects Report Tools Language Decimals Help Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints. Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center Simulation Results Overlay Results Analysis of Alternatives Dynamic Sensitivity Select multiple Option and Output Variables to view the simulated probabilistic chart results side by side. Copy Chart Name 💼 - 📓 추 추 승 승 유 우 누 뉴 샤 샤 🗇 🗇 20 🕭 - 🕐 왔 뉴 🕷 🔨 🗃 - 🖻 ൙ 🔛 🎒 Data Labels Ship Building: Project Cost Ship Building: Project Schedule S-Curve Color Line Index: ←A →A A↑ A↓ Custom Text Properties ✓ ICT Navigation: Project Cost ICT Navigation: Project Schedule PDF Curve Overlay ICT Navigation: Project Cost Weapon Systems: Project Cost Weapon Systems: Project Cost 1.600 Weapon Systems: Project Schedule - Electrical Systems: Project Cost Aircraft: Project Cost - Radar Systems: Project Cost Aircraft: Project Schedule 1.400 - Extra Systems: Project Cost Electrical Systems: Project Cost - Support Processes: Project Cost Electrical Systems: Project Schedule 1.200 Radar Systems: Project Cost 0 PDF Curve Overlay 1.000 Selected S-Curve: Support Processes: Project Cost 800 Percentiles %: 600 Certainty Values: 400 Update Show Gridlines 200 Weapons-Radar has Major Impact Name: 500 1.000 1.500 2.000 2.500 New Model ICT-Electrical-Aircraft Save As Weapons-Radar has Major Impact Edit ICT Navigation: Project Cost and Weapon Systems: Project Cost Overlap 0.00% Δ Save ICT Navigation: Project Cost and Electrical Systems: Project Cost Overlap 0.98% ICT Navigation: Project Cost and Radar Systems: Project Cost Overlap 0.00% Delete ICT Navigation: Project Cost and Extra Systems: Project Cost Overlap 16.25%

100


Project Cost by Predefined Configurations

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Alternatives - Draft 3.rovprojecon] - PROJECT ECONOMICS ANAL... – 🗌 🗙

File Edit Projects Report Tools Language Decimals Help

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

100

Project Cost by Predefined Configurations

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Alternatives - Draft 3.rovprojecon] - PROJECT ECONOMICS ANAL... - 🗌 🗙

File Edit Projects Report Tools Language Decimals Help

Ship Stripped Down: Project Cost

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Statistics/Percentile

Trials

Mean Median

Stdev

CV

Value

10,000

598.3038

597.5532

22.7358

3.8000%

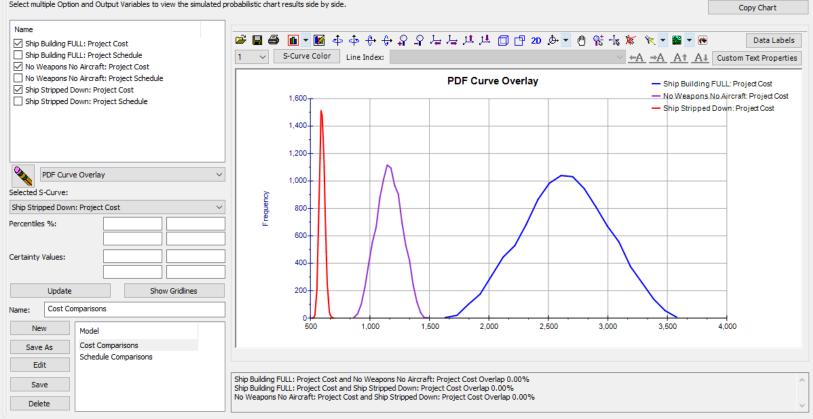
Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

Par Type: Bar
 V Bar Color
 Line Index:
 V ←A →A A↑ A↓ Data Labels
 Custom Text Properties
 Custom Te

22

Project Risk Analysis (Costs Comparisons)

📧 [M:\Client Projects\Navy and Department of Defense\2016-06 Cost Estimation for Ship Building\Models\Cost Estimation Models - Alternatives - Draft 3.rovprojecon] - PROJECT ECONOMICS ANAL...


File Edit Projects Report Tools Language Decimals Help

Welcome to the ROV Project Economics Analysis Tool (PEAT). This tool will help you set up a series of projects or capital investment options, model their cash flows, simulate their risks, and run advanced analytics, perform forecasting and prediction modeling, and optimize your investment portfolio subject to budgetary and other constraints.

Project Management Applied Analytics Risk Simulation Options Strategies Options Valuation Forecast Prediction Dashboard Knowledge Center

Simulation Results Overlay Results Analysis of Alternatives Dynamic Sensitivity

Select multiple Option and Output Variables to view the simulated probabilistic chart results side by side.

X

Global Costs and Scheduling Perspective

USN

US Navy Photo

FY 2016 Program Acquisition Costs by Weapon System

DDG 51 ARLEIGH BURKE Class Destroyer

The DDG 51 class guided missile destroyers provide a wide range of warfighting capabilities in multi-threat air, surface, and subsurface environments. The DDG 51 class ship is armed with a vertical launching system, which accommodates 96 missiles, and a 5-inch gun that provides Naval Surface Fire Support to forces ashore and anti-ship gunnery capability against other ships. The DDG 51 class is the first class of destroyers with a ballistic missile defense capability.

The Arleigh Burke class is comprised of four separate variants; DDG 51-71 represent the original design, designated Flight I ships, and are being modernized to current capability standards; DDG 72-78 are Flight II ships; DDG 79-123 ships are Flight IIA ships; and, in FY 2016, DDG-124 will become the first Flight III ship. Flight III ships will feature the Air and Missile Defense Radar (AMDR) capability.

Mission: Provides air and maritime dominance and land attack capability with its AEGIS Weapon System, AN/SQQ-89 Anti-Submarine Warfare System, and Tomahawk Weapon Systems.

FY 2016 Program: Funds two DDG 51 AEGIS class destroyers as part of a multiyear procurement for ten ships from FY 2013 - FY 2017.

OFFICE OF THE UNDER SECRETARY OF DEFENSE (COMPTROLLER)/CFO		DD	G 5 I	ARLEIC	GH B	URKE C	lass D	estro	yer		
FEBRUARY 2015		FY 20	ы	FY 20	15			FY 2	016		
		FT 20	14	FI 20	15	Base	Budget	000	Budget	Total Re	equest
		\$M	Qty	\$M	Qty	\$M	Qty	\$M	Qty	\$M	Qty
	RDT&E	183.3	-	87.1	-	183.3	-	-	-	183.3	-
	Procurement	2,086.4	1	2,931.6	2	3,286.8	2	-	-	3,286.8	2
PROGRAM ACQUISITION COST BY	Total	2,269.7	1	3,018.7	2	3,470.1	2			3,470.1	2
WEAPON SYSTEM								Nun	nbers may	not add due to	rounding
UNITED STATES DEPARTMENT OF DEFENSE FISCAL YEAR 2016 BUDGET REQUEST	6-3					SHIPB	UILDIN	IG ANI	D MAR	ITIME SYS	STEMS

US Navy awards DDG 51 ships construction contracts

0

4 June 2013

The US Navy has awarded two contracts to General Dynamics (GD) Bath Iron Works (BIW) and Huntington Ingalls Industries (HII) to construct a total of nine DDG 51 Arleigh Burkeclass guided missile ships, with an option for a tenth vessel in a Flight IIA configuration.

General Dynamics BIW has received a fixed-

price incentive firm target contract worth \$2.84bn for the design and construction of four DDG 51-class ships, one in 2013 and one each year from 2015-2017, as well as an option for a fifth ship.

http://www.navaltechnology.com/news/newsusnavyawardddg51shipsconstructioncontracts

Design Delays

NAVAL

SCHOOL

POSTGRADUATE

Bath Iron Works planned to prepare production drawings using computer-aided design, but major problems arose. The computer equipment did not have adequate data storage capacity needed to design a complex warship. Design delays were also due to Navy changes in ship requirements, late government-furnished design data for the reduction gear, and difficulties with several developmental systems. As of November 1989, Bath Iron Works and Navy representatives believed that design problems had been resolved and production drawings were essentially complete. GAO believes that the installation and integration of the ship systems, which still has to be done, could surface additional design or performance problems.

