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Abstract 
The Department of Defense has stated publicly that future defense capabilities will 

depend strongly on autonomous systems—systems that make sophisticated judgments 
about the world and choose appropriate courses of action, and perhaps even adapt and 
learn over time. Developing and deploying such systems poses more than just a technical 
challenge in robotics and artificial intelligence—it also poses many challenges to the 
acquisition process and workforce. From cost estimation to sustainment planning, every 
aspect of acquisition will be affected. Test and evaluation, in particular, may require not only 
novel methodologies and resources, but organizational and process changes as well. 

Acquiring Autonomy—Bottom Line Up Front 
We consider the life cycle of a typical major acquisition program, and identify the 

processes and activities that are complicated by the presence of autonomy. We argue that 
every aspect of acquisition planning, management, and execution will be more difficult and 
less certain for systems with autonomous capabilities—and significantly more so for some of 
the ambitious autonomous capabilities currently envisioned by the Department of Defense 
(DoD) and emphasized in the National Defense Strategy (DoD, 2018). Designing and 
implementing the autonomous capabilities will force a different approach to system 
development and program management than is customary—simultaneously requiring more 
rigor and more flexibility. 
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Because there will be a lack of historical precedent to guide planning, execution, and 
oversight activities, a number of key “control loops” within the development effort will be 
new, different, and/or more difficult: 

 Diagnosis of performance issues will be harder and will thus take longer than 
for non-autonomous systems. 

 Determining and implementing corrective design changes will be harder and 
may require simultaneous changes to hardware, software, and concepts of 
operations. 

 The division of responsibilities between humans and machines, and the 
protocols and concepts of operations (CONOPS) that enable effective 
teaming, will necessarily be part of the system design, rather than something 
to be figured out and perfected after the system has already been designed 
and built. 

 Achieving acceptable performance will almost certainly involve iterative 
experimentation of a kind usually found only in Science and Technology 
(S&T) or Advanced Concept Technology Demonstration (ACTD) projects. 

 Developmental Test and Evaluation (DT&E) and Operational Test and 
Evaluation (OT&E) will both require more frequent tests and new kinds of test 
instrumentation. Testing will also need to be more closely coupled with 
contractor and Program Office design processes than is typical. 

 Achieving acceptable performance will require representative human 
users/operators/teammates far earlier and more frequently in the 
development cycle than is common under current practice. 

 Developmental and regression testing will continue throughout the acquisition 
life cycle, often including occasional post-fielding regression testing. 

The features of autonomous capability that will drive these changes include the 
following: 

 The complexity and general lack of transparency of the core artificial 
intelligence (AI) modules enabling autonomy: perception, reasoning, course 
of action, selection, and adaptation; 

 Substantive Human-Machine Teaming, involving shared situational 
awareness and understanding of mission objectives between human and 
machine agents; and 

 The potential for undesired emergent behaviors of the complex system. 

The literature on autonomous capabilities tends to focus on technical challenges of 
how to implement autonomy. Very little literature exists on the practical aspects of turning 
promising new AI technologies into commercial products or effective and suitable 
government systems that authorities will be willing to see fielded. We consider the technical 
aspects of implementing autonomy only to the extent that they can be expected to affect 
acquisition success—that is, timely and affordable delivery of effective and suitable systems. 
The main body of the paper discusses how the interactions among these AI modules and 
between the AI modules and the human team members, coupled with certain anachronistic 
features of the DoD acquisition system, create challenges throughout the acquisition 
process. 
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Why Autonomy Breaks Acquisition 

How Autonomy Works 

What do we mean by “autonomous systems”? One way to think about this is in terms 
of the “OODA loop” first described by Col. John Boyd (1995). Human beings performing 
complex tasks in complex environments repeatedly: 

 Observe—take in data about the environment and themselves 

 Orient—use that information to create a mental model of what is going on 

 Decide—identify possible courses of action and choose one 

 Act—implement the decision 

Autonomous systems are those that implement a nontrivial OODA loop of their own, 
especially in the Orient and Decide modes. They collect sensor data for their own use, they 
process the data they collect to maintain a complex world model describing their 
environment and current state, and they develop possible courses of action and select 
which action to implement without direct human instruction. 

