

SPAWAR FLEET READINESS DIRECTORATE (SPAWAR)

Acquisition Research Panel #9: Enabling Cybersecurity

26 APR 2017

Naval Postgraduate School Acquisition Research Symposium Rear Admiral John W. Ailes
Deputy Commander

Space and Naval Warfare Systems Command (SPAWAR)

Fleet Readiness Directorate

Topic	Presenter	Time
Introduction of Presenters	RDML Ailes	1530 – 1535
Chair's Opening Remarks	RDML Ailes	1535 – 1545
Cybersecure Modular Open Architecture Software Systems for Stimulating Innovation	Walt Scacchi	1545 – 1600
Security Measurement – Establishing a Confidence that System and Software Security is Sufficient	Carol Woody	1600 – 1615
Decision Support for Cybersecurity Risk Assessment	Hanan Hibshi	1615 – 1630
Q & A		1630 – 1700

CHAIR

Presenters

RDML John W. Ailes, USN

Deputy Commander, Space and Naval Warfare Systems
Command (SPAWAR)
Fleet Readiness Directorate

▼ Dr. Walt Scacchi

- University of California, Irvine
 - Cybersecure Modular Open Architecture Software Systems for Stimulating Innovation

▼ Dr. Carol Woody

- Software Engineering Institute
 - Security Measurement Establishing a Confidence that System and Software Security is Sufficient

▼ Hanan Hibshi (Ph.D. student)

- Carnegie Mellon University
 - Decision Support for Cybersecurity Risk Assessment

Fleet Approach to Cybersecurity

Cyber as a Warfare Mission Area

Leading to Certification

Common Reporting Process

Continuous Monitoring

Cyber Tool Optimization

Bandwidth,
Patch Distribution,
Network Mapping,
Scan Ranges

Culture on the waterfront

Cyber Department Heads

Delivery of fully patched Cyber Baselines

Configuration Managed

Training

Formal Training
Courses PQS to instill
proficiency

Progress Indicators

- ▼ Scan and patch focus
- ▼ Delivering cyber baselines
- Created vulnerability dashboard
- Cyber Warfare established as new mission area in revised Surface Force Readiness Manual
- Created personal qualifications standards
- Cyber training courses established
- ▼ Placing engineers onto ships

Risk Management Framework

Process Overview

ACAS, VRAM, etc.

Step 6 MONITOR Security Controls

- Determine impact of changes to the system and environment
- · Assess selected controls annually
- · Conduct needed remediation
- · Update Security Plan, SAR, and POA&M
- · Report security status to AO
- · AO reviews reported status
- · Implement system decommissioning strategy

Step 5 AUTHORIZE System

- · Prepare the POA&M
- Submit Security Authorization Package (Security Plan, SAR, and POA&M) to AO
- · AO conducts final risk determination
- AO makes authorization decisions

Authorizing Official (AO) /
Functional Security Controls Assessor (SCA)

Step 1 CATEGORIZE System

- Categorize the system in accordance with the CNSSI 1253
- · Initiate the Security Plan
- Register system with DoD Component Cybersecurity Program
- · Assign qualified personnel to RMF roles

Step 4 ASSESS Security Controls

- · Develop and approve Security Assessment Plan
- · Assess security controls
- SCA prepares Security Assessment Report (SAR)
- · Conduct initial remediation actions

Cybersecurity Engineering

Step 2 SELECT Security Controls

- Common Control Identification
- Select security controls
- Develop system-level continuous monitoring strategy
- Review and approve Security Plan and continuous monitoring strategy
- · Apply overlays and tailor

Step 3 IMPLEMENT Security Controls

- Implement control solutions consistent with DoD Component Cybersecurity architectures
- Document security control implementation in Security Plan

Program Implementation

Risk Management Framework Intended to Provide Greater Insight into Cyber Risk

CYBERSAFE Certification

CS Enclave
Design
Certification(s)

- DFIA compliance
- "Platform" Cyber Test Plan
- "Platform" Boundary Security Policy

CS Platform Certification

Integrated into proven platform Certs (NWSCP, Airworthiness) with additional CS assurance

CS System Design Certification(s)

- DFIA compliance
 - "Enclave" Cyber Test Plan
 - "Enclave" Boundary Security Policy

CS Enclave Design Certification

In alignment with DFIA and SoS architectural view

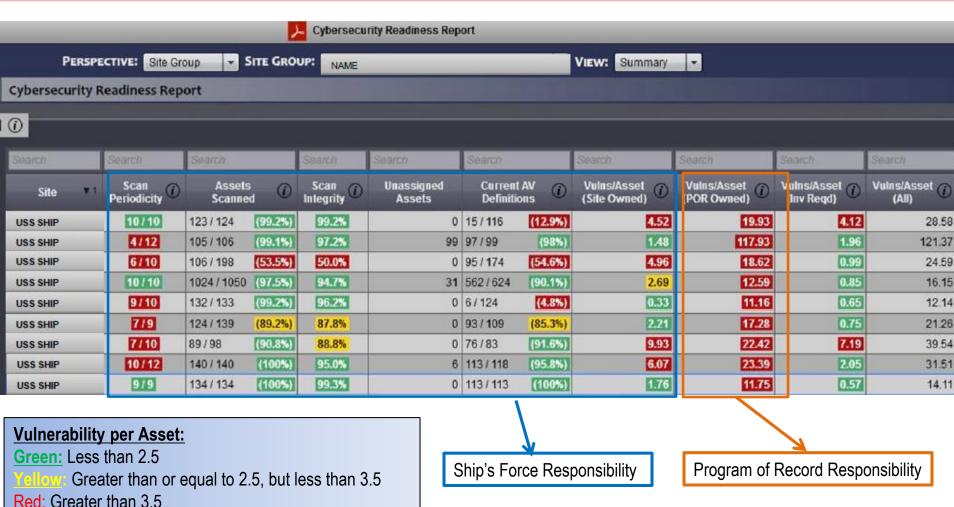
CYBERSAFE Risk Assessment with penetration testing