Construction Problems

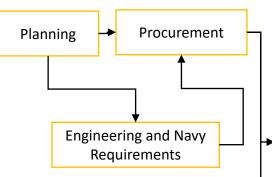
Design and other problems contributed to two revisions to the ship's scheduled delivery, totaling 17 months. The last revision to the delivery schedule was made in February 1988. The ship, originally scheduled to be completed in September 1989, is currently scheduled for delivery in February 1991. Bath Iron Works is accelerating construction to meet this date.

Bath Iron Works launched the lead ship in September 1989. According to Bath Iron Works representatives, the ship was more than 50 percent complete in October 1989. However, to complete the ship requires incorporating and integrating the AEGIS combat system and demonstrating that other systems, such as the collective protection system, work as designed.

In January 1989, the Navy modified the DDG-52 contract to provide for better helicopter support capabilities, which rescheduled the delivery date by 8 months. Also, the Navy has approved a proposal by Bath Iron Works to reschedule the DDG-53 construction schedule. The 7-month rescheduling will allow Bath Iron Works to more efficiently schedule its work on other ships it is building for the government. These ships will be delivered earlier than expected.

۵ 🌢 **United States General Accounting Office** Report to the Secretary of Defense GÃO January 1990 NAVY SHIPBUILDING Cost and Schedule Problems on the DDG-51 AEGIS **Destroyer** Program http://www.gao.gov/assets/150/148526.pdf

Cost Modeling (Research and Data Analysis)


Cost information on Communications was obtained as shown here...

		Min Unit	Aveg Unit	Max Unit	
Items	Quantity	Cost	Cost	Cost	Total Cost (\$M)
	5.00	967.39	1,248.62	1,897.64	1,248.62
Interior Communications					
AN/STC-2(V) Integrated Voice Communications System (IVCS), IC	1	0.0064	0.008	0.0096	0.01
AN/USQ-82(V) Fiber Optic Data Multiplex System (FODMS)	1	0.784	0.98	1.176	0.98
Exterior Communications:					
High Frequency (HF) radio group AN/URC-131A(V)	2	0.012	0.015	0.018	0.03
Very High Frequency (VHF) transmit and receive, 30-162 MHz:					
- AN/GRC-211; two transceivers for non-secure voice.					
- AN/VRC-46A; two FM transceivers for secure voice.					
- AN/URC-139; one transceiver for bridge-to-bridge communications.	3	0.008	0.01	0.012	0.03
Ultra High Frequency (UHF) transmit and receive, 220-400 MHz:					
- AN/GRC-171B(V)4; two transceivers for Link 4A.					
- AN/WSC-3(V)7, 11; sixteen transceivers.	2	0.044	0.062	0.08	0.12
Satellite Communications (SATCOM) transmit and/or receive:					
- AN/USQ-122A(V); one receiver for fleet broadcast.					
- AN/WSC-3(V)15; two transceivers for digital exchange system.	2	0.04	0.057	0.074	0.11
38(V)2; one transceiver.	1	1.009	1.262	1.514	1.26
Infrared transmit and receive:					
- AN/SAT-2A; one IR transmitter.					
Landline terminations, transmit and/or receive:					
- Single channel Disable Communications (DC) secure Teletypewriter (TTY).					
- Telephone.					
Special communications channel:					
- ON-143(V)6/USQ: Officer in Tactical Command Information Exchange					
Subsystem(OTCIXS).					
- ON-143(V)6/USQ: Tactical Data Information Exchange System (TADIXS).					
- TADIXS-B/CTT-H3.					
- AN/SYQ-7A(V): Naval Modular Automated Communication					
System/Common User Digital Exchange System (NAVMACS/CUDIXS).					
- AN/UYQ-62(V)2, Command and Control Processor (C2P).	7	0.04	0.056	0.072	0.39
Underwater Communications:					
- AN/WQC-2A sonar communications set.					
- AN/WQC-6 sonar communications set.	2	4.133	5.166	6.199	10.33
WWW.NPS.EDU					42

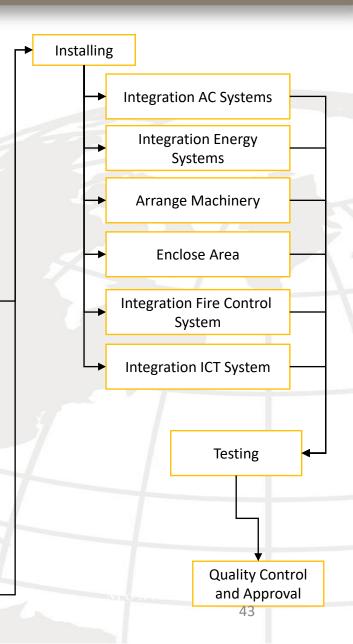
Project Tasks (ICT and Navigation Systems)

Information, Communication & Technology

http://www.seaforces.org/usnships/ ddg/Arleigh-Burke-class.htm

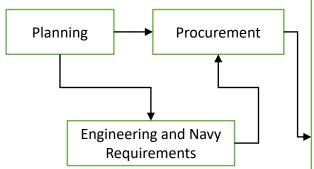
Navigational Equipment

Interior Communications

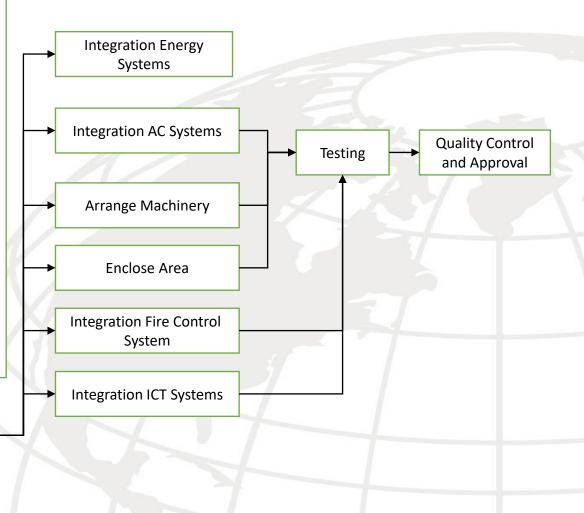

- AN/STC-2(V) Integrated Voice Communications System (IVCS), IC switchboards.
- AN/USQ-82(V) Fiber Optic Data Multiplex System (FODMS).

Exterior Communications

- High Frequency (HF) radio group AN/URC-131A(V).
- "Very High Frequency (VHF) transmit and receive, 30-162 MHz:- AN/GRC-211; two transceivers for nonsecure voice.- AN/VRC-46A; two FM transceivers for secure voice.-AN/URC-139; one transceiver for bridge-to-bridge communications."
- "Ultra High Frequency (UHF) transmit and receive, 220-400 MHz:- AN/GRC-171B(V)4; two transceivers for Link 4A.- AN/WSC-3(V)7, 11; sixteen transceivers."
- "Satellite Communications (SATCOM) transmit and/or receive:- AN/USQ-122A(V); one receiver for fleet broadcast.- AN/WSC-3(V)15; two transceivers for digital exchange system." / Extremely High Frequency (EHF) SATCOM transmit and receive:- AN/USC-38(V)2; one transceiver. / "Infrared transmit and receive:- AN/SAT-2A; one IR transmitter." / "Landline terminations, transmit and/or receive:- Single channel Disable Communications (DC) secure Teletypewriter (TTY).- Telephone."


