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Introduction: Assessing Risk in Various Phases of System 

Development and Operation

“Risk is a measure of future uncertainties in achieving  
program performance goals and objectives within defined  
cost, schedule and performance constraints.”

- Office of the Undersecretary of Defense

o The current risk identification method does not inform the decision makers well on the underlying 
causes of risk  and consequences.

o No variation (error bars) around three colors. Abrupt shift from one color to other is possible and is 
seen in practice.

o Interactions and ordering among risks cannot be shown. Consequences are not presented in tangible 
forms of  potential cost and schedule overruns as well as underperformance

o No typology of risks associated with causes (internal, external), phases of life cycle (certain risks are 
more common  in particular phases), and interconnections among choices.

o Consequences are not presented in tangible forms of potential cost to remedy (a NASA practice) 
and extent of  schedule overruns. PMs cannot use risk matrix to make trades.
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Introduction: Complexity and Risk Relationship

 Risk and consequences of uncertainty are often symptoms of deeper dynamics that exist in the
technical system and the creating/managing organization.

 A portion of the technical risks are often rooted in the system’s complexity, and/or the lack of 
know-how of the managing organization to handle the complexity of the technical system.

 Quantifying the engineered system complexity, can aid PMs to make optimal decisions in design 
and operation of a technical system

Limits	of	our	
current	
understanding	
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Underlying	structures	
And	dynamics	
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Schedule	Overruns	

Par al	and	total	
failures,	risks,	and	
uncertain es	

Complex	system,	
Dynamic	underlying	structure	

Non-
monetary	
Values	

Systems complexity in 
various phases of 
development and 
operation of an engineered 
system can surface into 
visible and detectable 
realm in forms of costs, 
schedule overruns and 
partial or catastrophic 
failure
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Research Objective:
To link technical complexity with uncertainty and risk 
across the stages of the acquisition process or 
various system development, and based on changes 
quantify and update risk elements for decision-
making on technical choices, project continuation, 
modification or cancellation.

The Complexity-Risk spiral. 
Insignificant uncertainties and 
risks in combination with 
structural complexity escalate 
into a fragile situation and to a 
point of no return at which 
failure is certain. 
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The spacecraft was a partially reusable human spaceflight vehicle for Low Earth 
Orbit, which resulted from joint NASA and US Air Force efforts after Apollo. “The 
vehicle consisted of a spaceplane for orbit and re-entry, fueled by an expendable 
liquid hydrogen/liquid oxygen tank, with reusable strap-on solid booster rockets. 
[…] A total of five operational orbiters were built, and of these, two were destroyed 
in accidents.”

“Soyuz is a series of spacecraft initially designed for the Soviet space programme and 
still in service today. […] The Soyuz was originally built as part of the Soviet Manned 
Lunar programme. […] The Soyuz spacecraft is launched by the Soyuz rocket, the most 
frequently used and most reliable Russian launch vehicle to date.”

Problem Complexity: 
Shuttle vs. Soyuz

Reference: Salado and Nilchiani
2014 

Introduction: The Need for Complexity Measures in 

Engineered Systems

Salado Problem 
complexity 
Equation in 
Requirements
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Figure	11.	Complexity	evolution	throughout	the	systems	acquisition	lifecycle	
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Literature Review

• Cyclomatic Number

• Free Energy Density Rate

• Propagation Cost and Clustered Cost

• Spectral Structural Complexity Metric
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𝑣 𝐺 = 𝑒 − 𝑛 + 𝑝

Cyclomatic Number

McCabe

9

https://www.tutorialspoint.com/software_engineering/software_design_complexity.htm



Free Energy Density Rate

Chaisson

10

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑖𝑚𝑒 ∗ 𝑀𝑎𝑠𝑠

http://www.informationphilosopher.com/solutions/scientists/chaisson/
http://www.metanexus.net/essay/we-are-going-cosmic-flow-will-we-float-or-sink



Architectural analysis of software 

systems

- Files are nodes

- Function calls are edges

- DSM based (adjacency matrix)

Propagation cost:

- Cost of impact of change in one 

file on others

- Evaluated through matrix powers

- Average over dependencies

Clustered cost:

- Weighted propagation cost

- Dependencies within cluster are 

low cost

- Dependencies between clusters 

are high cost

Propagation Cost and Clustered Cost

MacCormack, Baldwin, Rusnak
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Hückel Molecular Orbital (HMO) Theory

𝐻𝜓 = 𝐸𝜓

Definition of structural complexity

𝐶 𝑛,𝑚, 𝐴 =  

𝑖=1

𝑛

𝛼𝑖

𝐶1

+  

𝑖=1

𝑛

 

𝑗=1

𝑛

𝛽𝑖𝑗𝐴𝑖𝑗

𝐶2

𝛾𝐸(𝐴)
𝐶3

where

• C1 is the contribution of the size,

• C2 is the contribution of the connectivity, 

• C3 is the contribution of the topology.