To distinguish the machine version of OODA from the human version (and to 
emphasize the ways in which it is different), we will use a slightly different terminology. The 
corresponding capabilities that enable autonomy are 

 Perception—collecting data about the environment and making sense of it; 
building a world model 

 Reasoning—extrapolating from the world model to interpret events, 
intentions, unobserved entities, etc. 

 Selection—identifying available courses of action and choosing one 

Some of these capabilities are more sophisticated versions of familiar system 
features. Perception, for example, can be thought of as a natural extension of computer 
vision and sensor fusion capabilities. Selection allows more nuanced and complex 
behaviors than past state-action lookup tables. 

These defining capabilities are in turn enabled by a wide array of specific AI methods 
and algorithms. These include various forms of Machine Learning (ML)—supervised 
learning, unsupervised learning, reinforcement learning—combined with complex constraint 
processing, theorem-proving, and other Reasoning techniques. The ML subsystems are 
implemented using specific learning architectures, such as Deep Learning or Generative 
Adversarial Networks (GAN), and their training is accomplished using specialized 
optimization techniques such as backpropagation. 

The result, particularly for neural network-based forms of ML, is a system that does 
not so much process information algorithmically, but instead reaches a snap judgment when 
presented with an input. The system has “hunches”; the purpose of the training is to make 
those hunches accurate. In general, these hunch-making systems will be nested and 
combined, with feedback loops that make it essentially impossible to trace the “logic” of how 
the output relates to the input. This lack of transparency turns out to have important 
consequences for acquisition.  
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Engineering Design vs. Experimentation and Discovery 

If you want to build a bridge, you start by deciding how much traffic of what type the 
bridge will be required to carry. You consider the geology of the planned site, the force of 
the current of the river you are bridging, the prevailing winds, and many other factors. You 
then consider possible bridge designs that could carry that much load under those 
conditions, and decide which design best meets your needs, taking into consideration cost, 
useful lifetime, maintenance required, time to build, and other measures. The key here is 
that you have a very good idea before you build the bridge just how much load it will be able 
to carry. You don’t have to experiment; there is no trial-and-error involved. The only testing 
you need to do is to confirm that you built the bridge you designed—proper materials and 
processes, correct measurements, and so forth. 

If you want to build an autonomous system to perform a given set of missions, there 
is (at present) no corresponding engineering science you can rely on. For any but the 
simplest missions, you can’t look at the performance requirements and know that if you use 
Algorithm A, trained on training data set B, with decision logic C, the system will perform at 
overall level X. If the autonomous system is going to interact significantly with humans in a 
relationship that could be characterized as “teaming,” even very simple missions can require 
considerable experimentation and fine-tuning before achieving the desired overall level of 
mission performance. 

Consider the case of early aircraft autopilot systems. It is fairly straightforward to 
design a system that can maintain a given bearing and altitude without human intervention. 
It proved to be much harder to design a CONOPS and protocol for human-autonomy 
interaction that allowed humans and autopilots to cooperate smoothly without occasionally 
crashing an airplane. 

The value of engineering design is that it completely characterizes the behavior of a 
proposed system. This means not only that you can know what a system can do without 
actually having to build it, but that you can know what that system will not do. In the absence 
of a well-established body of knowledge that supports predictive engineering design, all 
system development will need to rely on a process of experimentation and discovery—not 
only to figure out a design that works, but also to establish the dependability of that design. 

For the program manager (PM), the presence of significant experimentation during 
development eliminates an important breakpoint that is built into the acquisition system. 
There are critical differences between activities before and after Milestone (MS) B—the 
Technology Maturation and Risk Reduction phase prior to MS B is about technology 
development, whereas the Engineering and Manufacturing Development (EMD) phase after 
MS B is about product and manufacturing process development. Technology development 
is inherently event-driven, but the theory has been that by requiring mature technologies at 
MS B, it is possible to make EMD predictable in cost and schedule. The need for 
experimentation as part of the design of autonomous systems pushes the inherently event-
driven elements of the program well into EMD, where the supporting activities of Systems 
Engineering (SE), DT&E, and Project Management are ill-equipped to deal with it. 

