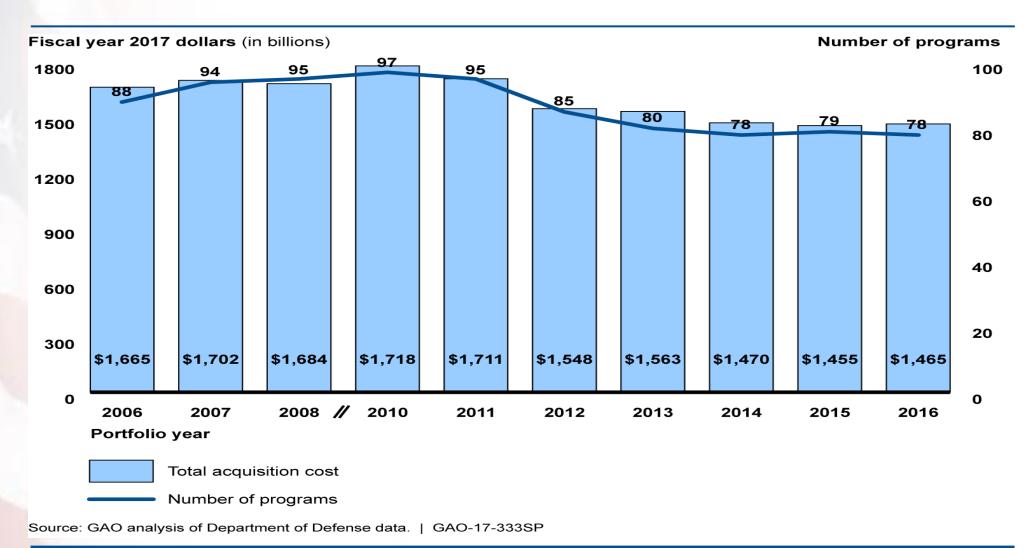


Assessments of Selected Weapon Programs Observations on Defense Acquisition Performance (GAO-17-333SP)

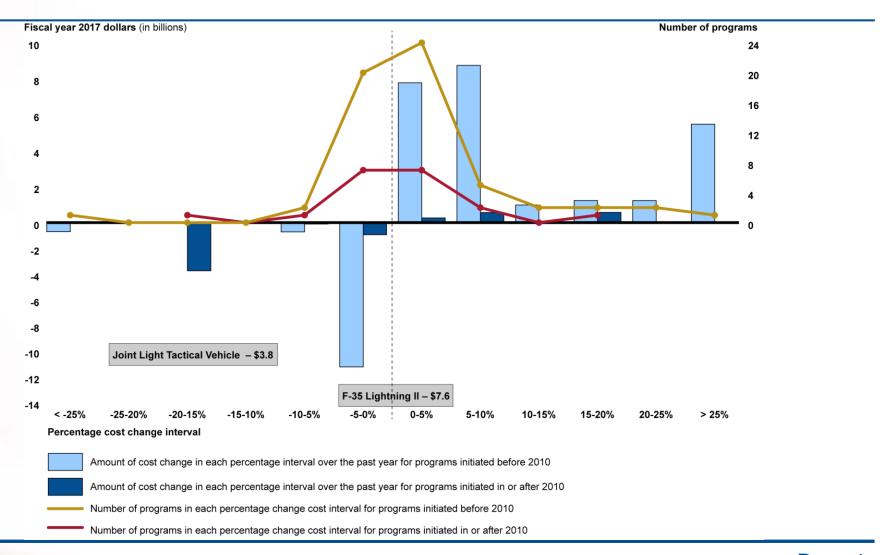
Desirée E. Cunningham, Senior Defense Analyst April 2017

Sources: (Left to Right) Patriot Advanced Capability-3 Missile Segment Enhancement, U.S. Army; VH-92A Presidential Helicopter Replacement, 2016 Sikorsky Aircraft Corporation, a Lockheed Martin Company; Next Generation Operational Control System, U.S. Air Force; and F-35 Lightning II, 2016 Lockheed Martin.

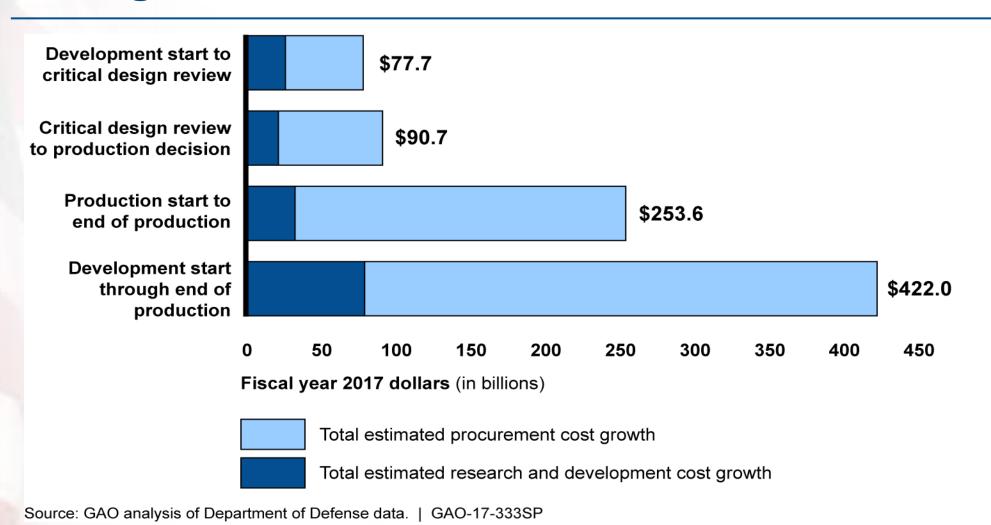


Introduction

- In our March 2017 report, we assessed defense programs' performance in three areas:
 - 1) cost and schedule outcomes
 - 2) use of acquisition reforms and initiatives, and
 - 3) use of knowledge-based best practices.
- Our 2017 report updates several of our <u>previous observations</u>, including:
 - the magnitude and type of cost and schedule changes for current programs,
 - "buying power" gains and losses, and
 - programs' use of knowledge-based best practices.
- New observations in our 2017 report cover:
 - the cost performance of programs started before versus after acquisition reforms,
 - the intervals in the acquisition cycle where cost growth occurs,
 - the extent to which operational testing informs initial operational capability, and
 - implementation of certain acquisition reform initiatives.