Special Communications Channel

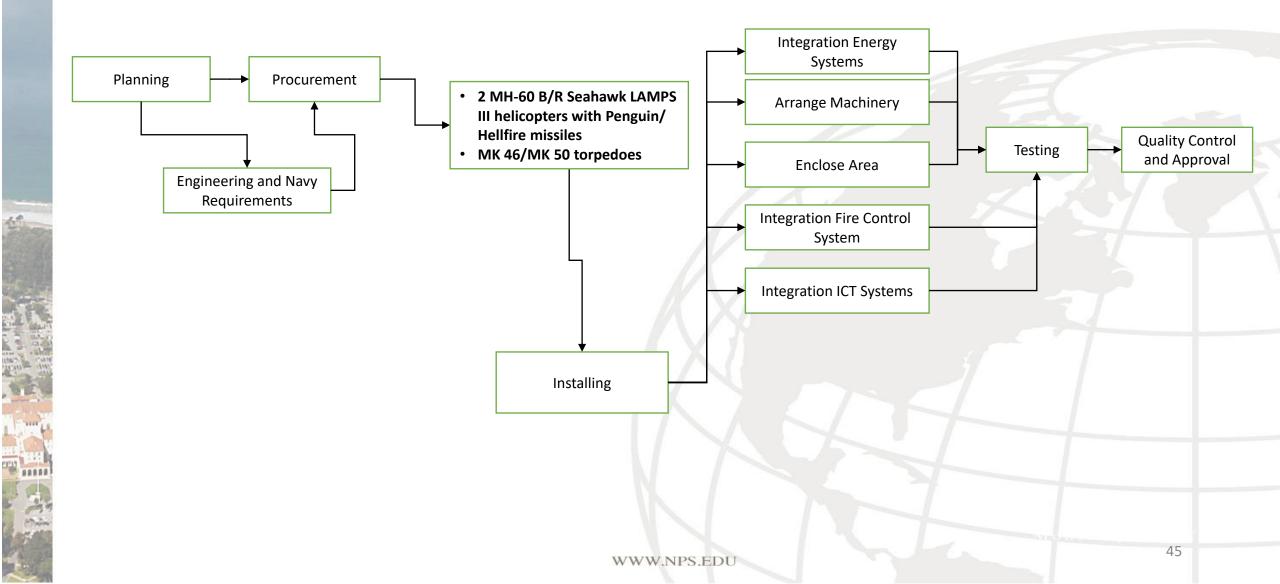
- "ON-143(V)6/USQ: Officer in Tactical Command Information Exchange Subsystem(OTCIXS).- ON-143(V)6/USQ: Tactical Data Information Exchange System (TADIXS).- TADIXS-B/CTT-H3.- AN/SYQ-7A(V): Naval Modular Automated Communication System/Common User Digital Exchange System (NAVMACS/CUDIXS).-AN/UYQ-62(V)2, Command and Control Processor (C2P).- AN/USQ-118(V)1, Link 11.-AN/URC-107(V): Joint Tactical Information Distribution System (JTIDS), Link 16." Underwater Communications
- AN/WQC-2A sonar communications set.- AN/WQC-6 sonar communications set.
- Computer-Aided Systems (Hardware and Software).
- AN/WSN-5 Inertial Navigation System; AN/WRN-6; ANISRN-25 (V); MK 4 MOD 2 Underwater Log; MK 6 MOD 4D Digital Dead Reckoning Tracer.
- AN/URN-25 TACAN; AN/SPS-64 (V) 9 I Band Radar.
- Navy Standard No. 3 Magnetic Compass; Chronometer Size 85; Flux Compass.



Project Tasks (Armament Systems)

- "RIM-66 Standard Missile SM-2MR; RIM-67/RIM-156 Standard Missile SM-2ERRIM-161 Standard Missile SM-3RIM-174 Standard ERAM"
- Vertical Launch ASROC (VLA) missiles
- MK 41 Vertical Missile Launch Systems (VLS)
- BGM-109 Tomahawk
- MK46 torpedoes
- (from two triple tube mounts)
- Close In Weapon System (CIWS),
- Mk-45 (Mod.1/2) 5"/54
- RIM Evolved Sea Sparrow Missile (ESSM)
- MK 38 self-defense guns
- Land-Attack Guns
- Other type of Guided Missiles (Guided shell)
- Other type of defined Guns and Torpedoes, missiles, being part of the ship's weapons systems

Installing


Sources:

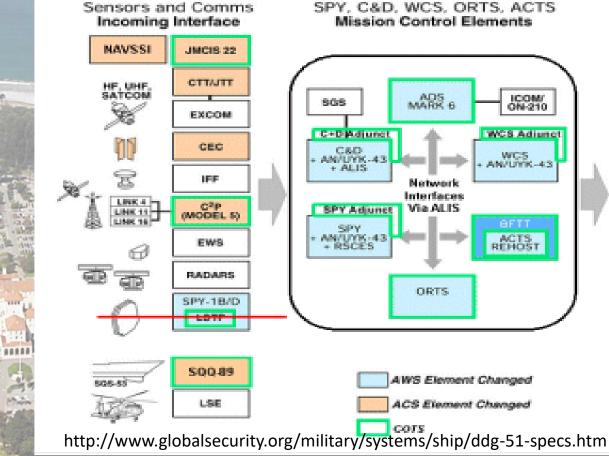
.....

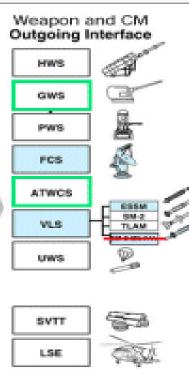
http://www.seaforces.org/usnships/ddg/Arleigh-Burke-class.htm http://www.globalsecurity.org/military/systems/ship/ddg-51-specs.htm

Project Tasks (Aircraft)

Current Aircraft and Armament Distribution

Flight I	Flight IIA
None. <u>LAMPS III electronics</u> installed on landing deck	Two multi-purpose Light Airborne Multipurpose
for coordinated DDG 51/helo ASW operations	System LAMPS MK III helicopters


ICOM/ ON-210


WC8 Adjunct

WCS

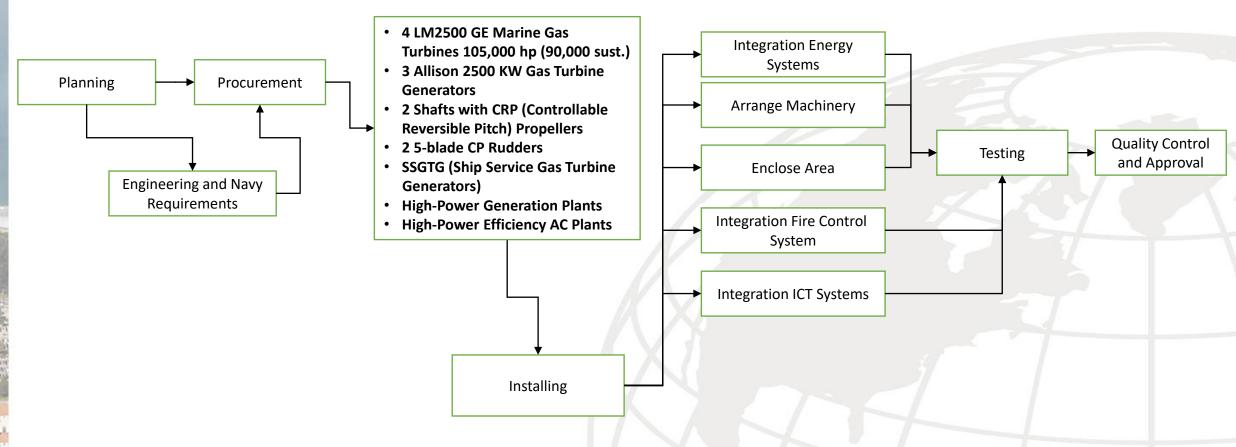
ACTS

AN/UYK-43

COUNTER.

