Decision Support for Cybersecurity Risk Assessment

Hanan Hibshi & Travis D. Breaux April 26, 2017

Security in a Composable System

Security Checklists

- Security "Best Practices", for example:
 - NIST (National Institute of Standards and Technology) publications 800 series
 - OWASP (The Open Web Application Security Project)
- Does not consider context
 - (1) AUTHENTICATOR MANAGEMENT | PASSWORD-BASED AUTHENTICATION

The information system, for password-based authentication:

- (a) Enforces minimum password complexity of [Assignment: organization-defined requirements for case sensitivity, number of characters, mix of upper-case letters, lower-case letters, numbers, and special characters, including minimum requirements for each type];
- (b) Enforces at least the following number of changed characters when new passwords are created: [Assignment: organization-defined number];
- (c) Stores and transmits only cryptographically-protected passwords;
- (d) Enforces password minimum and maximum lifetime restrictions of [Assignment: organizationdefined numbers for lifetime minimum, lifetime maximum];
- (e) Prohibits password reuse for [Assignment: organization-defined number] generations; and
- (f) Allows the use of a temporary password for system logons with an immediate change to a permanent password.

Security Challenges

- There is a shortage in experts, in 2014: *U.S. Bureau of Labor statistics, Cisco
 - 82,900 information security analysts in the U.S.
 - median earn = \$89,000 a year
 - 1M shortage in security professionals
 - unfilled positions ≈ 209,000
- By 2018, 53% growth in demand for experts is expected
- We need decision-support
- We focus on 3 challenges:
 - Varying level of security expertise
 - *Composition:* how security requirements work together
 - *Uncertainty:* present in security decisions

Our Overall Research Process

The Vignette Template

You are working on your laptop using **\$NetworkType**. You are **\$Transaction**. You are relying on a web browser to perform your task. The browser is already using **\$Connection** for the session. To log in to the system and start your task, you will need to authenticate using a password that **\$Password**. The system will **\$Timer**.

The **\$Threat** attack is a serious security concern. Please answer the following questions with regards to mitigating this threat.

Survey Mechanics

- Participant is asked to consent
- Presented with four MiTM scenarios varying in **\$NetworkType**
- Asked to answer 10 security knowledge questions
 - Cryptography, network administration, systems, etc.
- Asked to answer some demographic questions
 - Job experience
 - Security training
- After 1-2 weeks, we asked participants to return and repeat the survey by for a different threat (Packet-Sniffing).

Sample Demographics

- Recruited from security classes mailing lists
 - CMU and NCSU
- 174 participants took the M-i-t-M survey
 - 116 returned and took the packet-sniffing
- 73% Males, 26% Females, 1% unreported
- Age groups: 18-24 (63%), 25-34 (33%), and 35+ (3%)
- 101 graduate students, 42 undergraduate students and 2 university professors.

Interpreting Results into Rules

- Because network type takes priority over other requirements, rules R7- R81 are removed
- Example Rule:

*R*¹: *IF* **NetworkType** is **Inadequate** *THEN* **OverallRating** is **Inadequate**

R		Con. (THEN)			
쀼	Network	SSL	Password	Timer	Overall
R1	I				Ι
R2	A	I			Ι
R3	A		I		I
R4	A			1	I
R5	А	A	A	A	А
R6	Е	E	Е	E	E

Security Assessment System

- Interval Type 2 Fuzzy Logic System (IT2FLS)
- Rule-based system
- Accounts for interpersonal and intrapersonal uncertainty

Adequacy Linguistic Labels for Security

- Focus group to select initial sets:
 - Inadequate, Adequate, and Excessive
- Expanded the set based on thesaurus
- Empirically evaluate 17 words [1]
 - Used 4 scenarios with different skewness or bias
 - Waiting for a bus
 - Distance to parking
 - Meal portion at a restaurant
 - Amount of privacy against government surveillance
 - Participants from Mechanical Turk, screened for English proficiency
 - Nelson-Denny English Test
- Assigning intervals for labels

Fuzzy Sets for Adequacy Levels

Fuzzy Sets and Membership Functions

 Fuzzy set theory expresses to what degree and element x belongs to a set.