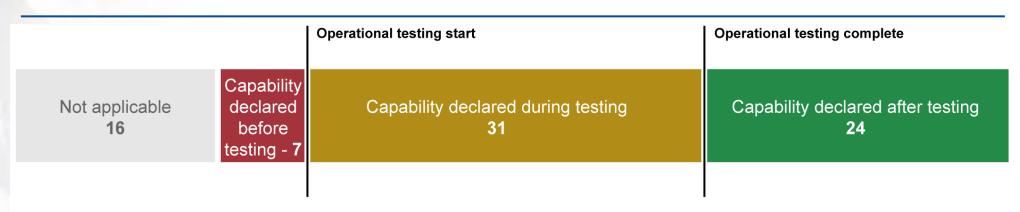


The 2016 Portfolio's Total Acquisition Cost Flattened Out



Cost Changes in Programs Started Before and After 2010 Share a Similar Profile

Programs Incur Most of Their Cost Growth during Production



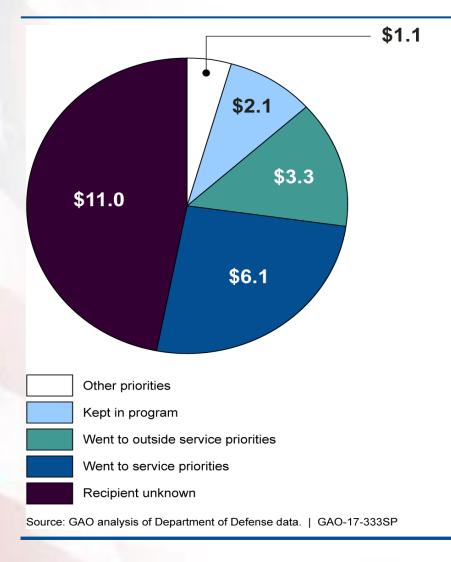
The portfolio realized a buying power gain of \$10.7 billion

	Number of programs	GAO calculated cost change due to quantity changes	Actual procurement cost change	GAO calculated cost change not attributable to quantity changes
Programs that gained buying power	33	1.8	-15.1	-16.9
Procurement cost decreased with no quantity change	24	0.0	-13.6	-13.6
Quantity increased with less cost increase than anticipated	6	3.4	1.5	-2.0
Quantity decreased with more cost decrease than anticipated	3	-1.7	-3.1	-1.4
Programs that lost buying power	40	14.6	20.7	6.2
Procurement cost increased with no quantity change	25	0.0	2.6	2.6
Quantity increased with more cost increase than anticipated	12	15.8	19.2	3.4
Quantity decreased with less cost decrease than anticipated	3	-1.2	-1.1	0.2
No change in buying power	5	0.0	0.0	0.0
Portfolio totals	78	16.3	5.6	-10.7

Almost Half of Programs Declare Initial Capability Before Completing Operational Testing

Source: GAO analysis of Department of Defense data. | GAO-17-333SP

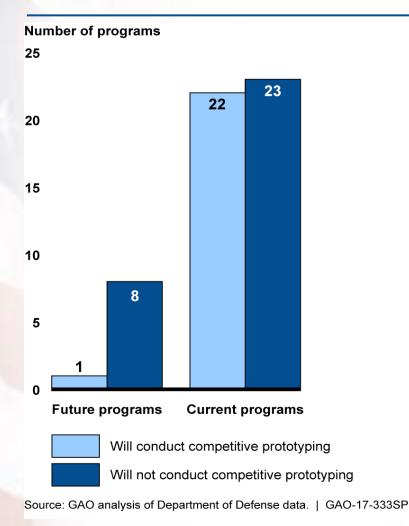
- Initial operational test and evaluation (IOT&E) is to evaluate a system's effectiveness and suitability.
- DOD's TEMP Guide notes that initial operational capability (IOC) is usually determined by the service.
- Consequently, programs can declare IOC on the basis of full, partial, or no IOT&E.
- Programs declaring IOC prior to completing full IOT&E risk finding deficiencies that may need to be corrected, which could add to a program's cost and schedule.



Reforms & Initiatives: 70 Percent of Programs Have an Affordability Constraint

- Affordability constraints are cost caps intended to force prioritization
 of requirements, enable cost trades, and ensure that unaffordable
 programs do not enter the acquisition process.
- Of the 54 current and future programs we assessed, 38 have established an affordability constraint while 16 have not.
- We found that all but one current program that conducted an analysis and set a constraint reported being on track to remain within their constraints.
- While the effectiveness of these constraints has yet to be widely tested, we observed that the current programs we assessed with established affordability constraints had a lower average amount of cost growth from their initial estimates compared to programs without a constraint.

Reforms & Initiatives: Programs Are Identifying and Realizing "Should-cost" Savings



"Should-Cost" analyses result in a cost estimate to be used as a management tool to control and reduce cost.