Proving a Negative Is Hard 

For most current systems, safety and cybersecurity requirements are the only 
requirements of the form “the system must NOT ___.” These proscriptions are typically not 
treated as “requirements” (in the Capability Development Document Key Performance 
Parameter sense) at all, but rather as “certifications” to be granted by stovepiped authorities 
separate from both the developers and the Test and Evaluation (T&E) processes. In 
addition, the scope of what is considered a “safety issue” is quite limited. A rifle program’s 
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safety certification will be focused on ensuring that the rifle will not explode in the operator’s 
face, will not cause burns during normal operations, and will fire bullets only in the direction 
it is being aimed. The certification will not be concerned with the possibility that the rifle 
could be fired at friendly forces, stolen and used against noncombatants, or deliberately 
wedged into the hinges of a troop transport—those are risks to be mitigated by personnel 
screening and training, not by design of the rifle. 

For autonomous systems, many unwanted outcomes that are typically avoided 
through proper screening and training of human operators will have to instead be avoided 
through the design of the system. Compliance with these “negative requirements” is 
inherently more difficult to demonstrate, for the familiar reason that you cannot prove a 
negative. It is easy to demonstrate that a skilled marksman can hit a six-inch target at 400 
meters, by having a marksman do that. Reliability is more difficult, but can be demonstrated 
statistically. However, demonstrating that something will never happen is much more 
challenging. We don’t even attempt to demonstrate that an infantryman will never shoot a 
civilian—accidentally or deliberately—but an autonomous system may well require us to 
provide convincing evidence of that. 

In practice, we do not require proof that unacceptable outcomes will not occur; we 
require reasonable confidence. This makes T&E of autonomous systems an exercise in risk 
management; however, this is very different from the typical 5-by-5 “risk cube” approach 
typically used in defense program management. The familiar approach focuses on identified 
risks that are both serious and reasonably likely (~5% probability) to occur. In the case of 
complex autonomous capabilities, the program will need to produce evidence that the 
unidentified risks that may be catastrophic are extremely rare (multiple zeros in the 
probability). Further, in general, the argument supporting this assertion will need to be 
persuasive outside the program office. 

State Space Explosion, Design of Experiments, and Autonomy 

If you were given the task of testing a new passenger automobile tire, it would be a 
mistake to only test the tire on dry, straight, smooth, asphalt roads. Anyone who has done 
much driving knows that tires also need to be able to cope with curves, water (or ice), a 
variety of paving materials and surface conditions, and perhaps a range of temperatures. All 
of those things occur naturally in typical driving, and all of them matter. 

For some systems, the set of parameters that matter, and the set of values they can 
take, is small enough that you could actually test every combination, to verify that the 
system performs acceptably in all of them. Similarly, for sufficiently simple software, it is 
possible to explicitly test every possible execution path of the software, to verify that the 
application behaves as intended. This is exhaustive testing. It is not very efficient, but it 
conveys a very high degree of confidence in the dependability of the system that was tested. 
The set of all possible combinations of relevant parameters is called the state space of the 
system in question. 

For our automobile tire example, there is no chance that you could test every single 
possible combination of surface, surface condition, temperature, moisture, curviness, and so 
forth. This is state space explosion—when the number of configurations of interest grows 
faster than our testing needs can handle. However, we know the range of possible values 
each of those parameters can take, and we have a very strong physics-based 
understanding of which parameters are important and how performance varies with these 
factors and their interactions. It is possible to infer what a test of every possible combination 
would reveal by testing a much smaller number of well-chosen combinations of the 
parameters, using statistical inference to draw conclusions about how the tire would perform 
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in situations between the ones that were explicitly tested. Design of Experiments (DOE) is 
the branch of statistics that studies how to do this efficiently and effectively, choosing a 
minimum set of design points to characterize system performance everywhere in the state 
space. DOE has been incredibly important in establishing the effectiveness and suitability of 
military systems with increasingly large state spaces. 

