

Shrinking the "Mountain of Metal": The Potential of Three Advanced Technologies

David Ford

Thomas Housel

Johnathan Mun

A DoD Operations Challenge

- A "mountain of metal" remains in theatre after military operations.
- Costs of traditional means for repairing much of the mountain to operable condition often exceeds its value.
- Potentially valuable equipment is left unavailable to US military forces or partners to which the equipment might be donated.

Q.: How can more of the "mountain of metal" be made operational?

Q.: How can the added cost and effort of increasing the value of the mountain be justified?

Problem Description

Five processes by which materiel from contingent operations should be disposed of (DOD Supply Chain Materiel Management Policy, 2011):

- Consume in theater
- <u>Reutilize</u> within DoD and other U.S. entities
- <u>Retrograde</u> (return to US depots) to <u>reset</u> (restore to full capability) U.S. forces
- Transfer or donate to allies or partner nations
- Turn-in to DLA Disposition Services

Problem Description

- Required replacement *parts* are low volume and diverse (no efficient warehousing)
- Required repair *tools* are low volume and diverse (often not available near damaged equipment)
- Required repair *knowledge* held by specialists often not in theatre
- Traditional repair materiel are far away (high transport costs)

Repair-For-Reuse A Potential Solution

- Apply existing advanced technologies to facilitate in-theatre design, manufacture, and implementation of repair solutions.
- Three Technologies with Potential:
 - 3D Laser Scanning
 - Collaborative Product Lifecycle Management
 - Additive Manufacturing (3D Printing)

Technology 1 3D Laser Scanning

- Laser scans space from highly articulated mount, often combined with 360° camera
- Software processes the "point cloud" into 3D image of the object or space.
- 3D image processed into CADD format for use in design and manufacturing.
- Currently used in automotive, offshore construction and repair, civil and transportation, building construction, fossil fuel and nuclear power plants

3D Laser Scanning An Example

Challenge: Cement kiln inlet repair

- Client needed quick, very accurate, and complete data
- Traditional methods too time consuming
- Traditional methods possibly inaccurate.

Solution: 3D scanning

- Captured all required information in just a couple hours.
- Data was processed on-site and confirmed

Deliverables:

 Point cloud to create a model (e.g. for manufacturing)

Point Cloud and Model overlaid and used to calculate volume and flow and to prefabricate new parts for the cement kiln

TruePoint: http://truepointscanning.com/Case_Studies/Laser-Scanning-Cement-Kiln.html

Acquisition Research Program: Creating Synergy for Informed Change

Technology 2

Collaborative Product Lifecycle Management

- To "integrate people, processes, and information"
- Electronically integrates design documents, data bases, 3D LST, etc., for participant collaboration across physical distances & time.
- Common, shared sets of documents improves access, collaboration, coordination, communication
- Common platform for program change management
- Basis for asset management during operations

Technology 3: Additive Manufacturing (3D Printing)

- 3D design/image (e.g. from 3D LS) of final part. Create net that describes surfaces.
- Geometric slicing of image into horizontal layers for manufacturing
- Incrementally add small amounts of material in very thin layers of material to build-up part
- Variety of possible materials (plastic, titanium)
 & methods (e.g. for material bonding)
- Very complex parts possible. Little waste.
- No dominant method, materials, suppliers

Research Questions

Q.: How might 3DLST, PLM, and AM evolve across time and facilities based on their proximity to combat operations?

Q.: What scale of savings are possible through the adoption and use of 3DLST, PLM, and AM in a repair-for-reuse approach?

Research Plan

- Literature review: Current disposal methods, types of materials, complexities that the technologies can address, relative costs.
- <u>Develop repair-for-reuse scenarios</u>: Forecasts of evolution of each technology.
- <u>Repair-For-Reuse Evolution Map</u>: Applications across time (now, a near-term, long-term) and across repair sites (e.g. FOB, MOB, home depot).
- Estimate costs and savings: KVA to estimate relative costs. Estimate cost savings.
- <u>Conclusions and Recommendations</u>

A) Traditional Process Retrograde to US to Reset

Source: GAO analysis of DOD data.

Equipment stays with units – typical 1 year cycle, ≈100% returned to US for repair

Acquisition Research Program: Creating Synergy for Informed Change

B) Current Process Theater Sustainment Stocks and Theater Provided Equipment

Source: GAO analysis of DOD data.