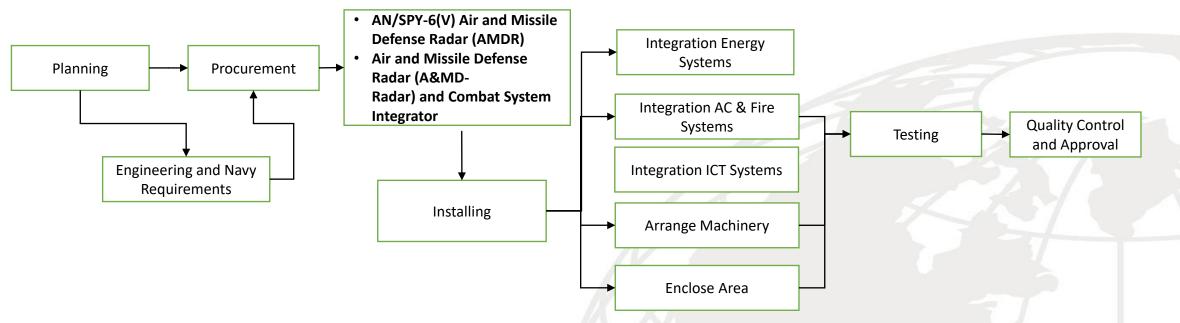
MEASURE

N CO B

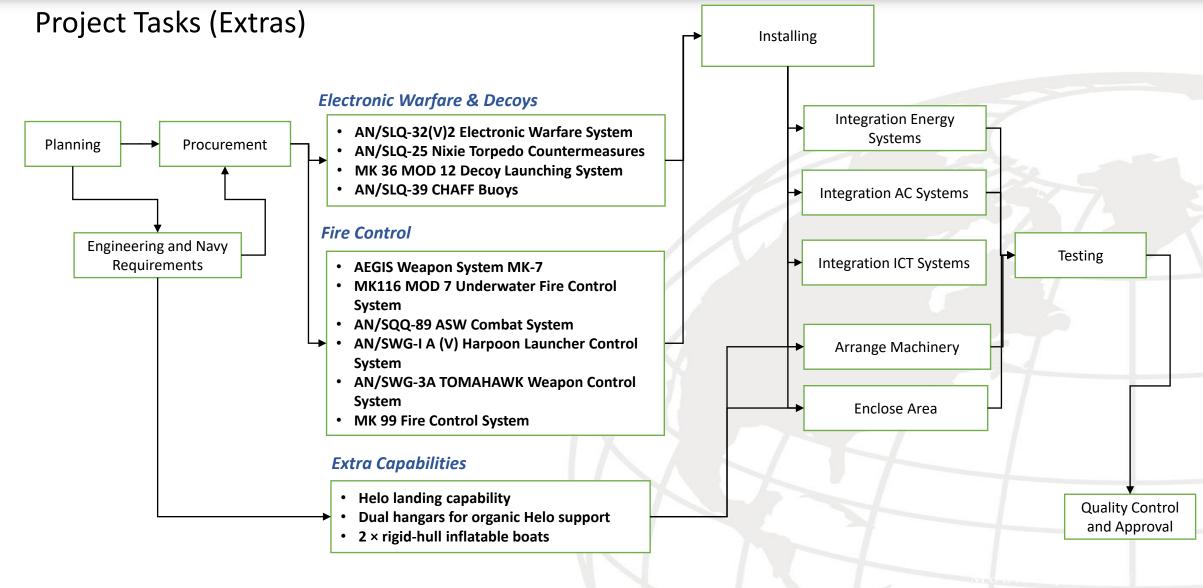

Missiles:

Flight I: 90 cell Mk 41 Vertical Launching System (VLS) Flights II and IIA: 96 cell Mk 41 VLS Tomahawk cruise missile RIM-66M Standard medium range SAM (has an ASUW mode)[citation needed] RIM-161 Standard Ballistic missile defense missile for Aegis BMD (15 ships as of March 2009[6]) RIM-162 ESSM (4 per cell) SAM (DDG-79 onward) **RUM-139 Vertical Launch ASROC** RIM-174A Standard ERAM added in 2011 2 × Mk 141 Harpoon Missile Launcher SSM (not in Flight IIA units)[7] Guns: 1 × 5-inch (127-mm)/54 Mk-45 Mod 1/2 (lightweight gun) (DDG-51 to -80); or 1×5 -inch (127-mm)/62 Mk-45 mod 4 (lightweight gun) (DDG-81 onwards) 2 × (DDG-51 to -84); or 1 × (DDG-85 onwards) 20 mm Phalanx CIWS 2 × 25 mm M242 Bushmaster cannons **Torpedoes:**

2 × Mark 32 triple torpedo tubes (six Mk-46 or Mk-50 torpedoes, Mk-54 in the near future)

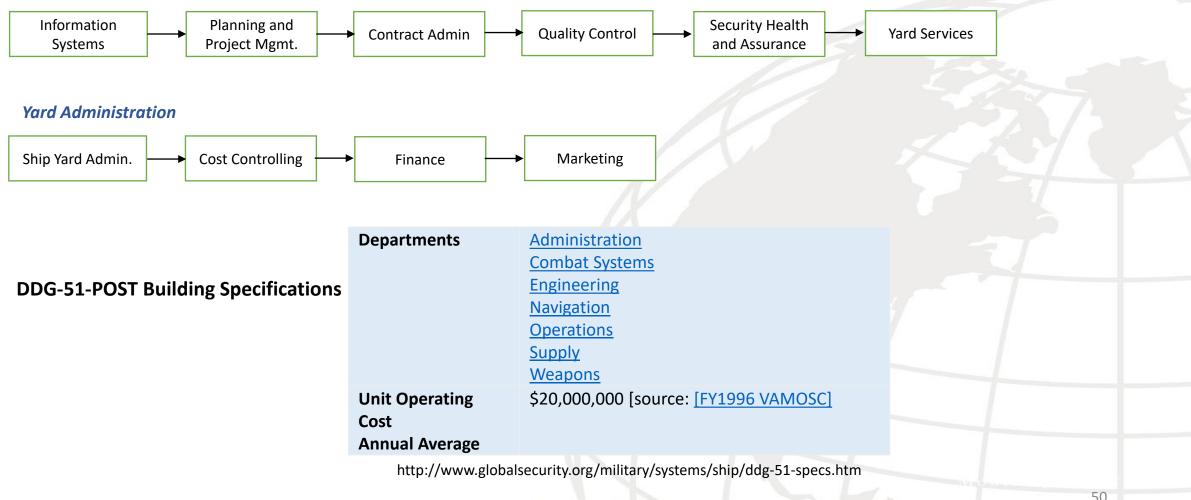

Project Tasks (Energy Systems)

Propulsion is supported by 4 General Electric LM2500 gas turbines each generating 26,500 hp (19,800 kW); coupled to two shafts, each driving a five-bladed reversible controllable-pitch propeller


Project Tasks (Radar Systems)

The program completed Technology Development (TD) contracts in September 2012 and released a Request for Proposals for the E&MD Phase in June 2012. The AMDR program achieved Milestone B in September 2013 and received a signed Acquisition Decision Memorandum on October 4, 2013. After a full and open competition, an Engineering and Manufacturing Development (E&MD) phase contract was awarded to Raytheon on October 10, 2013. Raytheon was awarded a \$385,742,176 cost-plus-incentive-fee contract for the engineering and modeling development phase design, development, integration, test, and delivery of Air and Missile Defense S-Band Radar (AMDR-S) and Radar Suite Controller (RSC).

http://www.globalsecurity.org/military/systems/ship/systems/amdr.htm

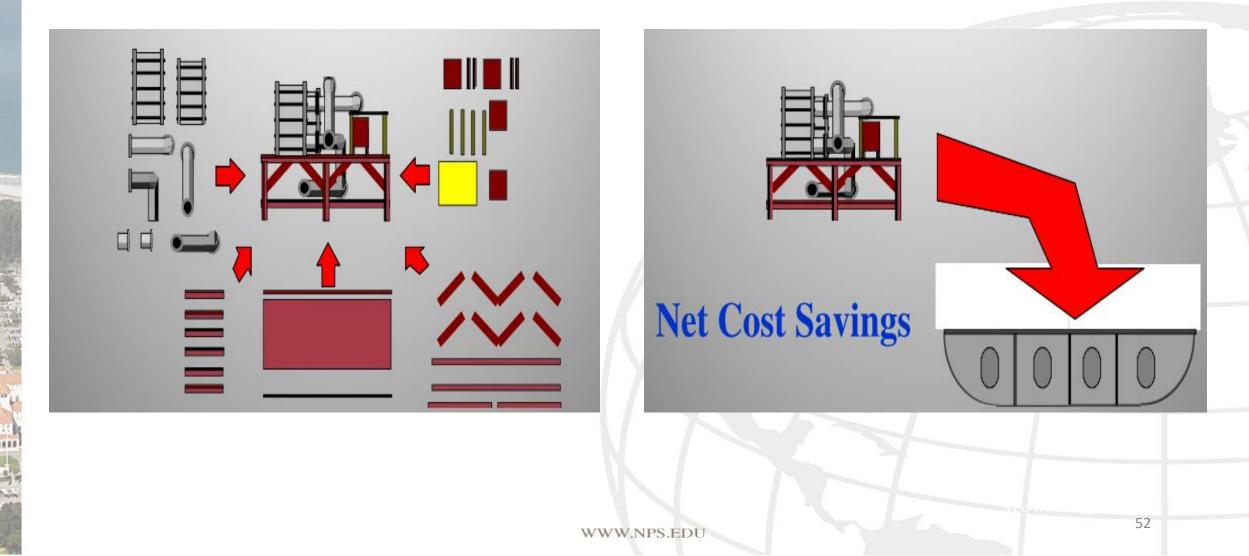

WWW.NPS.EDU

Project Tasks (Support)

Support Services

.....