- Programs reported \$23.6 billion in realized "should-cost" savings.
- programs could account for the recipient of almost half, or \$11 billion, of these savings.
- \$178 million of savings realized were used to offset budget cuts required by sequestration.

Reforms & Initiatives: Use of Competitive Prototyping and Other Measures Mixed

	For the 9 future programs	For the 45 current programs	Total
Number of programs planning to promote competition	3	38	41
Throughout the Acquisition life cycle	1	15	16
Only prior to the start of system development	0	7	7
Only after the start of system development	2	16	18
Number of programs taking no actions to promote competition	6	7	13

One Program Began Development With a Match Between Resources and Requirements

Knowledge-based practices at system development start	John Comments	-mbia Class So.	SSMEAN SOLI	PAR 100 K1	/•		er 41 rams
Demonstrate all critical technologies are very close to final form, fit, and function within a relevant environment (TRL 6)	0	•			23	11	7
Demonstrate all critical technologies are in form, fit, and function within an operational environment (TRL 7)	0	0			3	29	9
Complete system functional review and system requirements review before system development start	0	•	•	0	15	25	1
Completed preliminary design review before system development start	•	•	•	0	19	21	1
Constrain system development phase to 6 years or less		•	•		27	6	8

Source: GAO analysis of Department of Defense data. | GAO-17-333SP

Future Programs Do Not Consistently Plan to Follow Best Practices

	Development start	Projected to demonstrate all critical technologies in an operational environment	Projected to complete all systems engineering reviews	Plan to constrain system development
Long Range Precision Fires	TBD		0	•
T-AO 205 John Lewis Class Fleet Oiler	06/2017	•	•	•
P-8A Poseidon Multi-Mission Maritime Aircraft Increment 3	NA		0	
MQ-25 Stingray Unmanned Air System	05/2018		0	•
Joint Surveillance Target Attack Radar System Recapitalization	10/2017		0	•
Improved Turbine Engine Program	TBD	0	0	•
Amphibious Ship Replacement	TBD		0	•
Advanced Pilot Training	12/2017		0	•
Weather Satellite Follow-on	06/2018	0	•	•

[•] Implementation planned, O No implementation planned, —- Practice to be determined

At Critical Design Review, No Programs Met All Best Practices

Knowledge-based practices at critical design review	Amp		ONS.	N. S. Which	¥ /•		er 31 rams
Demonstrate all critical technologies in an operational environment	•	0	0		6	19	6
Release at least 90 percent of drawings	•	•	•	•	10	16	5
Test an early system-level integrated prototype	0	•	0	0	5	19	7
Establish a reliability growth curve	•	•		•	21	6	4
Identify key product characteristics	•		•	•	27	0	4
Identify critical manufacturing processes	•		•	•	25	1	5
Conduct producibility assessments to identify manufacturing risks for key technologies	•		•		24	2	5
Complete failure modes and effects analysis	•	•	•	•	24	1	6

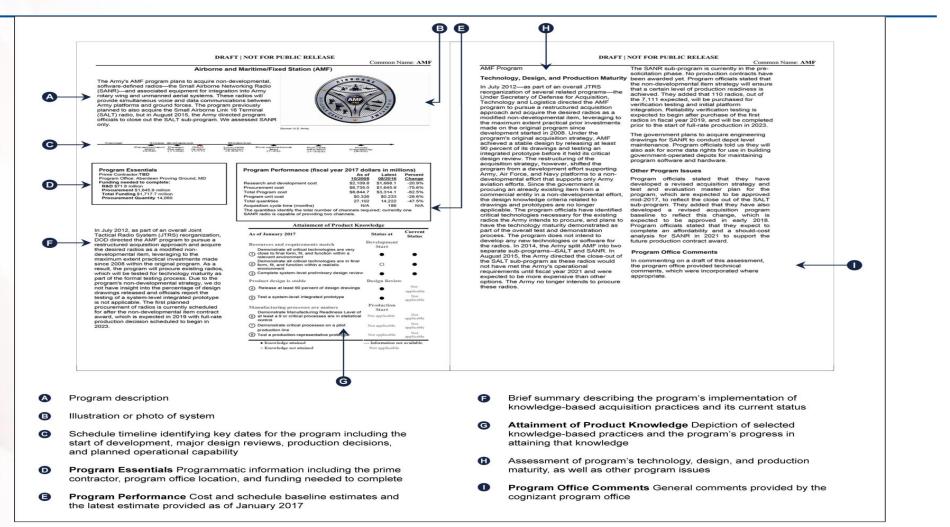
Practice implemented

 C

Practice not implemented

Practice not applicable or information not available

Source: GAO analysis of Department of Defense data. | GAO-17-333SP



Two of Three Programs Did Not Test a Production-Representative Prototype

Knowledge-based practices at production start	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4C. 48 /	048,	, minc 1	progi have	he 15 shipbuilding rams that reached uncture ^b
Demonstrate all critical technologies in an operational environment	•	•	•	9	3	3
Release at least 90 percent of drawings	•	•	•	7	4	4
Demonstrate manufacturing process capabilities are in control	0	0	0	1	11	3
Demonstrate critical processes on a pilot production line	0	•		8	4	3
Test a production-representative prototype in its intended environment	0	•	0	6	7	2
Practice implemented Practice not implemente Source: GAO analysis of Department of Defense data. GAO-17-333SP	ed	Practice	e not applic	able or info	ormation n	ot available