Acquisition Research Program: Creating Synergy for Informed Change

Modeling the Shrinking of the Mountain

Modeled the Army's Up-Armor HMMWV fleet as a case study

Technology Application Evolution Forecasts: Current Processes

		Innovative Technology							
<u>Current</u> <u>Applications</u>		3D Scanning Technology (3DST)	Additive Manufacturing (AM)	Product Lifecycle Management (PLM)					
ition	US depot	-Limited use for basic parts	-Limited use for basic parts with few materials -Test broader application of basic AM	-Parts and component data storage & sharing -Component life tracking -Inventory analysis					
Loca	In-Theater	-None or experimental	-Limited use with basic materials	-Limited use					
	Forward station	-None	-None	-None					

Current Maintenance Repair Overhaul (MRO) Applications of Three Advanced Technologies

Technology Application Evolution Forecasts: Near Future (5-10 years)Processes

Literature-based forecasts of 3 technology's

evolu	Itions <u>Near-Future</u> Applications	3D Scanning Technology (3DST)	Additive Manufacturing (AM)	Product Lifecycle Management (PLM)	
	US depot	3DST for AM of basic parts replacement is SOP -Test integrated & automated 3DST & AM	-AM for basic parts with basic materials is SOP Test AM with multi-materials Test integrated & automated 3DST & AM Test AM of integrated components	-Automated inventory management is SOP -Test conditional MRO management -Test communication & integration across processes -Test automation across processes -Test providing MRO knowledge & skills with parts	
	In-Theater	-Damage assessment at micro & nano scales is SOP -Test portable 3DST applications -Test integrated & automated 3DST & AM	-Portable AM is SOP -Test very portable AM -Test integrated & automated 3DST & AM -Test integrated AM & traditional processes	Test integrated diagnosis & MRO Test MRO forecasting & planning ased on component conditions	
	Forward station	-Test real time damage assessment applications -Test very portable scanning applications	-None	-Test real time user experience data collection and use in MRO	

Near Future Maintenance Repair Overhaul (MRO) Applications of Three Advanced Technologies

Technology Application Evolution Forecasts: Distant Future (10+ years) Processes

<u>Distant-</u> <u>Future</u> <u>Applications</u>		3D Scanning Technology (3DST)	Additive Manufacturing (AM)	Product Lifecycle Management (PLM)	
	US depot	Scanning for AM for basic parts replacement is SOP -Integrated scanning & AM manufacturing is SOP -Test fully integrated 3DST, AM,	-AM for diverse parts with multi- materials is SOP -Integrated 3DST & AM is SOP -Integrated component AM is SOP -Integrated AM & traditional	-Conditional MRO is SOP -Providing MRO knowledge & skills with parts is SOP -Test fully integrated and automated 3DST, AM, PLM	
tion		PLM	processes is SOP -Test 4D component design and AM -Test AM-based parts design & micro/nano AM		
Foc	In-Theater	-Integrated scanning & manufacturing is SOP -Portable scanning is SOP	-AM for diverse parts with multi- materials is SOP -Integrated & automated portable 3DST & AM is SOP	Integrated and automated liagnosis & MRO is SOP Providing MRO knowledge & skills vith parts is SOP	
_	Forward station	-Very portable user scanning damage assessment is SOP -Real time damage assessment & communication to MRO	-integrated & automated very portable 3DST & AM is SOP	-Integrated diagnosis & MRO is SOP -Providing MRO knowledge & skills with parts is SOP -Real time user experience collection and use in MRO is SOP	

Innovative Technology

Distant Future Maintenance Repair Overhaul (MRO) Applications of Three Advanced Technologies

Acquisition Research Program: Creating Synergy for Informed Change

KVA Modeling Results

		Scenario								
		Tradit As-\	ional: Nas	Curr As	ent: -ls	Near F To	uture: Be	Fut Radica	ure: l To-Be	
No	Process	ROK	ROI	ROK	ROI	ROK	ROI	ROK	ROI	
1	Diagnosis at forward station	NA	NA	NA	NA	1612%	1512%	1180%	1080%	
2	Repair at forward station	NA	NA	NA	NA	708%	608%	386%	286%	
3	to US depot	21%	-79%	21%	-79%	15%	-85%	3%	-97%	
4	Retrograde forward station to in-theater facility	NA	NA	508%	408%	364%	264%	68%	-32%	
5	Diagnosis at US depot	190%	90%	195%	95%	526%	426%	NA	NA	
6	Repair at US depot	211%	111%	217%	117%	433%	333%	NA	NA	
7	Overhaul at US depot	51%	-49%	52%	-48%	59%	-41%	28%	-72%	
8	Transport from US depot to forward station	21%	-79%	21%	-79%	15%	-85%	3%	-97%	
9	Diagnosis at in-theater facility	NA	NA	195%	95%	422%	322%	1501%	1401%	
10	Repair at in-theater facility	NA	NA	246%	146%	530%	430%	220%	120%	Allen o
11	Overhaul at in-theater facility	NA	NA	52%	-48%	58%	-42%	28%	-72%	TI! Min
	Transport in-theater facility									ROI = (Benefits)
12	TOTAL			0.00/0	10070	30070	20070	1.0000	51/0	-Costs)/Costs
	IOTAL	74%	-26%	96%	-4%	148%	48%	169%	69%	$-\cos(3)/\cos(3)$