DOE only solves the problem of state space explosion when 

 We know which parameters are important. 

 There aren’t too many important parameters. 

 We can reasonably expect that changes in system performance will be 
smooth in the regions of the state space that are between design points. 

 We know in advance which regions of the state space are likely to exhibit 
rapid changes in performance for small changes in the parameters. 

Unfortunately, those will generally not all be true for autonomous systems. 

As noted previously, we have no engineering design theory for autonomy the way we 
do for tires, or for ships or aircraft or missiles. We don’t know which inputs to the autonomy 
software will be important, we can’t exhaustively test all of the possible execution paths of 
the software, and we can’t statistically characterize performance over the entire state space 
using DOE. We are going to have to do something else—something that the Defense 
Acquisition System assumes you are never, ever going to do. We are going to have to 
experiment—a lot—at every stage of the acquisition process, probably including post-
fielding sustainment. 

The PM is then confronted with the following situation—the state space is too large 
for comprehensive exploration. It is not well enough understood for purely mathematical or 
statistical approaches such as DOE to ensure adequate coverage. The program office will 
need to use exploratory tools that are designed to preferentially find areas of potential 
concern, dynamically guiding the state space exploration in both simulation and real testing. 
There are a number of such approaches in development, but none that have become part of 
the standard development or T&E toolkit. 

Emergent Behavior and Transparency 

Emergent behavior is the general term for high-level behavior exhibited by a system 
that is hard to predict from the characteristics of the individual elements of the system. In 
physics, a classic example is trying to predict whether a given molecule will behave as a 
solid, liquid, or gas at a given temperature and pressure. Similarly, the tendency of 
snowflakes to exhibit hexagonal symmetry is an emergent behavior of water. 

Human systems also exhibit emergent behavior. True gridlock—that state of urban 
traffic in which nobody can move—is an emergent behavior of individual driver behavior. In 
satellite communication systems, the tendency of speakers to speak and pause 
simultaneously is an emergent behavior of the combination of normal human speech 
patterns and the delay inherent in the communications system. 

Autonomous systems, and autonomous systems interacting with humans, are even 
more prone to undesired emergent behavior than human systems are. Avoiding unwanted 
emergent behavior will be an important part of system development—which brings us back 
to the problem of proving a negative. Furthermore, when emergent behavior does arise, the 
problem of diagnosing the causes will be made much more complex by the inherent lack of 
transparency of the underlying algorithms in the autonomy. 
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For traditional systems, a common approach to avoiding unintended and undesired 
behaviors is to consider the worst-case scenarios of system behaviors, identify what states 
the system would have to be in for those behaviors to occur, then work backwards to 
determine how those states could be reached during actual operation of the system. For 
autonomous systems, there are severe limits on the effectiveness of this approach. In 
particular, the backwards causal trace of what conditions could lead to the undesired state 
may not be feasible if the undesired state is in part the output of a “black box” ML algorithm. 
Characterizing which inputs to, for example, a Deep Learning network would lead to 
specified outputs is not generally possible. 

This lack of transparency is a big problem for verification and validation (V&V) of ML-
based capabilities, even without the added issue of emergent behavior. For example, 
suppose that a target identification and cueing system is sometimes failing to warn its 
human teammates of a certain type of threat. Is the problem that the sensors are not seeing 
that threat? That the perception is not correctly identifying it? That the reasoning is 
concluding that it isn’t important? That the selection is incorrectly choosing not to report that 
target? Some combination of the above? If the perception is the problem, is the failure due 
to the algorithm being used, the input data used to train the ML, or bugs in the code? 