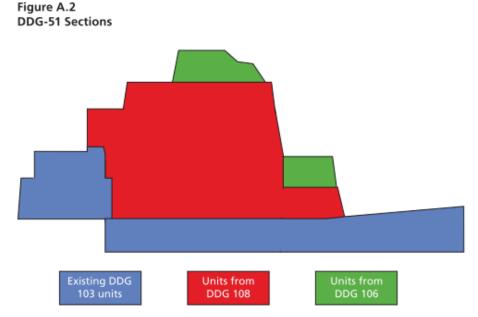
WWW.NPS.EDU


NAVAL POSTGRADUATE SCHOOL

APPENDIX 2 Shipbuilding Concepts and Design

Monterey, California www.NPS.EDU

Building outfit module in shop & installing outfit module on block



Erection process - Assembly & Wet Berth

The first grand blocks of the future USS John Finn (DDG 113) are erected on the building ways at the Ingalls Shipbuilding yard in Pascagoula, Miss. Huntington Ingalls Industries photo.

Shared Modular Build of Warships: How a Shared Build Can Support Future Shipbuilding

SOURCE: Kenyon (2009, slide 3). Used with permission. RAND 7R852-A.2

https://news.usni.org/2015/11/12/navy industry working throughd dg 51 flight iii detail design draft rfp for ship construction released to the second structure of the secon

Gigabit Ethernet Data Multiplex System

Status: Pending Implementation

POSTGRADUATE

NAVAL

SCHOOL

PROBLEM / OBJECTIVE

For over 20 years, the most expensive component in the production of the CV-4414/USQ-82(V), the input/output unit (IOU), has been the flexible circuit assemblies. The cost of these assemblies is over 30 percent of the total cost of the unit. With the recent addition of gigabit Ethernet interface capability to the IOU, the flex cable assemblies must be updated to support the higher signaling rates. While the new gigabit Ethernet modules can operate at a 1,000 Mbit/sec link speed, the existing flexible circuits introduce an impedance discontinuity interface that limits the performance to a 100 Mbit/sec link speed. The continual upgrade of the Navy's equipment to Internet Protocol (IP) based interfaces is driving the need for the higher data rate interfaces to the GEDMS IOU equipment. Hence, there is an urgent need to develop a cost effective and producible IOU flex cable solution that meets the performance requirements. The objective is to develop high yielding design rules for flexible circuits that will accommodate the presently used 42-pin M28840 connector that provides an interface to the external user systems. The approach will utilize reproducible and transportable processes, as well as reducing the amount of touch labor in the manufacturing process.

ACCOMPLISHEMENTS / PAYOFF

Process Improvements

The introduction of these IOU flex cable solutions will improve performance by providing higher link speeds, increase producibility, increase reliability, lower acquisition costs, and lower total ownership costs by reducing touch labor in the manufacturing process. A savings of \$120K will be realized per hull and a total savings of \$4.95M when the modernizations of all the current DDG Flight I platforms using DMS and the expected modernizations of the Flight II hulls are completed.

High performance IOU flex cable is needed for the third DMS network backbone upgrade - GEDMS

The cost reductions will be realized beginning with the FY14 DDG Modernization ships and new construction DDGs.

This ManTech project leveraged Boeing's investment in manufacturing enhancement work to assemble and package prototypes for performance validation and inclusion in the government's production design package.

The transition point for the project was the successful completion of the prototype rigid-flex circuits test, review and approval of the test results by the GEDMS Program Manager, and the incorporation of the design changes into the design production package.

rams/Files/Navy/Gigabit Ethernet Data Mul tiplex System REV B AUG14.pdf

https://www.dodmantech.com/ManTechProg

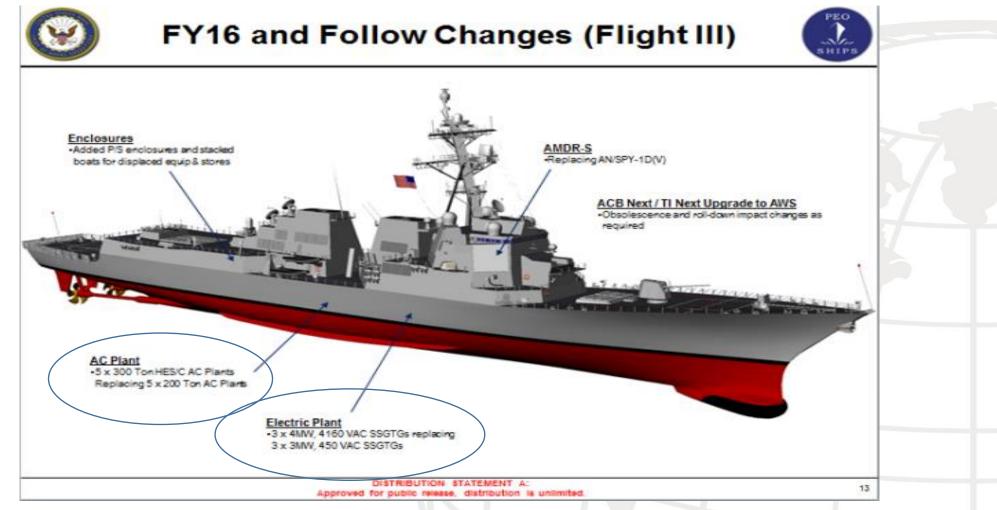
TIME LINE / MILESTONE

Program Start: Program End:

June 2012 February 2014

FUNDING

Navy ManTech Investment:


\$938K

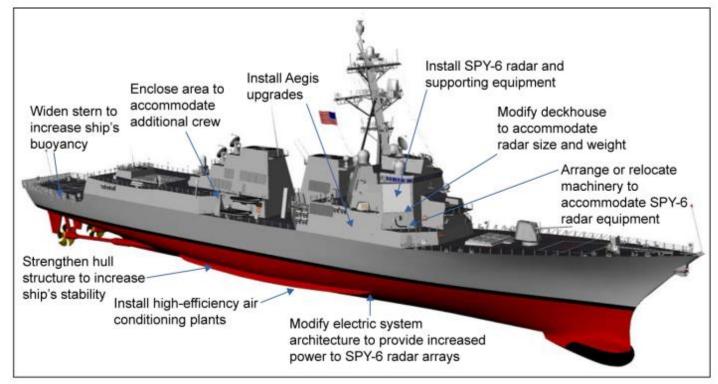
PARTICIPANTS

DDG 51 Program Office - Stakeholder

AC & Electric Plant Areas

https://news.usni.org/2016/05/01/bath-iron-works-will-build-first-flight-iii-arleigh-burke-ddg

SPY-6 Radar and Combat System Integrator



An artist's conception of a Raytheon's SPY-6 radar. Raytheon Photo

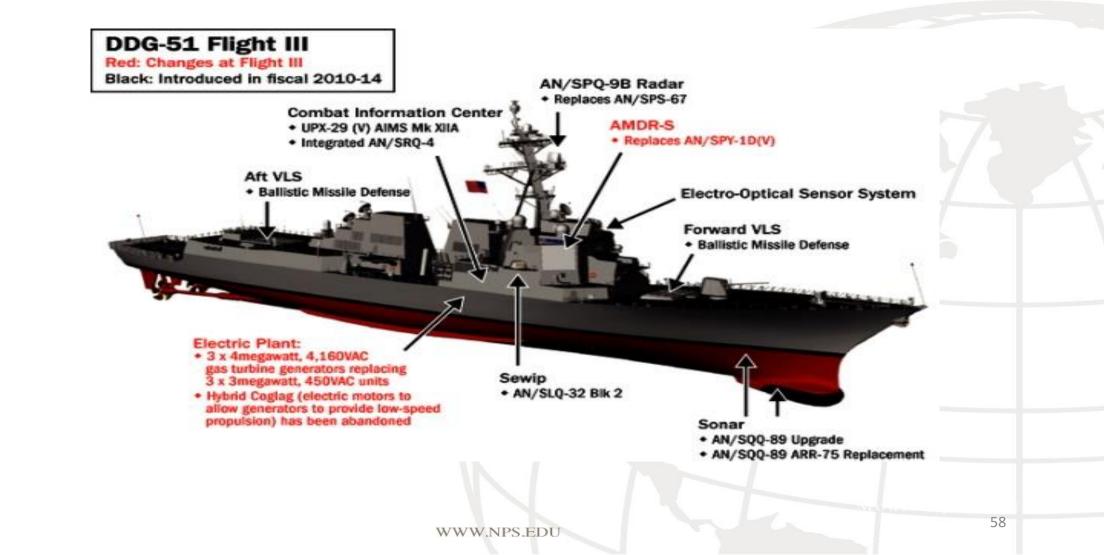
https://news.usni.org/2015/11/12/navyindustryworkingthroughddg51flightiiidetaildesigndraftrfpforshipconstructionreleased