RMF

CS System Design Certification

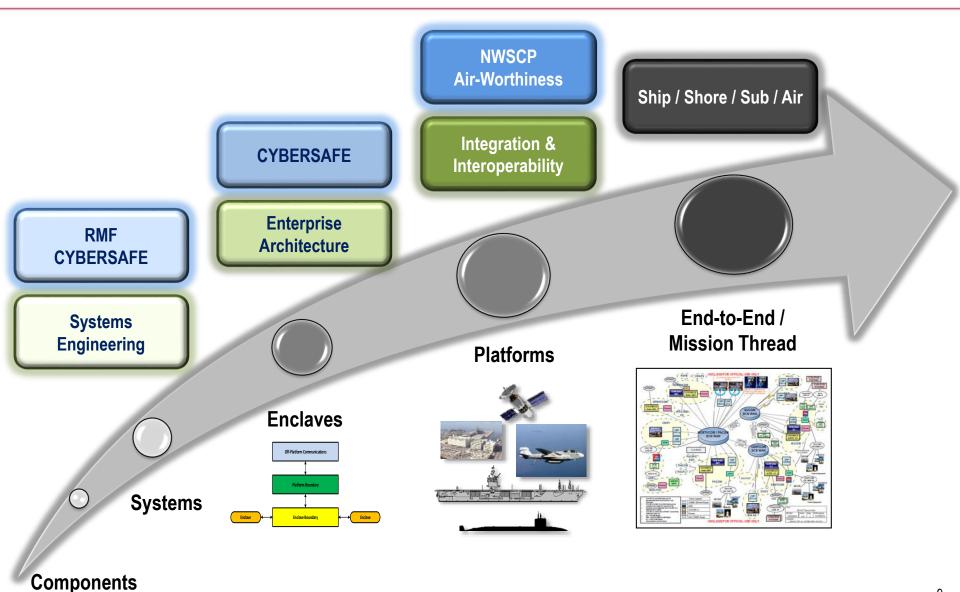
RMF with additional CS assurance

Leverage Existing, Proven Processes to the Maximum Extent Possible



IA Standards Designed to Disrupt Cyber Kill Chain Roadmap to IA TA Standards Development

	Phase			FY15 FY16										FY17																						
	Most standards enable disruption of multiple steps in the Kill Chain			Network Firewall	IDPS	ISCM	SIEM	Vulnerability Scan	Boundary Protect	os	Cyber Risk		Cyber SA	IT Asset Mgmt	Account Mgmt	Cyber CM	Web Security	Cross Domain Solution	Email Security	Software Assure	RAS	Patch Mgmt	BIOS	IdAM	Event Mgmt		PKE		WEAC	Data in Transit						Unified Capability Support Equipment
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Stan	16	17 Com	18	19	20 tatus	21	22	23	24	25	26	27	28	29	30	31	32 3	3 3	35
Discover	Data Gathering / Target Identification	15/35 Stds			•	•					•	•	•			•	•	aaru:	•	piet	0113	tatus				•		•	•	•	•		•	I		•
Probe	Identify Vulnerabilities / Scanning	24/35 Stds	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			•			•	•	•	•		•		•	•
Penetrate	Gain Access / Create Foothold	29/35 Stds	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•		•	•		•	•	• •	•	
Escalate	Gain Escalated Privileges / Root Access	22/35 Stds	•		•	•	•			•	•	•	•		•	•	•	•	•	•		•	•	•	•		•		•			•			•	
Expand	Multiple Footholds / Paths / Backdoors		•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•		•	•	•	•		•					•		•	•	
Persist	Obfuscate Presence		•	•	•	•	•		•	•	•	•	•		•	•				•		•	•		•											
Execute	Exploit / Exfiltrate / Attack to Achieve Objective	24/35 Stds	·	•	•	•	•		•	•	•	•	•	•			•	•	•	•	•	•	•		•					•	•			• •		•



Cybersecurity Dashboard

Holistic Approach to Cyber Security

9

Presenters

CHAIR

RDML John W. Ailes, USN

Deputy Commander, Space and Naval Warfare Systems
Command (SPAWAR)
Fleet Readiness Directorate

▼ Dr. Walt Scacchi

- University of California, Irvine
 - Cybersecure Modular Open Architecture Software Systems for Stimulating Innovation

▼ Dr. Carol Woody

- Software Engineering Institute
 - Security Measurement Establishing a Confidence that System and Software Security is Sufficient

▼ Hanan Hibshi (Ph.D. student)

- Carnegie Mellon University
 - Decision Support for Cybersecurity Risk Assessment