Example of an Individual Program Assessment

Back up Slides

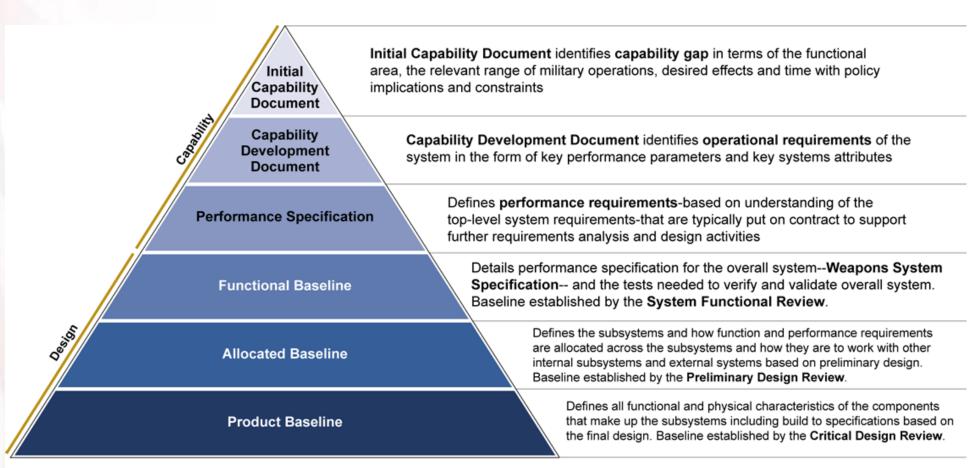
Individual Program Assessments

One Page (12)	Two Pagse (43)					
APT	3DELRR	F-35	MGUE			
DDG 51	ACV	FAB-T CPT	MQ-4C Triton			
Frigate	AMDR	G/ATOR	MQ-8 Fire Scout			
ITEP	AMF JTRS	GPS III	NGJ			
JSTARS Recap	AMPV	IAMD	OASuW			
LRPF	B-2 DMS	IFPC 1-I Blk 1	OCX			
LX(R)	CH-53K	JAGM	PAC-3 MSE			
MQ-25	CIRCM	JLTV	SDB II			
P-8A Inc 3	CRH	JPALS	Space Fence			
PAR	CVN 78	JTRS HMS	SSBN 826			
T-AO 205	DDG 1000	KC-46A	SSC			
WSF-M	EELV	LCS	VH-92A			
	EPS	LCS MM	WIN-T			
	F-15 EPAWSS	LHA 6				
	F-22 3.2B	M109A				

Early Systems Engineering Positions Programs for Success

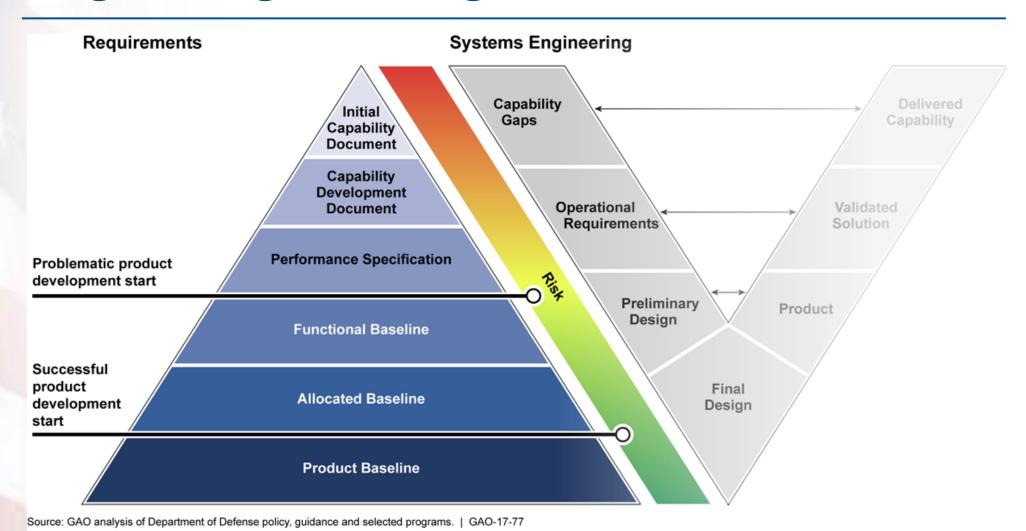
Travis J. Masters, Assistant Director
U.S. Government Accountability Office
Acquisition and Sourcing Management Team

April 2017



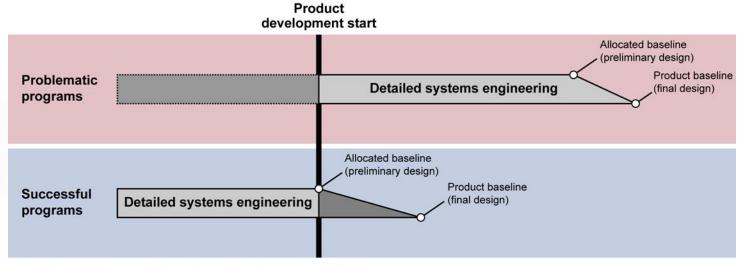
Requirements Lay the Foundation for a **Program Business Case**

- Capability requirements exist that warrant a materiel solution consistent with national military strategy priorities.
- Capability requirements have been decomposed into design requirements through systems engineering.
- The materiel developer has the resources—including mature technologies and design knowledge—necessary to meet the design requirements and ultimately the capability requirements.
- The materiel developer has a knowledge-based product development and production plan with reasonable cost and schedule estimates.
- Funding is available to fully resource the product development and production plan.


What Requirements?