We will need to find novel ways to instrument what (and how) the autonomy is 
thinking, if we are to be able to develop and certify these systems on useful timelines. This 
is a new requirement. We will also need to open up the black box of the software to DT&E. 
This is also new, and both technically and organizationally challenging. It is technically 
challenging because this is fundamentally a new type of instrumentation with few 
precedents. It is organizationally challenging in part because of intellectual property and 
trade secrets issues: The vendor may regard this “instrumentation” as an effort to acquire 
intellectual property that was not contracted for, or as putting intellectual property at risk of 
unauthorized disclosure. 

Testing Autonomy Will Have to Be Different 

Developmental Test and Evaluation (DT&E) 

DT&E has many purposes, including 

 To help produce the information necessary for efficient and successful 
development of the desired system capabilities 

 To verify the adequacy of the system design 

 To quantify reduction of technical risk 

 To verify contract technical performance 

 To certify readiness for OT&E 

These purposes can be roughly lumped into three overarching categories: 

 Characterization—how exactly is the system (or some subsystem) 
behaving? 

 Diagnosis—why isn’t the (sub)system behaving properly? 

 Certification—can we conclude that an interim performance goal for the 
system has been achieved? 

What makes these categories distinct is that each of them requires a different kind of 
testing, collecting different measurements under different ranges of conditions. A common 
error in test planning is to assume that the same test event (or kind of test event) can 
support all of these disparate goals simultaneously. Just as a physician orders different 
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kinds of blood tests, depending on whether the purpose is a general physical exam, 
diagnosis of a specific set of symptoms, or confirmation that a particular result has been 
achieved, so too DT&E must tailor its test designs to the particular purpose at hand. Early in 
the DT&E process, characterization will be primary. Late in the DT&E process, with luck, 
certification will be primary. 

Autonomous capabilities complicate all three of these categories of DT&E. Autonomy 
is fundamentally a software-enabled capability, which means that autonomous systems 
inherit all of the T&E problems associated with complex software. In addition, the particular 
challenges posed by autonomous capabilities are not well addressed by traditional T&E 
practices, organizations, and resources. Although the kind of testing will vary with the 
characterization, diagnosis, or certification goals, there are new tools and new uses of 
existing approaches that will apply to all three. Although exhaustive testing is presumed 
infeasible, virtual testbeds allowing for extensive testing in a Live/Virtual/Constructive 
environment will be essential. The testing in this world will require the following: 

 Novel Modeling and Simulation (M&S) techniques, enabling exploration of 
the decision space, rather than high fidelity representation of the physical 
space. Without this capability, characterization is impossible. 

 Novel instrumentation techniques, enabling visibility into the perception, 
reasoning, and selecting functions. Without this capability, the data to support 
diagnosis (and ultimately certification) cannot be obtained. 

 New approaches to test design, probably including adversarial test design, 
to allow efficient exploration of the extensive decision space. 

The existing resources are not sufficient to support these activities, and in some 
cases include techniques that do not yet exist. 

To be effective, DT&E will need to be more of a continuous engagement than a 
sequence of episodic events, with much more feedback into the architecture and design 
parts of development—the “D” in DT&E. This will require shorter test-redesign-test cycles 
that will probably continue much longer into the development cycle before morphing into the 
more familiar test-fix-test cycles. The “E” part of DT&E might require maintaining a detailed 
log of system and subsystem performance throughout the development cycle, to be used by 
downstream T&E and certification processes. This paradigm of continuous accumulation of 
evidence, rather than passing a convincing test event at the end of development, would be 
new—and is not supported by current organizational structures, division of responsibilities, 
or test resources. 

When substantial human-machine teaming is intended, there will be additional 
challenges. The teaming CONOPS must be engineered into the machine. This will require 
active participation by users and user surrogates during the early stages of development. 
However, CONOPS development is not usually a program management office (PMO) 
responsibility, and the PMO may not have the authority to influence it. 

With these challenges in mind, we turn back to the categories. 
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Characterization 

For software systems, the question “What is the system doing?” is traditionally 
answered at the code execution level, by tracing the execution path and verifying that it is 
implementing the desired logic. If the complexity of the code is such that tracing the 
execution is impractical, or the logic of the algorithm is not understandable by humans, then 
some other way of interpreting what the system is doing will be required. 