Acquisition Research Program: Creating Synergy for Informed Change

KVA Modeling Results

		Variance from As-Was			Variance from As-Is		
No.	Process	As-Is	То-Ве	Radical To-Be	То-Ве	Radical To-Be	
1	Diagnosis at forward station	NA	NA	NA	NA	NA	
2	Repair at forward station	NA	NA	NA	NA	NA	
3	Retrograde forward station to US depot	-1%	-6%	-18%	-6%	-18%	
4	Retrograde forward station to in-theater	NA	NA	NA	-143%	-439%	
5	Diagnosis at US depot	6%	336%	NA	331%	NA	
6	Repair at US depot	6%	223%	NA	217%	NA	
7	Overhaul at US depot	1%	8%	-23%	7%	-24%	
8	Transport from US depot to forward	-1%	-6%	-18%	-6%	-18%	
9	Diagnosis at in-theater facility	NA	NA	NA	227%	1306%	
10	Repair at in-theater facility	NA	NA	NA	283%	-26%	
11	Overhaul at in-theater facility Transport In-theater	NA	NA	NA	6%	-24%	
12	facility to forward	NA	NA	NA	-140%	-439%	
	TOTAL	22%	74%	95%	51%	73%	

Future (To-Be) processes can save significantly over current (As-ls) processes.

Acquisition Research Program: Creating Synergy for Informed Change

Current (As-

ls) & future

processes

save over

traditional

(As-Was)

processes.

(To-Be)

Forecasted Costs & Savings

Sceanrio Cost (\$Mil)		Savings vs. As-Was (\$Mil)	Savings vs. As-Was (% fleet value)	Savings vs. As-Is (\$Mil)	Savings vs. As-Is (% fleet value)	
As-Was	\$5,449.17	NA	NA	NA	NA	
As-Is	As-Is \$4,200.40		31%	NA	NA	
То-Ве	\$2,724.59	\$2,724.59	68%	\$1,475.82	37%	
Radical To-Be	\$2,386.03	\$3,063.14	76%	\$1,814.38	45%	

Estimated Costs and Savings in Army's Up Armor HMMWV fleet of Four Scenarios

Based on ROI definition & value of Army Up-Armor HMMWV fleet (\approx \$4.03b)

Acquisition Research Program: Creating Synergy for Informed Change

Forecasted Savings

- US Army equipment in Afghanistan: \$28.4b (Banian, 2013)
- DOD materiel in Iraq: \$19.3b (Cruz, 2013)
- Total estimate: \$47.7b
- Distant Future scenario savings estimate:
 \$21.46b (=\$47.7b * 45%)

Conclusions

- To capture very large potential savings DoD should accelerate its adoption of 3DST, AM, & PLM for maintenance, repair, and overhaul operations.
 - Expand use in applications that have been demonstrated to provide benefits
 - Test use for a broader spectrum of applications (e.g., materials, parts types, processes)
 - Revise processes to exploit these technologies

Impacts on Practice

- More military operations support located closer & at forward stations
- Damage diagnosis & repair faster, more accurate, & targeted.
- MRO demands forecasted in real time based on data from embedded sensors

Questions Comments Discussion

Acquisition Research Program: Creating Synergy for Informed Change

3D Printing An Advanced Example

Additive manufacturing

Magnetic moments

3D printers promise better, cheaper and more powerful magnets The Economist, Nov. 19, 2016 http://www.economist.com/news/science-and-technology/21710233-3d-printers-promise-better-cheaper-and-more-powerful-magnets-magnetic-moments

"Unlike the simple bars and horseshoes of children's magnets, the 3D-printed variety {of magnets} can be made in all manner of shapes. Their fields can thus be tailored into patterns far more complex than a simple north-south alignment. These unconventional magnets have huge value in the design and performance of many products that rely on magnetic components: from hospital body-scanners to audio speakers, and from hard disks to wind turbines. In particular, anything that involves an electric motor or a generator also uses magnets. A modern car, for instance, contains a hundred or more electric motors of various sorts, to open and close the windows, adjust the seats, run the heating and, increasingly, to turn the wheels. All require magnets to make them work. The unconventional shapes needed to generate the complex magnetic fields they need to do their jobs properly can, though, be difficult to make."