$$\begin{array}{c} & \mu_A(x) \\ & \bullet \\$$

 $F = \left\{ \left(x, \mu_F(x) \right) \mid x \in X \right\}$

%

(c) Type-2 FOU constructed by

blurring a Type-1 MF

&' (

)'(

8 9 10

Adequacy Membership Functions

Evaluation

- Interviewed 13 experts, 4 test scenarios each
- Disagreement: 19% of test scenarios
 - System assessment was more conservative then participants
- System demonstrated ability to augment human's shortfall in memory

Scena	ario	Total	Agreement		
Network (Wi-Fi)	Pxed.	Timer	Participants	Ratio	
Public unencrypted	Weak	None	5	4/5 (80%)	
Public unencrypted	Weak	15-min	8	6/8 (75%)	
Public unencrypted	Strong	None	8	6/8 (75%)	
Public unencrypted	Strong	15-min	5	3/5 (60%)	
VPN over encrypted	Weak	None	8	6/8 (75%)	
VPN over enerypted	Weak	15-min	5	2/5 (40%)	
VPN over encrypted	Strong	None	5	2/5 (40%)	
VPN over encrypted	Strong	15-min	8	4/8 (50%)	

Future Work

- Adapt the method for more multi-step attack vectors
- Enable mitigations recommendations to achieve higher overall security ratings
- Recruit industry experts
 - Already recruited around 80 experts from one conference
 - Four security domains:
 - Networking
 - Operating systems
 - Databases
 - Web applications

Questions?

- This research was funded by:
 - National Security Agency (Award #141333), and
 - Office of Naval Research (Award #N00244-16-1-0006)
- Thank you <u>hhibshi@cmu.edu</u>
- Hibshi, H., Breaux, T.D. and Broomell, S.B., 2015, August. Assessment of risk perception in security requirements composition. In Requirements Engineering Conference (RE), 2015 IEEE 23rd International (pp. 146-155). IEEE.
- Hibshi, H., Breaux, T.D. and Wagner, C., 2016. Improving security requirements adequacy: an interval type 2 fuzzy logic security assessment system.
- Hibshi, H., and Breaux, T.D., Reinforcing Security Requirements with Multifactor Quality Measurement . *Under submission*.

Vignette Questions

Overall, how would you assess the security of the system in the scenario above?

- Inadequate security measures that not enough to mitigate the threat
- **Excessive** security measures that exceeds the requirements to mitigate the threat
- Adequate security measures that is enough to mitigate the threat

Please rate the following variables based on their ability to mitigate the threat (Man-in-the-Middle attack):

	Inadequate Mitigation 1	2	Adequate Mitigation 3	4	Excessive Mitigation 5
The network is employer's VPN that you connected to through public encrypted Wi-Fi	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
The browser is using SSL for the session	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
The password is at least 8 characters long	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
The timer will automatically log you off the session after 15 minutes of inactivity	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Q: Please list down any additional mitigations that will raise the security level of the scenario above

Our Sample's Knowledge Effect

- Participants responses to security knowledge test
- \$Score variable with values 0 -10
- Min=1; Max=10; Mean=5.2; Median= 5
 - Participants with higher \$Score gave lower ratings for: \$PasswordRating, and \$TimerRating in the presence of MiTM

Example of Security Questions

Why would an administrator set these firewall rules?

- iptables -A OUTPUT -o eth0 -p tcp --dport 22 -m state -- state NEW,ESTABLISHED -j ACCEPT
- iptables -A INPUT -i eth0 -p tcp --sport 22 -m state -state ESTABLISHED -j ACCEPT

Which of the following is considered good encryption for files on your hard disk?

- SSL
- PGP
- SHA256
- AES

Power

- Mixed-effects (between and within subjects)
- Multi-level regression limits the biased covariance estimates
- 81% higher sample size than estimated

Threats to Validity

- Internal Validity
 - Randomized assignment to conditions
 - Learning and fatigue:
 - 20 min average survey time
 - One week span between two surveys
- External Validity
 - Target security experts
 - Bias: recruitment from US universities
- Construct validity
 - Defined rating levels
 - Tested the terms used in another Mturk survey of ~300 participants
- Power
 - Mixed-effects (between and within subjects)
 - Multi-level regression limits the biased covariance estimates

Choice of Experimental Method

- Traditional survey designs of direct questions or rating of a statement → not sufficient
- We are studying human judgment
 - The context effect
 - The underlying components and their interaction
 - People are unaware of components
- Different experimental methods exist
 - Humans rely on their evaluation of factors they perceive in a situation to build a decision [1]
 - Scenario-based methods