For systems with significant autonomous capabilities, much of the important system 
behavior will be implemented by algorithms that cannot be interpreted by humans as 
sequential logic. For example, any subsystem that relies on neural network models trained 
by supervised learning will not be executing sequential logic in the usual sense. Instead, 
when the neural network is presented with input data, it generates a “hunch” about the 
appropriate output, based on its training. Tracing the execution of the code that generates 
this output is unhelpful; it is merely a large number of weighted sums and transfer functions, 
uninterpretable at that level. Making sense of the hunch would require reverse-engineering 
the functioning of the neural network, in order to assign human-understandable meanings to 
patterns of weights in the network. This is a new requirement; we have not historically 
needed to instrument the internal states of mission software in order to decide whether it is 
performing well for the right reasons. 

Diagnosis 

A vital role of DT&E is to provide the measurements that enable testers to 
understand why the system is not behaving as intended. For software systems, this has 
traditionally meant finding bugs in the software that are causing it to implement incorrect 
logic. 

For autonomous systems, because we have no engineering theory that would enable 
predicting system behavior from the software design, we cannot assume that undesired 
system behavior is being caused by bugs. The problem might just as easily be due to 
incorrect or inappropriate training data, a poor choice of algorithm, or unanticipated 
emergent behavior. If, for example, the system is failing to react appropriately to the actions 
of certain entities, it is difficult to tell from the outside whether the system is failing to see 
those entities (perception), failing to identify them correctly (reasoning), or failing to consider 
or choose the appropriate response (selection). If this is a system that continues to learn 
and self-modify after fielding, the system might have begun working correctly, but has 
learned a “bad habit” that is impairing performance (adaptation). 

To diagnose the source of the problem, it will be necessary not only to instrument the 
internal states of the software, but also to have a normative model of what correct function 
looks like, in all modules and at multiple levels of descriptions, to compare the resulting 
measurements against. The instrumentation will be especially challenging on platforms that 
are highly constrained in available space, weight, or power—it will be difficult to observe 
system function without distorting system function. The development of normative models 
may be equally challenging, especially for enabling capabilities like ML, where proper 
function depends as much on how the model was trained as it does on correct 
implementation of the algorithm. 

It is also important to mention that correct diagnosis does not always lead to a 
unique potential corrective action. If the reasoning functions are drawing incorrect 
conclusions from the world model built by the perception functions, it may not be obvious 
which module should be changed. Both may be functioning correctly according to the 
original design specification. Again, it will require experimentation to find the best way to 
achieve the intended functionality. Sometimes, the solution might involve adding a new run-
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time monitoring process that watches for problematic cases and intervenes when 
appropriate. This not only adds to the design complexity; it also introduces new modules 
that themselves will need to be verified and validated. 

All of these challenges are exacerbated by an extreme version of the traditional 
chicken-and-egg problem posed by simultaneous hardware and software development. In 
general, software developers would prefer representative working hardware to test on, in 
order to verify that the software is working as intended. At the same time, hardware 
developers need representative working software to execute, to verify that the hardware is 
working as intended. Avoiding gridlock is not easy, especially if you can’t be sure whether a 
given observed problem is due to hardware problems, software problems, or integration 
problems. Autonomous systems have all of these issues, but add the further complication of 
needing to develop the human-machine teaming CONOPS in parallel with both hardware 
and software. Correct diagnosis will require determining whether the hardware, the software, 
or the human team members are not behaving as intended, or whether the problem is in the 
algorithms chosen, the CONOPS design, or some combination of those things. 

Certification 

For autonomous or semi-autonomous weapon systems subject to DoD Directive 
(DoDD) 3000.09, Autonomy in Weapon Systems (DoD, 2017), there are certification 
requirements even before formal program initiation: 

Before a decision to enter into formal development, the USD(P), USD(AT&L), 
and CJCS shall ensure: 

(1) The system design incorporates the necessary capabilities to allow 
commanders and operators to exercise appropriate levels of human 
judgment in the use of force. 