SPY-6 Radar and Design Knowledge

Source: GAO (analysis); Navy (image and data). | GAO-16-613

ARLEIGH BURKE DESTROYERS:

Delaying Procurement of DDG 51 Flight III Ships Would Allow Time to Increase Design Knowledge


GAO-16-613: Published: Aug 4, 2016. Publicly Released: Aug 4, 2016.

What GAO Found

The Air and Missile Defense Radar (AMDR) program's SPY-6 radar is progressing largely as planned, but extensive development and testing remains. Testing of the integrated SPY-6 and full baseline Aegis combat system upgrade—beginning in late 2020—will be crucial for demonstrating readiness to deliver improved air and missile defense capabilities to the first DDG 51 Flight III ship in 2023. After a lengthy debate between the Navy and the Department of Defense's (DOD) Director of Operational Test and Evaluation, the Secretary of Defense directed the Navy to fund unmanned self-defense test ship upgrades for Flight III operational testing, but work remains to finalize a test strategy.

Energy, Radars, and Defense Systems (Integration)

Primary Electronic Warfare System

U.S. Navy Installs AN/SLQ-32(V)6 System On DDG-96 For Operational Testing

U.S. Navy installed the Lockheed Martin SEWI<mark>P</mark> Block 2 System on DDG-96 for o<mark>p</mark>erational testing ove

Lockheed Martin Corporation (LMT - Free Report) has received a contract worth \$57 million from the U.S. Navy for upgrading the AN/SLQ-32(V)2 system that is installed on all U.S. aircraft carriers, cruisers, destroyers, and other warships.

http://www.globalsecurity.org/military/systems/ship/ddg-51-specs.htm

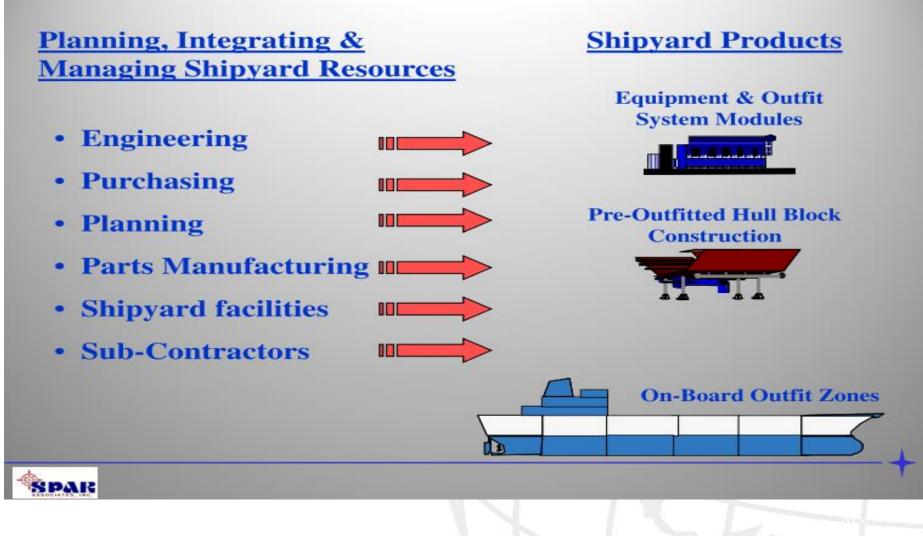
General Criteria for Warship Specifications

DDG-51 Arleigh Burke - Specifications

			S	pecifications					
Power Plant	3 Allison 2500 KW Gas 2 Shafts with CRP (Co	 4 - <u>LM2500 GE Marine Gas Turbines</u> 105,000 shp (90,000 sust.) 3 Allison 2500 KW Gas Turbine Generators 2 Shafts with CRP (Controllable Reversible Pitch) Propellers 2 5-blade CP Rudders 							
Length	Flight I 505 feet overall 466 feet (142 meters)waterline	Flight IIA 509.5-513.0 feet overall	Flight III						
Beam	Max 66 Feet waterline 59 feet (18 m	Max 66 Feet waterline 59 feet (18 meters) 31 feet							
Navigational Draft	31 feet								
Displacement	Flight I 8,300 tons full load	Flight IIA 9,192-9,648 tons full load	Flight III 10,700 tons						
Speed	31 knots (36 mph, 57 k	ph)							
Range	4,400 @ 20 knots								


http://www.globalsecurity.org/military/systems/ship/ddg-51-specs.htm

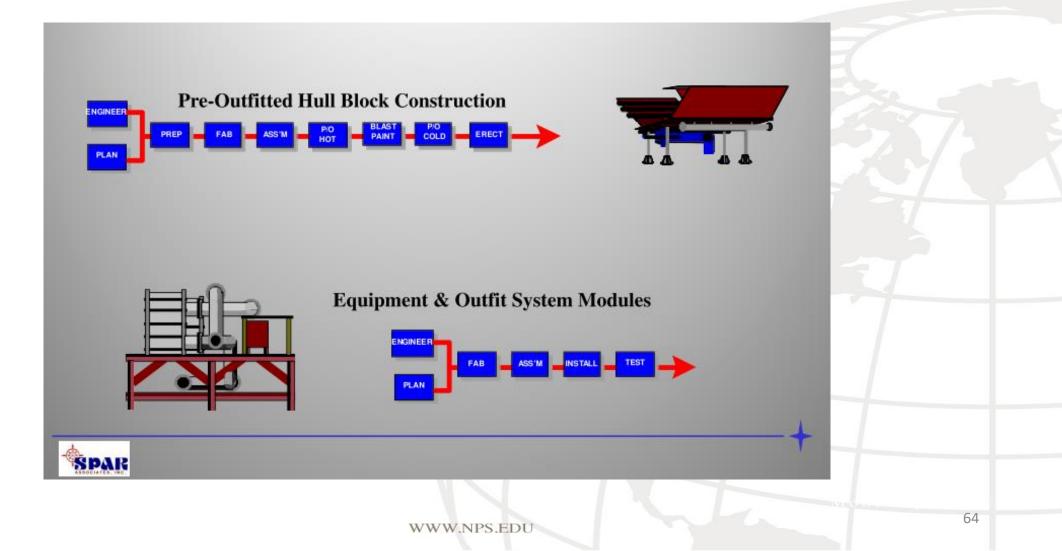
Most Significant Cost Drivers


Primary Labor Costs: Assembly & Installation

Assembly operations are the most significant cost drivers

Project Management Perspectives in Shipbuilding

Project Management Perspectives in Shipbuilding


Develop the Build Strategy

- Production Engineering Plan
- Manufacturing & Assembly of Structural Parts Plan
- Manufacturing & Assembly of Outfit Systems Plan
- Hull Block Construction Erection Sequence Plan
- Assembly & Erection of Equipment & Outfit Modules Plan
- On-Board Zone Outfit Plan
- Tests & Trials Plan

Construction and Integration

Features of DDG Destroyers (i.e., 51 – 1000)

DESTROYERS - DDG

Description

DDG 51 and DDG 1000 destroyers are warships that provide multi-mission offensive and defensive capabilities. Destroyers can operate independently or as part of carrier strike groups, surface action groups, amphibious ready groups, and underway replenishment groups.