Source: GAO analysis of Department of Defense policy and guidance. | GAO-17-77

Relationship among Requirements, Systems Engineering, and Program Risk


Identifying and Meeting the Challenges Posed by Capability Requirements

- Four factors frame the challenge posed by capability requirements
 - Acquisition Approach do the requirements lend themselves to an incremental or single-step development approach?
 - Technology Status are key technologies available and sufficiently mature, or do the requirements demand significant changes to the form, fit, or function of existing technologies or the invention of new technologies?
 - Design Maturity can the requirements be met with a modified version of an existing system (operational or prototype), or will a new and unprecedented design be needed?
 - Program Interdependency do the requirements lend themselves to a largely standalone solution or will a "system of systems" likely be needed?

Systems Engineering is key To Understanding Whether and How the Challenge Can Be Met

- Challenging requirements don't have to become acquisition problems.
- Detailed systems engineering analysis done before product development can help programs understand and account for risks.
- Risks can not all be avoided, but they must be understood, acknowledged, and adequately resourced if carried into development.

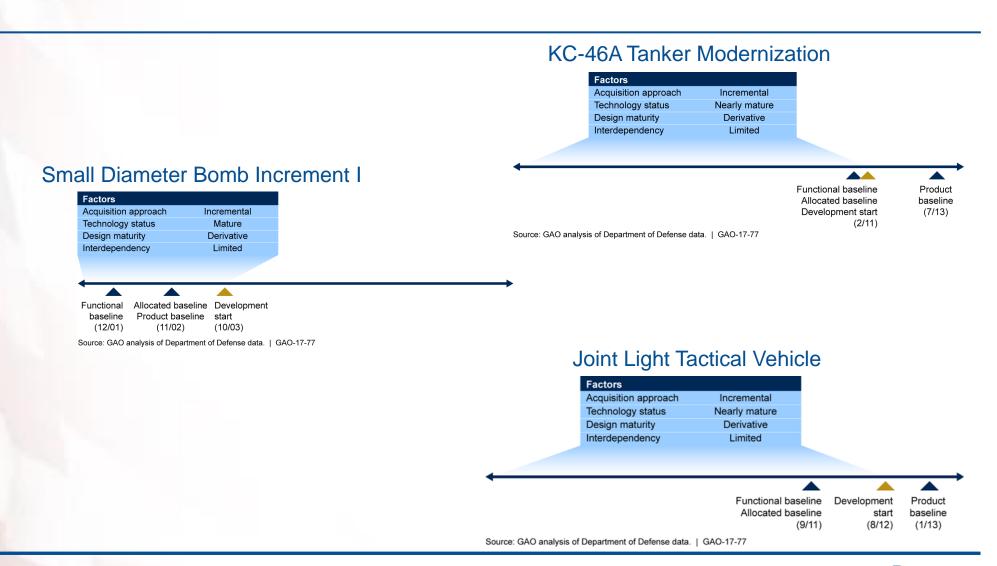
Source: GAO analysis of Department of Defense guidance and selected program data. | GAO-17-77

General Findings of Nine Program Case Studies

- Three programs began with less challenging requirements and conducted early, robust systems engineering to achieve an executable business cases. Their outcomes have been good.
- Three programs began with slightly greater requirements challenges, but the early systems engineering analysis they did allowed them to understand and plan for the associated risks. They have experienced moderate cost and schedule growth.
- Three programs began with highly challenging requirements and conducted The bulk of the detailed systems engineering after development started. They have encountered significant cost and schedule problems.

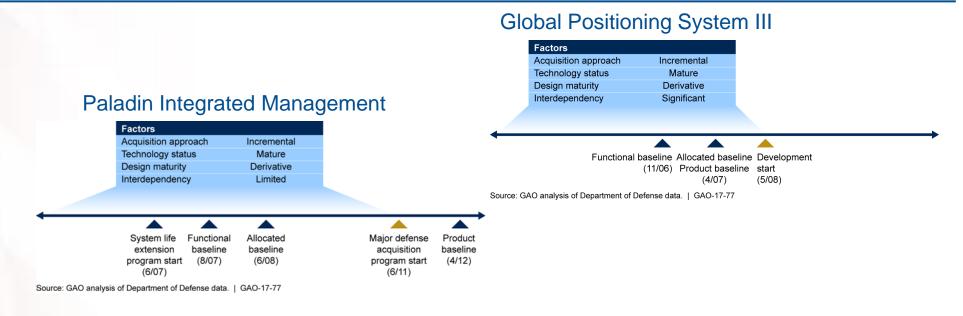
Case Study Programs and Outcomes

(Then-year dollars in millions)

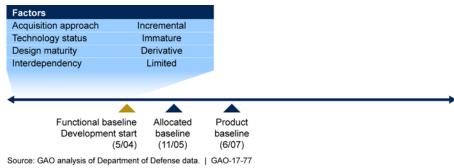

Duaguaga	ledd-led	0	Danasat	Association avalations
Program	Initial estimate	Current estimate	Percent change	Acquisition cycle time growth since initial estimates (in months)
KC-46A Tanker Modernization Program	\$7,149.6	\$6,259.6	-12%	14
Joint Light Tactical Vehicle	\$1,009.8	\$948.9	-6%	19
Small Diameter Bomb Increment I	\$381.3	\$367.7	-4%	-1
Paladin Integrated Management/M109A7 Family of Vehicles	\$1,041.7	\$1,098.6	5%	2
P-8A Poseidon Multi-mission Maritime Aircraft Increment I	\$6,975.5	\$7,940.4ª	14%	4
Global Positioning System III	\$2,512.0	\$3,018.6	20%	n/a
CH-53K Heavy Lift Replacement Helicopter	\$4,366.4	\$6,598.3	51%	51
F-35 Lightning II Program	\$34,400.0	\$55,133.0	60%	62
Integrated Air and Missile Defense	\$1,672.5	\$2,632.9	62%	22

Source: GAO analysis of DOD data.