Spectral Structural Complexity

Sinha, deWeck
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Methodology

• Requirements for the new metric

• Component swap test

• Interface swap test
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1. Measure the complexity of a

system with directed interfaces.

2. Measure the complexity of a

system with multiple parallel

edges, in which two components
can be connected via more

than one edge.

3. Measure the complexity of a

system with respect to its size,
where the complexity metric is

normalized with respect to the

extension of the system.

4. Pass the component swap test

5. Pass the interface swap test

Requirements for a Structural 

Complexity Metric
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Component Swap Test
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Interface Swap Test
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Spectral Theory of Systems 

Complexity

• Spectral Complexity Metric

• Adjacency Matrix

• Laplacian Matrix

• Normalized Laplacian Matrix
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Knowing

• 𝛼𝑖 complexity of the 𝑖𝑡ℎ

component

• 𝛽𝑖𝑗 complexity of the interface 

between the 𝑖𝑡ℎ and 𝑗𝑡ℎ

component

In this presentation we are 
assuming 𝛼𝑖 = 1 and 𝛽𝑖𝑗 = 1, 

therefore the weighted and 

unweighted cases will be 

equivalent.

Spectral Complexity Metric
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The Graph Energy (Gutman 1978) is evaluated using the eigenvalues of the 

adjacency matrix, as

𝐸𝐴 𝐺 = 

𝑖=1

𝑛

|𝜆𝑖|

The Laplacian Energy of a Graph (Gutman 2005) is defined as

𝐸𝐿 𝐺 = 

𝑖=1

𝑛

𝜇𝑖 −
2𝑚

𝑛

The generalization to any matrix (Cavers 2010) is

𝐸𝑀 𝐺 =  

𝑖=1

𝑛

𝜆𝑖(𝑀) −
𝑡𝑟(𝑀)

𝑛

Graph Energy

Matrix Energy
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Similar to the approach by Sinha, but with weighted graph

𝐶𝐴 =
𝐸𝐴 𝐺

𝑛
=
1

𝑛
 

𝑖=1

𝑛

|𝜆𝑖|

Laplacian approach

𝐶𝐿 =
𝐸𝐿 𝐺

𝑛
=
1

𝑛
 

𝑖=1

𝑛

𝜇𝑖 −
2𝑚

𝑛

Normalized Laplacian approach

𝐶ℒ = 𝐸ℒ 𝐺 = 

𝑖=1

𝑛

𝜈𝑖 − 1

Are these metrics computable?

Three Candidates for a Spectral 

Complexity Metric
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𝐴 𝑢, 𝑣 =  
1 𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In case of weighted edges

𝐴 𝑢, 𝑣 =  
𝑤(𝑢, 𝑣) 𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The eigenvalues in the case of symmetric matrix are

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛

and the following is true

 

𝑖=1

𝑛

𝜆𝑖 = 0,  

𝑖=1

𝑛

𝜆𝑖
2 = 2𝑚

Adjacency Matrix
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Directed edges create an asymmetry in the
adjacency matrix representation of the

graph.

This leads to complex eigenvalues.

In this case singular value decomposition is
an alternative to eigenvalue decomposition.

The adjacency matrix is decomposed as

𝐴 = 𝑈Σ𝑉𝑇

where 𝑈 and 𝑉 are unitary matrices and Σ is

a diagonal matrix containing the singular

values

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛

Adjacency Matrix

Directed Graphs
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https://www.mathworks.com/company/newsletters/articles/professor-svd.html

Eigenvalue and 

singular value 

decomposition of 

a symmetric matrix

𝐴 = 𝑈Λ𝑈𝑇

𝐴 = 𝑈Σ𝑉𝑇

𝜎𝑖 = |𝜆𝑖|



𝐴𝑑𝑖𝑟 =

0 1 0 1 1 0
0 0 1 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

𝐴𝑢𝑛𝑑𝑖𝑟 =

0 1 0 1 1 0
1 0 1 0 1 0
0 1 0 0 0 0
1 0 0 0 1 1
1 1 0 1 0 1
0 0 0 1 1 0

Adjacency Matrix
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𝐿 𝑢, 𝑣 = 𝐷 𝑢, 𝑣 − 𝐴(𝑢, 𝑣) =  
𝑑𝑣 𝑖𝑓 𝑢 = 𝑣,
−1 𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In case of weighted edges

𝐿 𝑢, 𝑣 = 𝐷 𝑢, 𝑣 − 𝐴(𝑢, 𝑣) =  
𝑑𝑣 − 𝑤(𝑢, 𝑣) 𝑖𝑓 𝑢 = 𝑣,
−𝑤(𝑢, 𝑣) 𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The eigenvalues are

0 = 𝜇1 ≤ 𝜇2 ≤ ⋯ ≤ 𝜇𝑛

and the following is true

 