Features

Guided-missile destroyers are multi-mission surface combatants capable of conducting Anti-Air Warfare (AAW), Anti-Submarine Warfare (ASW), and Anti-Surface Warfare (ASUW). The destroyer's armament has greatly expanded the role of the ship in strike warfare utilizing the MK-41 Vertical Launch System (VLS).

DDG 51 Class Features:

- AEGIS Weapons System (AWS) including SPY-1 Radar, 96 cell MK 41 VLS, MK 99 Fire Control System
- AN/SQQ-89 Sonar
- MK 45 5 Gun for ASuW, AAW), and land attack (NSFS) targets
- 25mm CIWS and MK 38 self-defense guns
- SLQ-32 or SEWIP Electronics warfare system
- · Helo landing capability (DDG 51-78); Dual Hangars for organic Helo support (DDG 79 and follow)
- Four Gas Turbine Engines driving twin controllable propellers
- Three SSGTG (Ship Service Gas Turbine Generators)
- · Robust, redundant, and survivable design with low signature requirements

WWW.NPS.EDU

Characteristics of DDG Destroyers (i.e., 51 – 1000)

DESTROYERS - DDG

Description

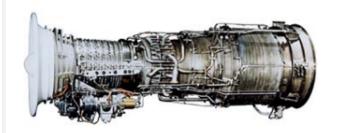
- - -

DDG 51 and DDG 1000 destroyers are warships that provide multi-mission offensive and defensive capabilities. Destroyers can operate independently or as part of carrier strike groups, surface action groups, amphibious ready groups, and underway replenishment groups.

General Characteristics, Arleigh Burke class

Builder: Bath Iron Works, Huntington Ingalls Industries
SPY-1 Radar and Combat System Integrator: Lockheed-Martin
Date Deployed: July 4, 1991 (USS Arleigh Burke (DDg 51)
Propulsion: Four General Electric LM 2500-30 gas turbines; two shafts, 100,000 total shaft horsepower
Length: Flights I and II (DDG 51-78): 505 feet (153.92 meters); Flight IIA (DDG 79 AF): 509 1/2 feet (155.29 meters)
Beam: 59 feet (18 meters)
Displacement: 8,230 - 9,700 Ltons
Speed: In excess of 30 knots
Crew: 329 Total (32 Officer, 27 CPO, 270 Enlisted)
Armament: Standard Missile (SM-2MR); Vertical Launch ASROC (VLA) missiles; Tomahawk; six MK-46 torpedoes (from two triple tube mounts); Close In Weapon System (CIWS), 5-in. MK 45 Gun, Evolved Sea Sparrow Missile (ESSM)

Aircraft: Two LAMPS MK III MH-60 B/R helicopters with Penguin/Hellfire missiles and MK 46/MK 50 torpedoes


Characteristics: General Electric LM2500 Gas Turbines

Models

POSTGRADUATE

NAVAL

SCHOOL

LM2500

The 33,600-shp LM2500 is GE's most popular marine gas turbine, powering more than 400 ships in 33 world navies.

Download Data Sheet 💌

F125-GE Case History ♥ USCG Case History ♥ USN LCS-GE Case History ♥

echnical		
Output	33,600 shp (25,060 kW)	
SFC	.373 lb/shp-hr (227 g/kW-hr)	
Heat rate	6,860 Btu/shp-hr 9,200 Btu/kWs-hr 9,705 kJ/kWs-hr	
Exhaust gas flow	155 lb/sec (70.5 kg/sec)	
Exhaust gas temperature	1,051°F (566°C)	
Power turbine speed	3600 rpm	

WWW.NPS.EDU

NAVAL

SCHOOL

POSTGRADUATE

$\leftarrow \rightarrow$	C 1 (i) www.gener	ratormart.com	/Im2500-by-deso	cending-kw-1	.shtml					
Apps	★ Bookmarks 🔞 LG 321	LN575V Televisio	🗋 Save to Mend	deley 🌾 How	do I set up my Fr	🚯 Bank o	of England	Rese	👽 Sarbanes Oxle	y Comp
THE PL		R SELLING A POWE		WE BUY & SELL Propane Gas G General Information	enerators Por Login	farine / Hom table Gener / Submit r Related Ad	ators	Wante Contact neratorm		
	ch the Generatormart of Search Generatormart		_							
LM25	500: sorted by descend <mark>1</mark>	ding kilowati	LS							
ltem Count	Sort by:	kW	Manufacturer	Hours	Price	HZ	Used New ♪↓	Year 1∎		
1		47600 kW	General El.	? hours	US\$ 16,100,000	50 or 60 HZ	New	าาาา		
of 3		Price: US\$ Gas turbine	ctric (GE), LM25 16,100,000, kW , Fuel: Dual fuel) LM2500PE, pc	: 47600, HZ : , manufactu	r ed by: General	Electric	(GE), mo	del: G		
2		22600 kW	General El.	0 hours	US\$ 6,850,000	60 HZ	Rema.	????		
of 3		Price: US\$ turbine, Fue	ctric (GE), LM25 6,850,000, kW: 1: Number 2 Die 1) LM2500 (LM25	22600, HZ: (sel, manufa	0, hours since ctured by: Gen	new or i eral Elect	ric (GE),	mode	: General	

68

Vertical Launch Systems (VLS)

Naval Swiss Army Knife: MK 41 Vertical Missile Launch Systems (VLS)

Jul 08, 2016 00:50 UTC by Defense Industry Daily staff

Latest update [?]

July 8/16: Chile's Navy is to receive & MK 41 Vertical Launching Systems (VLS) armed with the Evolved Sea Sparrow Missiles (ESSMs). The systems and missiles will be installed as part of upgrades & on three UK-built Type 23 frigates at a cost of \$140 million. Raytheon, BAE Systems and Lockheed Martin are the contractors implementing the upgrade. At present, the former Royal Navy frigates operate the legacy GWS-26 Sea Wolf anti-air missiles so the ESSM's represent a significant upgrade in capabilities.

https://www.defenseindustrydaily.com/mk-41-naval-verticalmissile-launch-systems-delivered-supported-updated-02139/#TheHousing:VLSCells

navaltechnology.com

Home Products & Services Company A - Z Projects Features Videos White Papers News Events Advertise Wit

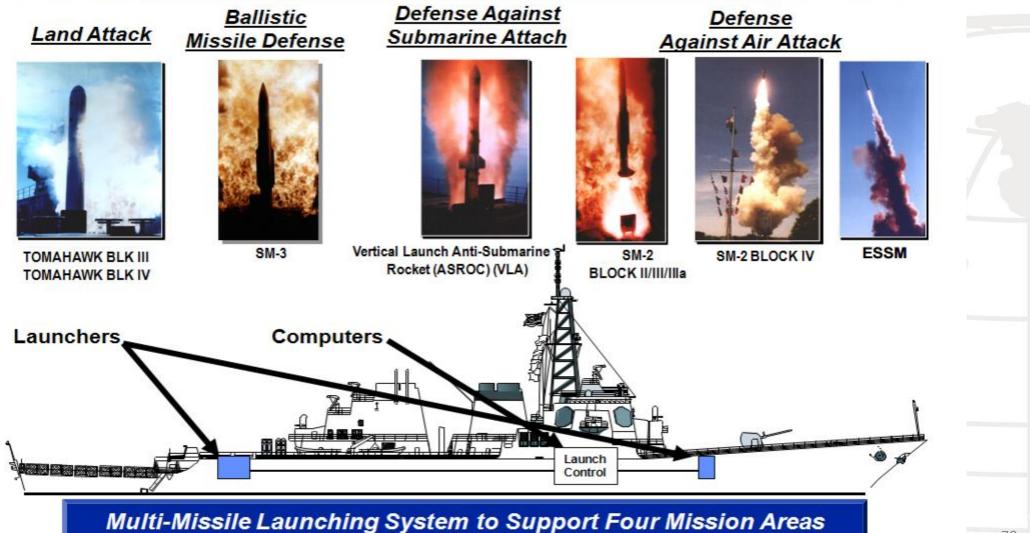
Lockheed to support US Navy's MK41 vertical launching system

f У G+ in 𝒫 𝕵 🤠 🚺

6 June 2014

Lockheed Martin has been awarded a contract by the US Navy to provide engineering design services for its MK41 vertical launching system (VLS), which defends the naval fleet from numerous threats.