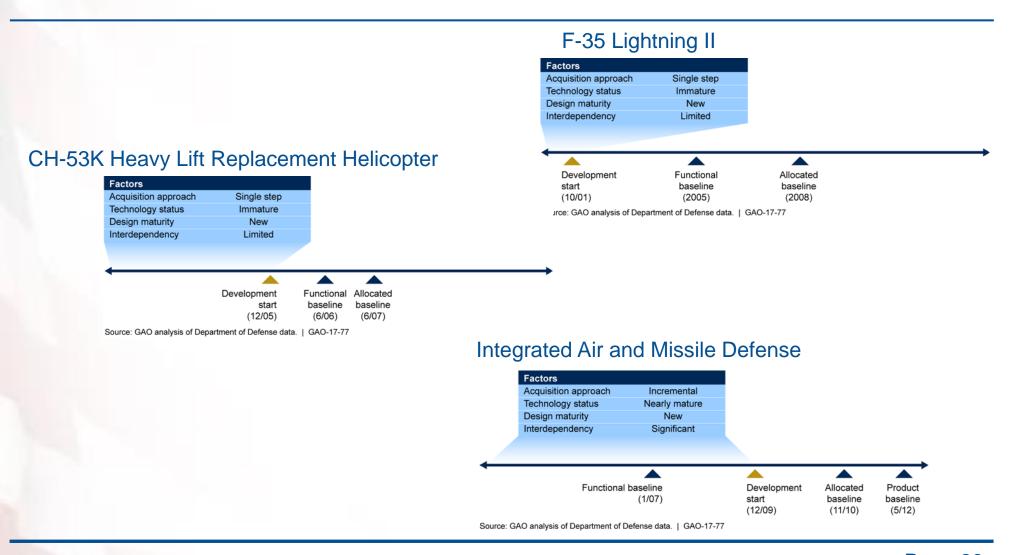
Note: Acquisition cycle time is calculated from the start of product development to initial operational capability. We could not calculate acquisition cycle times for the first increment of the Global Positioning III program because initial operational capability will not occur until satellites from a future increment are fielded. For the P-8A Increment I current estimate, we used the P-8A budget estimate from February 2016 to separate increment I cost from increment II.



Programs with Little Risk and Better Outcomes

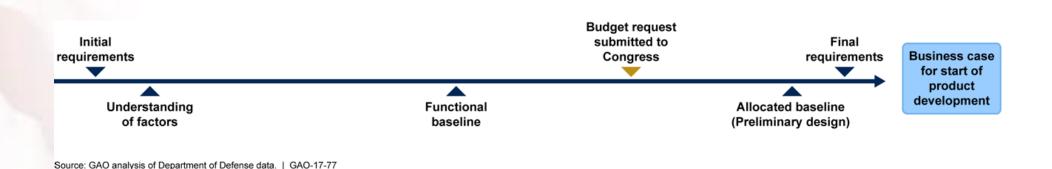


Programs with Moderate Risk and Some Cost and Schedule Growth



P-8A Poseidon Multi-Mission Maritime Aircraft Increment I

Programs with High Risk and Significant Cost and Schedule Growth


Misaligned Budget and Acquisition Processes Pose Challenges to Oversight

- Current DOD budget processes and mechanisms require Congress to make funding decisions well in advance of the decision to begin product development.
- At the time of the budget decision many of the elements of a business case are still in draft and not available to Congress to inform their decisions.
- Information like that in a Systems Engineering Plan could provide useful insights about requirements risks and remaining systems engineering analyses to Congress as it considers funding a program.

Early Insights Into Systems Engineering StatusCan Enhance Oversight

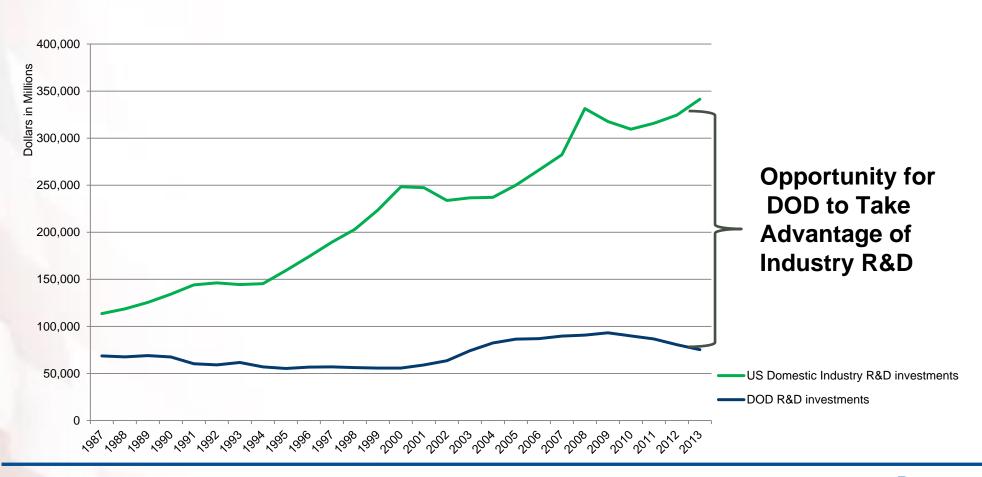
 Providing Congress with information on the challenges posed by requirements (the factors) and the status of systems engineering analysis when a funding request is made, would provide useful insight into risks facing a proposed program and could allow for more robust budget deliberations.