In other words, if DoDD 3000.09 applies, there are certifications about the design 
that must be made before development begins. The basis for these certifications is not yet 
well-defined. 

In general, the T&E to support the various certification activities will involve open air 
testing of full up systems or major components. However, even these activities will require 
range safety releases, which are themselves a kind of certification. The Joint Software 
Systems Safety Engineering Handbook (DoD, 2010) addresses the relationship between 
autonomy embedded in the software and safety-critical functions. 

For autonomous systems, safety release will generally depend upon a combination 
of a safety argument based on the entire development history and some specific “kill switch” 
function. A “kill switch” feature might itself depend on internal monitoring by an autonomous 
process, which could pose additional challenges, since internal monitoring may affect 
mission performance by competing with mission systems for power and computational 
resources. 

Finally, the DT&E results are key inputs into Operational Test (OT) Readiness 
Reviews. While not a formal certification, readiness for OT typically requires the system 
under test to be “production representative.” The current working definitions of “production 
representative” are all highly hardware-centric—they refer to tooling and production lines. 
For continually evolving complex software systems in general, the question of whether the 
system is yet production representative is difficult to answer. This is particularly true for ML 
systems. Many approaches to ML require extensive data for training. If the system were 
retrained using different data, it would exhibit different performance. Thus, the training data 
set itself needs to be production representative in some sense. 
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This vision for a persistent, intrusive instrumentation and experimentation process 
that includes CONOPS and training as design attributes is very different from what DT&E 
has looked like in the recent past. Even M&S, which is already familiar, would need to be 
used in novel ways for which little support currently exists. However, these are at least 
activities well within the traditional scope of a PMO’s authority. Human teaming, human 
training, and CONOPS development are emphatically not part of a PM’s traditional authority, 
and yet they will be essential elements of the system design. Safety issues introduced by 
the possibility of an incompetent or insane operator also demand novel T&E data collection, 
test designs, and information sharing across traditional organizational boundaries. This will 
introduce many of the same development issues as are seen when a program’s design 
depends on decisions made in an external program—but in an unfamiliar context for which 
no administrative processes yet exist. 

Operational Test and Evaluation (OT&E) 

The purpose of operational testing is to determine whether or not a particular system 
is effective and suitable when used by warfighters in execution of their missions. The 
presumption is that DT&E has already established system performance over the intended 
range of operating conditions; all that needs to be confirmed is mission effectiveness and 
suitability when in the hands of intended users. 

The scoping of OT under these conditions is straightforward—in some cases, a 
single scenario will suffice. For example, Air Superiority aircraft are usually tested in 1v1, 
2v2, and 2v4 scenarios, but the number is manageable and predictable. For a ground 
vehicle, one would conduct both Major Combat Operations and Stability Operations 
scenarios, but again the scope is manageable and predictable. 

For systems with autonomous capabilities, we have already seen that it may not be 
feasible to cover the state space during DT&E. For operational systems with substantial 
autonomous capabilities, there is no current understanding of how to scope the set of test 
missions by analogy to the air combat and ground combat examples. If suitability for 
autonomous systems requires the absence of unwanted emergent behavior, we do not 
know in general what would constitute sufficient evidence of that. In a previous paper (Tate 
et al., 2016), the authors argue that “sufficient evidence” might need to include the entire 
test history of the system, with the time series of improving performance and elimination of 
failure modes providing a degree of assurance not obtainable through pass/fail testing at the 
end of the development cycle. 

Surprising uses of weapon systems by their operators have been observed during 
operational tests, even for systems with no autonomous capabilities. The probability of 
surprising emergent behavior is much higher when humans are teaming with autonomous 
systems rather than merely operating them, or when the systems are operating by 
themselves. This increases the probability of a test that cannot be conducted safely, or a 
test for which the wrong instrumentation or supporting data was available. As with DT&E, 
autonomous systems will generally require more test events in OT&E than traditional 
systems. 