𝑖=1

𝑛

𝜇𝑖 = 2𝑚,  

𝑖=1

𝑛

𝜇𝑖
2 = 2𝑚 + 

𝑖=1

𝑛

𝑑𝑖
2

Laplacian Matrix

Undirected Graphs

24



Laplacian matrix for directed graphs

𝐿 = Φ −
Φ𝑃 + 𝑃∗Φ

2

Where 𝑃 is the walk matrix

𝑃(𝑢, 𝑣) =  

1

𝑑𝑢
𝑖𝑓 𝑢, 𝑣 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

For weighted graphs

𝑃 𝑢, 𝑣 =
𝑤(𝑢, 𝑣)

𝑑𝑜𝑢𝑡(𝑢)

And Φ is the diagonal matrix of the Perron vector of 𝑃: 𝜙 𝑣 > 0

𝜙𝑃 = 𝜌𝜙

Laplacian Matrix

Directed Graphs

25

[Fan Chung – Laplacians and the Cheeger Inequality for Directed Graphs – 2005]



𝐿𝑑𝑖𝑟 =

2.97 −0.26 −0.017 −0.16 −0.18 −0.064
−0.26 2.97 −1.20 −0.041 −0.32 −0.034
−0.017 −1.20 0.99 −0.027 −0.032 −0.022
−0.16 −0.041 −0.027 2.97 −1.64 −1.19
−0.18 −0.32 −0.032 −1.64 3.97 −1.38
−0.64 −0.034 −0.022 −1.19 −1.38 1.98

𝐿𝑢𝑛𝑑𝑖𝑟 =

3 −1 0 −1 −1 0
−1 3 −1 0 −1 0
0 −1 1 0 0 0
−1 0 0 3 −1 −1
−1 −1 0 −1 4 −1
0 0 0 −1 −1 2

Laplacian Matrix

Graph Energy
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1

52

4

6

3

Directed 1.61

Undirected 1.71



ℒ 𝑢, 𝑣 = 𝐷−1/2𝐿𝐷−1/2 =

1 𝑖𝑓 𝑢 = 𝑣,

−
1

𝑑𝑢𝑑𝑣
𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

In case of weighted edges

ℒ 𝑢, 𝑣 = 𝐷−1/2𝐿𝐷−1/2 =

1 −
𝑤(𝑢, 𝑣)

𝑑𝑢
𝑖𝑓 𝑢 = 𝑣,

−
𝑤(𝑢, 𝑣)

𝑑𝑢𝑑𝑣
𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

And the eigenvalues are

0 = 𝜈1 ≤ 𝜈2 ≤ ⋯ ≤ 𝜈𝑛 ≤ 2

Normalized Laplacian Matrix

Undirected Graphs
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Normalized Laplacian matrix 

ℒ = Φ−  1 2𝐿Φ−  1 2 = 𝐼 −
Φ  1 2𝑃Φ−  1 2 +Φ−  1 2𝑃∗Φ  1 2

2

Where 𝑃 is the walk matrix

𝑃(𝑢, 𝑣) =  

1

𝑑𝑢
𝑖𝑓 𝑢, 𝑣 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

For weighted graphs

𝑃 𝑢, 𝑣 =
𝑤(𝑢, 𝑣)

𝑑𝑜𝑢𝑡(𝑢)

And Φ is the diagonal matrix of the Perron vector of 𝑃: 𝜙 𝑣 > 0

𝜙𝑃 = 𝜌𝜙

Normalized Laplacian Matrix

Directed Graphs

28

[Fan Chung – Laplacians and the Cheeger Inequality for Directed Graphs – 2005]



ℒ𝑑𝑖𝑟 =

0.99 −0.088 −0.0096 −0.052 −0.052 −0.026
−0.088 0.99 −0.69 −0.014 −0.092 −0.014
−0.0096 −0.69 0.99 −0.016 −0.016 −0.016
−0.052 −0.014 −0.016 0.99 −0.47 −0.49
−0.052 −0.092 −0.016 −0.47 0.99 −0.49
−0.026 −0.014 −0.016 −0.49 −0.49 0.99

ℒ𝑢𝑛𝑑𝑖𝑟 =

1 −0.33 0 −0.33 −0.29 0
−0.33 1 −0.58 0 −0.29 0
0 −0.58 1 0 0 0

−0.33 0 0 1 −0.29 −0.41
−0.29 −0.29 0 −0.28 1 −0.35
0 0 0 −0.41 −0.35 1

Normalized Laplacian Matrix

29

1

52

4

6

3
Directed 3.34

Undirected 3.07



Computation of Metrics
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• Identification of features and limitations in existing 

structural complexity metrics

• Overcoming of limitations with creation of new metrics

• Verification of the computability of the new metrics

Future work

• Validation of the new metrics

• Application to real world cases

Conclusion
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Future Work
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Future Work
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Future Work
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