Acquisition Reform: Encouraging Non-Traditional Companies to Do Business With DOD

Cheryl K. Andrew, Assistant Director U.S. Government Accountability Office Acquisition and Sourcing Management Team

April 2017

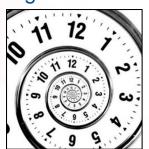
Evolution of Acquisition Reform


Improve MDAP cost and schedule outcomes

Streamline acquisition processes

Take greater advantage of commercial technologies

Research and Development Spending Trend


Aspects of DOD's Acquisition Process that Cause Challenges for Commercial Companies

Complex Acquisition Environment

Budget Uncertainty

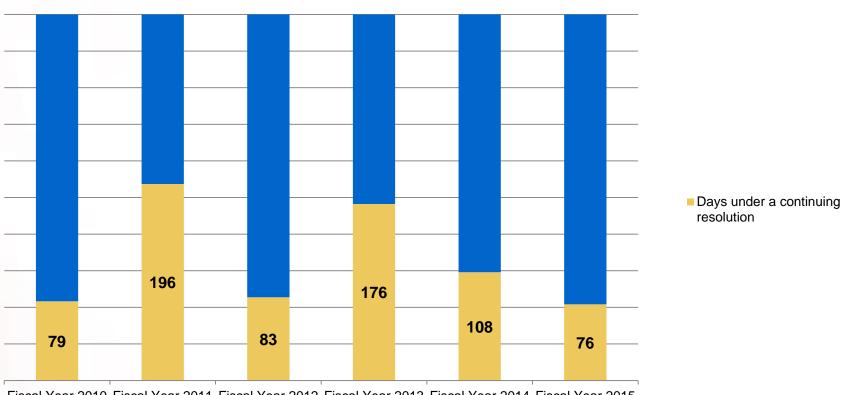
Contracting timelines

Inexperienced Workforce

Intellectual property rights

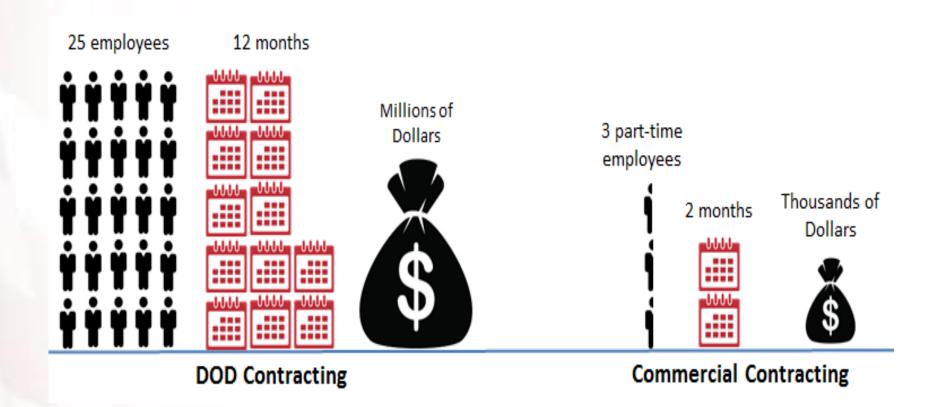
Contract terms and conditions

Government-specific business systems


Complex Acquisition Environment

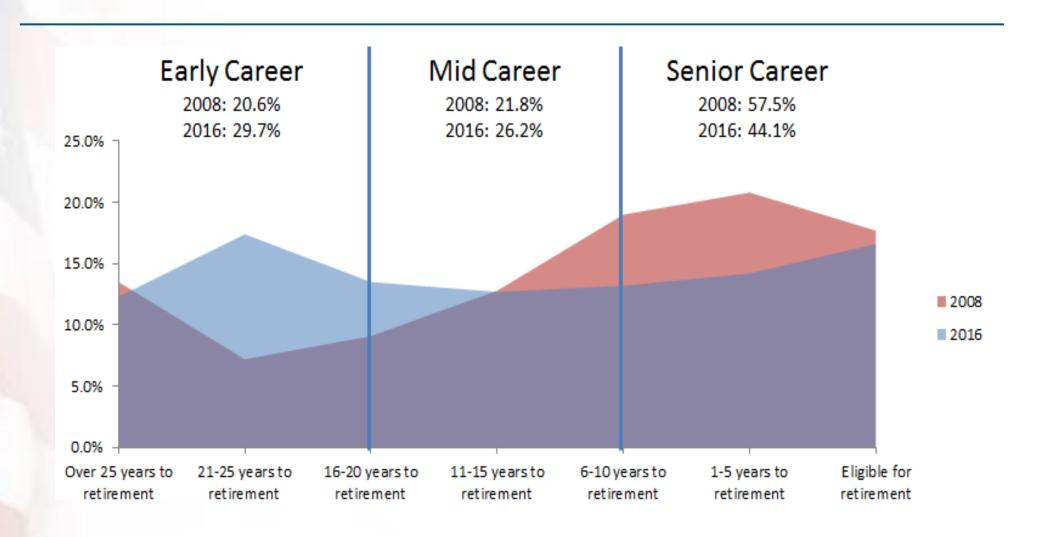
- Multiple decision-makers
- Security Clearances
- High Barriers to Entry