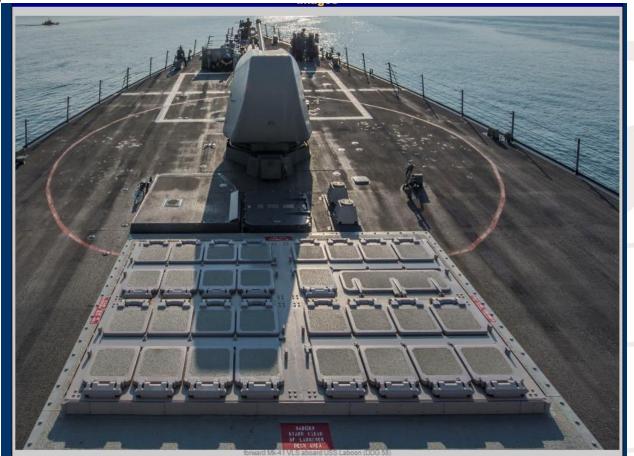
The \$10m, cost-plus-fixed-fee contract also includes options, which, if exercised, will bring the overall value to \$182m.


http://www.naval-technology.com/news/newslockheed-tosupport-us-navys-mk-41-vertical-launching-system-4287173

WWW.NPS.EDU

News, views

Vertical Launch Systems (VLS)


Vertical Launch Systems (VLS)

BAE Systems has received a \$38.2 million contract modification from the U.S. Navy to provide additional missile canisters for the Mk 41 Vertical Launching System (VLS).

The company will supply more than 300 canisters of various configurations that will be used to store, transport, and launch different kinds of guided missiles from ships.

BAE Systems has been the Navy's exclusive designer and worldwide supplier of Mk 41 VLS canisters for more than 30 years. The company is also the Navy's Mk 41 VLS mechanical design agent, with more than 30 years of experience in the development, production, and support of the Mk 41 launching system.

http://www.seaforces.org/wpnsys/SURFACE/Mk-41-missile-launcher.htm

http://www.baesystems.com/en/article/bae-systems-lands--38-million-u-s--navy-contract-for-vertical-launching-system-canisters

WWW.NPS.EDU

Other Project Management Approaches in Shipbuilding

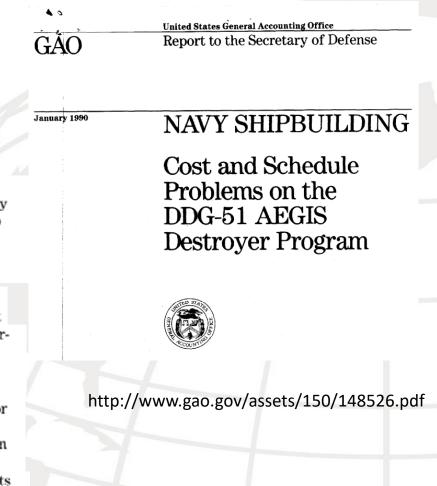
	CORPORATE PERFORMANCE MANAGEMENT							
	Estimating Scope		ACT MANAGEMENT ation Orders Retentions	Payment Applications				
APPLICATIONS SOLUTIONS	PROJECT MANAGEMENT WBS/SFI Project Budget & Forecast Risk Management Change Management Reporting Cost Control Integration External Planning Tool Issue Management							
	DESIGN	PROCUREMENT/ MATERIAL MANAGEMENT	CONSTRUCTION/ OUTFITTING	SEA TRIAL				
	Plant Design CAD Integration Ship Models Documents Control	Material Catalogues Early Procurement, RFQ, Purchasing, Steel Management	Work Packages Welding/QA Block Assembly Installation and Outfitting	Final Testing Classification Surveyors Reports Documentation				
	Sub-Contracts Agree	SUB-CON ments Inquiries Work	TRACTING Instructions Retentions	Payment & Certificates				
	General Accounting	FINANCE M/ Automatic Workflow	ANAGEMENT Project Accounting	Revenue Recognition				
	Human Resources, Time & A	Service and Asset Managem	ent					
SUPPORT PROCESSES	Document Management		Business Models					
RUCESSES	Collaboration with Supplier		Quality Management					

Design Delays

NAVAL

SCHOOL

POSTGRADUATE


Bath Iron Works planned to prepare production drawings using computer-aided design, but major problems arose. The computer equipment did not have adequate data storage capacity needed to design a complex warship. Design delays were also due to Navy changes in ship requirements, late government-furnished design data for the reduction gear, and difficulties with several developmental systems. As of November 1989, Bath Iron Works and Navy representatives believed that design problems had been resolved and production drawings were essentially complete. GAO believes that the installation and integration of the ship systems, which still has to be done, could surface additional design or performance problems.

Construction Problems

Design and other problems contributed to two revisions to the ship's scheduled delivery, totaling 17 months. The last revision to the delivery schedule was made in February 1988. The ship, originally scheduled to be completed in September 1989, is currently scheduled for delivery in February 1991. Bath Iron Works is accelerating construction to meet this date.

Bath Iron Works launched the lead ship in September 1989. According to Bath Iron Works representatives, the ship was more than 50 percent complete in October 1989. However, to complete the ship requires incorporating and integrating the AEGIS combat system and demonstrating that other systems, such as the collective protection system, work as designed.

In January 1989, the Navy modified the DDG-52 contract to provide for better helicopter support capabilities, which rescheduled the delivery date by 8 months. Also, the Navy has approved a proposal by Bath Iron Works to reschedule the DDG-53 construction schedule. The 7-month rescheduling will allow Bath Iron Works to more efficiently schedule its work on other ships it is building for the government. These ships will be delivered earlier than expected.

Lower Unit Cost Through Improved Manufacturing of SEWIP System

S2340 — Low-Cost Antenna Assembly for the Surface Electronic Warfare Improvement Program (SEWIP) Block 2 Electronic Warfare System

Objective

NAVAL

SCHOOL

POSTGRADUATE

The intent of the Surface Electronic Warfare Improvement Program (SEWIP) Block 2 project was to upgrade the Navy's AN/SLQ-32 (V) electronic support measures system, which includes the system's receiver, antenna, and combat system interface. The Lockheed Martin (LM) team was selected by the Navy to provide the Integrated Common Electronics Warfare System (ICEWS) for SEWIP Block 2. This was a single enterprise solution designed to scale across all ship classes in the Navy's surface fleet. At-sea demonstrations of ICEWS in June 2009 were successful. The ICEWS maximized the reuse of SEWIP Block 1 elements and leveraged the LM Team's investment of \$15M for a SEWIP Engineering Development Model (EDM) which was demonstrated at sea to achieve the lowest risk solution for Block 2. The ICEWS upgraded the receiver and antenna capabilities, as well as the combat system interface, of the legacy surface EW system. LM's scalable enterprise approach to ICEWS was based on the company's Rapid Commercial Off-The-Shelf (COTS) Insertion program, which has been used successfully on EW and sonar system upgrades on all classes of Navy submarines.

The objective of this project was to achieve a lower unit cost through improved manufacturing and ruggedization of the COTS SEWIP system elements, thus allowing the proposed elements to also meet the objectives of all SEWIP platforms including small ship Electronic Warfare (EW) systems, while improving producibility and lowering the unit cost for the standard SEWIP Block 2 System. This effort targeted the CVN 78 Class carrier program; however, classes such as DDG 51 and DDG 1000 would also benefit from implementation.

Payoff

The project addressed the desired cost targets and improved COTS hardware that did not meet system producibility. The project was developed to focus on the following: (1) improved manufacturability of the COTS Fiber Optic Transmitter, (2) improved manufacturability of the PDF Switch Matrix (RF Module), and (3) improved manufacturability of the RF Tuner. Implementation of the SEWIP ManTech developments has resulted in cost savings of \$1M per ship hull.

PERIOD OF PERFORMANCE: October 2010 to April 2012

PLATFORM: CVN 78 Class / Carriers

AFFORDABILITY FOCUS AREA: Electronic Processing and Fabrication

CENTER OF EXCELLENCE: EMPF

POINT OF CONTACT:

Mr. Michael D. Frederickson (610) 362-1200 x200 mfrederickson@aciusa.org

STAKEHOLDER: PMS 378

TOTAL MANTECH INVESTMENT: \$2,516,000

