Applying Principles of Set-Based Design to Improve Ship Acquisition

Eric Rebentisch, Ph. D. Massachusetts Institute of Technology 77 Massachusetts Ave., Room E17-345 Cambridge, MA 02139-4307 erebenti@mit.edu

Phone: 617-258-7773

LCDR John Genta Portsmouth Naval Shipyard john.a.genta@navy.mil jagenta@alum.mit.edu Phone: 207-451-8923

Motivation: Designing an affordable fleet

"The lack of discipline in both the requirements development process and the systems design and demonstration process are making new ships unaffordable" D. Hunter, R-CA, 2004

"The basic problem is that the naval ship enterprise lacks the mature capabilities for the consistent design, acquisition and construction of cost-effective, mission capable warships" *R. Keane, 2009*

"...Do more, without more!" Deputy USD, Better Buying Power, 2015

The Solution: Improve the navy ship design/acquisition process

- USN design improvement initiatives
 - 2005: NSRP SIP
 - 2007, COMNAVSEA Direction
 - 2008, 2 Pass/6 Gate design process
 - 2009, NAVSEA Ship Design Tool TWH created
- DoD Process Initiatives
 - 2009, WSARA
 - 2012+, Better Buying Power Series
 - 2013, Annual DoD Acquisition Performance Reviews

Set-based design (SBD)

- Identified with Toyota's product development process—thought of by many as "Lean product development"
- SBD considers a wider range of alternative sets in a design space in parallel—an optimal design is developed by rapidly converging on a preferred solution
- Relatively higher resource allocation at the front-end of projects for analyzing, prototyping, and testing multiple solutions to gather knowledge and reduce uncertainties, with the promise that the overall process will be more resource-efficient
- The knowledge obtained in the process is captured for future reuse
- In studies, the benefits of SBD are:
 - 1. Up to 75% reduction in project cost, 50% reduction in lead time, 50-75% improvement in product technical performance (innovation), and 50-100 % reduction in warranty cost and number of engineering changes
 - 2. 30% material and manufacturing cost reductions

USN experiments with SBD in recent years have been promising and its application is expanding

PBD vs SBD

Point Based Design Process

- 1. Research the problem and set requirements.
- 2. Use experience to quickly determine a large variety of potential solutions.
- 3. Perform preliminary analysis to determine a single, feasible, most opportunistic solution.
- 4. The chosen concept is then modified in detail.
- 5. If the detailed design cannot be modified to meet all requirements, the process starts over at step 1 or 2 until a solution is found.

Set-Based Design Principles

- 1. Establish the design space and sub-divide along areas of expertise: concurrent subsystem evaluation
- 2. Gradually and deliberately reduce the design space by integrating preferred sub-spaces: discovery by elimination

Prevailing ship acquisition process is point-based

- Traditional ship design process is inherently linear point-based design
- Associated acquisition processes/milestones are also linear point-based design

SBD example 1: Ship-to-Shore Connector

<u>Benefits</u>

- USN confidence in SBD approach
- Smooth subsequent design reviews

Use SBD to generate CDD

- (1) Six partitions, did not know interactions
 - Identified "negotiating relationships" as inter-system variables.
- (2) Single integration event
 - 1st pass feasibility check.
 - Balance Loop with LCAC software.
 - Knowledge captured in Trade
 Space Summaries
- (3) Synthesis provided quantitative metrics for performance evaluation.

SBD example 2: Amphibious Combat Vehicle

Design Space Exploration to assess cost of High Water Speed vs. Low Water Speed ACV, post-AoA.

- (1) Requirements, Database, and Cost teams.
- (2) Requirements communicated with Database via MRDB. Cost lagged.
- (3) Synthesis software to assess performance.

Benefits

- Decision-makers preferred tradeoff decision data presentation.
- SBD "elimination" technique useful to communicate cost vs. capability

Avoided "...what about this?"

SBD example 3: Small Surface Combatant Task Force

Displacement

Quickly assess replacement options for remaining LCS hulls.

- (1) Independent HM&E and Combat System teams
- (2) Communicated Space, Weight, Power, and Cooling (SWAP-C) through RSDE and ASSET
- (3) Used ASSET and RSDE to generate quantitate measures for evaluation.

<u>Benefits</u>

- Stakeholders prefer trade space data presentation technique
- Cost Diversity introduced.
- Ship design tools facilitate SBD principles.

Performance results of SBD approach in the USN

- LPD-17 (1996): First use of IPPD/CE. (Detailed Design)
 - Lowest O&S = \downarrow TOC.

- SSC (2008): First use of SBD. (Pre-PD)
 - Best acquisition cost performance.
 - $-\downarrow$ TOC is expected.

PAUC Cost Performance

 NSWC CD ERS study (Gray, et al, 2017) found that SBD "process ultimately produced superior design"

SBD and the 2 Pass/6 Gate acquisition process

Process Improvement: Gate 2, Analysis of Feasibility (AoF)

- (1) Split design into Combat System and Ship areas
 - Communicate via SWAP-C and LCG/VCG
- (2) Use RSDE to input wide CS range into Ship areas for ASSET.
 - Integrate after CS resolved architectures.

ADVANTAGES

- Parallel effort by Ship and CS = ↓
 Design Time and Cost
- More data provides statistical Capability vs Cost trade-off.

Process Improvement: Gate 3, cont. AoF

 Feasibility of KPPs/KSAs maintained. 				∖s	1)	Gate 3 SBD Process Continue Ship / Combat team segregation	
 Build on previous design 				gn	2)	Sub-system experts study configurations to identify preferred architectures.	
phase effort.					3)	Communicate preferred configurations through SWAP-C. Eliminate dominated designs.	
					Continue process until all areas have technical rigor to support CDD.		
Variants for Trade-off CS 1 CS 2 CS 3 CS 4				CS 2 CS 3 CS 4	Propulsion Excursion		
Hull					Ехатр	e	
Propulsion	0 7 Type 1	Option 1Evaluate forOption 2dominanceType 1Option 3					
	Type 2						

© 2017 Massachusetts Institute of Technology - 12

Production in the INNOVATION ECONOMY

Conclusions

- Findings on USN use of SBD:
 - Less cost to design, build, and maintain the product—early but encouraging
 - Reduction of design cycle time—seen in all cases
 - Better design knowledge capture—but early still for some cases
- Navy is moving toward more widespread use of set-based design
 - Pushing into new application domains (e.g., from classic design to CDD, trade studies)
 - Evolution of hybrid approaches employing different design strategies (combining SBD with e.g., tradespace exploration methods)
- 2P/6G process can accommodate SBD (up to a point), but can be improved to benefit more from the additional information provided by SBD
 - Multiple decision-makers in acquisition process—all need to be socialized to the value of SBD analysis and presentation of findings
- Implications for formal ship acquisition process in the USN:
 - Analysis of Feasibility as a way to challenge existing acquisition mindsets to encourage greater exploration of the design tradespace
 - Create a temporary TWH position for design process to champion SBD until all SDMs/SIMs have gained familiarity with the process?