DOD Budget Uncertainty

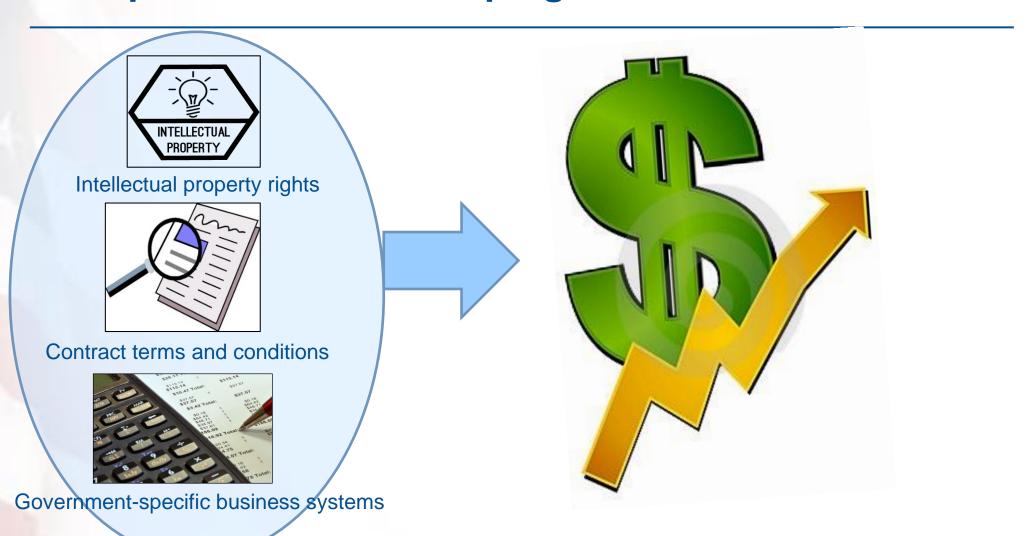

Example of Army Contract Timelines

Dollar Value	Procurement Administrative Lead Time				
	Competitive Contracts	Non-Competitive Contracts			
<\$25,000	55	55			
\$25,000-<\$1 million	75	100			
\$1 million - < \$50 million	180	250			
\$50 million - \$250 million	600	520			
\$250 million - \$1 billion	630	550			
>\$500 million	Did not provide	610			
>\$1 billion	700	Did not provide			

4/27/2017 Page 37


Competing for DOD and Commercial Contracts

4/27/2017 Page 38


Change in DOD Contracting Workforce Demographics (Comparison of FY 2008 and 2016 data)

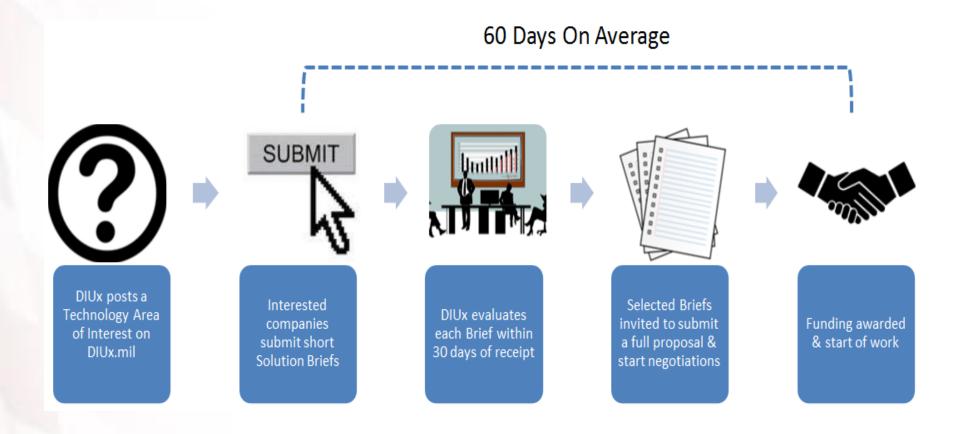
4/27/2017 Page 39

Aspects of DOD's Acquisition Process that Deter Companies from Developing Products for DOD's Use

Congressional Legislation Aimed at Simplifying Acquisition Procedures

Fiscal Year 2016 Provisions

Fiscal Year 2017 Provisions


- Codifies and expands Other Transaction Authority
- Requires DOD to identify and justify contract clauses applicable to commercial items acquisitions
- Requires DOD to develop commercial item determination expertise
- Limits DOD's ability to convert a commercial item acquisition to a FAR Part 15 negotiated procurement
- Established an advisory panel to study ways to streamline acquisition regulations

- Requires DOD to minimize the use of government-unique clauses
- Amends DFAR to include a list of defenseunique laws and contract clauses that are inapplicable to commercial item acquisitions
- Exempts non-traditional companies from establishing cost accounting systems
- Minimizes FAR Part 15 contract requirements in subcontracts
- Requires DOD to establish a personnel security program to quickly investigate and adjudicate security clearances

4/27/2017

DIUx Uses Streamlined Process to Fund Innovative Projects

Other GAO Reviews that Will Provide Additional Perspectives on Challenges

- Commercial Item Determinations
- Contract Award Times
- Prototyping
- Defense Acquisition Workforce Development Fund (DAWDF)

GAO on the Web

Web site: http://www.gao.gov/

Congressional Relations

Katherine Siggerud, Managing Director, siggerudk@gao.gov (202) 512-4400, U.S. Government Accountability Office 441 G Street, NW, Room 7125, Washington, DC 20548

Public Affairs

Chuck Young, Managing Director, youngc1@gao.gov (202) 512-4800, U.S. Government Accountability Office 441 G Street, NW, Room 7149, Washington, DC 20548

Copyright

This is a work of the U.S. government and is not subject to copyright protection in the United States. The published product may be reproduced and distributed in its entirety without further permission from GAO. However, because this work may contain copyrighted images or other material, permission from the copyright holder may be necessary if you wish to reproduce this material separately.