For systems subject to DoDD 3000.09, there are additional requirements that apply 
after IOT&E. In particular, Enclosure 2 of the Directive states, 

(b) After initial operational test and evaluation (IOT&E),any further changes to 
the system will undergo V&V and T&E in order to ensure that critical safety 
features have not been degraded. 
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(1) A regression test of the software shall be applied to validate critical 
safety features have not been degraded. Automated regression testing 
tools will be used whenever feasible. The regression testing shall identify 
any new operating states and changes in the state transition matrix of the 
autonomous or semi-autonomous weapon system. 

(2) Each new or revised operating state shall undergo integrated T&E to 
characterize the system behavior in that new operating state. Changes to 
the state transition matrix may require whole system follow-on operational 
T&E, as directed by the Director of Operational Test and Evaluation 
(DOT&E). 

In general, we do not yet know how to determine how much testing will be enough—
or even whether the testing that has been done so far is sufficient. Even for systems for 
which DoDD 3000.09 does not apply, ongoing regression testing of software for safety and 
performance determination is certainly a best practice, where the same questions apply. 

The earliest challenges for the PMO will be planning for the IOT&E. Scoping the 
tests will be more challenging than for systems without autonomous capabilities. In the case 
of robust teaming, scoping an OT that adequately explores the teaming arrangement 
remains an unsolved problem. The prospect of emergent behavior during the test may 
render the test unexecutable or uninformative. More time and resources will typically be 
required to execute the test events needed, and IOT&E will probably need to instrument 
more completely and archive more data in order to support post-fielding regression testing.  

Cost and Schedule Estimation 
Before you can do a meaningful Analysis of Alternatives (AoA), you need to have at 

least a rough guess at the cost, schedule, and operational effectiveness associated with 
each of the alternatives. (Ideally, you should also have a good idea of the risks and 
uncertainties associated with those attributes. The DoD does not have a stellar record in 
that regard.) 

Standard cost and schedule estimating techniques were developed for sequential 
processes, in which the number, nature, and precedence relationships among tasks is 
known in advance. They work very well for routine construction projects. They work quite 
well for new system development when the new system is similar to past systems. They can 
even be useful for unprecedented new system development. They do not work well at all for 
projects with branching or looping logic, where the set of tasks and/or the number of times 
you will have to do each of them is not known with certainty. 

In practice, cost estimators assume that experimentation is over—that the proposed 
design is (essentially) the design that will be built. They also tend to assume that the total 
cost of the program will be the sum of the costs of the components, failing to account 
adequately for critical path dependencies and costs of integration. The process of refining 
the design during development might involve test-fix-retest cycles to confirm that the design 
was implemented correctly, but it will not involve test-diagnose-redesign cycles at the higher 
levels of system architecture, design, or CONOPS. 

This is already a bad assumption for software-intensive systems, first-of-a-kind 
science facilities, or complex system of systems integration (not to mention systems whose 
requirements keep changing over time). As noted above, autonomous systems partake of all 
three of those problematic categories, with the additional problem of necessary 
experimentation due to a lack of underlying engineering theory. Standard cost and schedule 
estimates for autonomous systems will always underestimate development time and 
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resources required—and thus will underestimate cost as well. Until a substantial body of 
historical autonomy program data can be amassed, a new kind of estimating methodology 
will be needed, specially crafted to account for the uncertainty in how many diagnosis, 
redesign, and integration cycles will be required, to produce accurate forecasts of cost, 
schedule, and development risk. 

To make matters worse, the cost and schedule estimates depend on the details of 
the CONOPS—how autonomy and human-autonomy teaming are to be used in performing 
the mission. The details of this CONOPS will not be known early in the program; they will 
necessarily be the result of substantial experimentation. This means that even this 
hypothetical novel estimating methodology, specially adapted for autonomous systems, will 
be subject to additional uncertainty due to reliance on educated guesses about key design 
features. 

This suggests that it will be especially important for the PM to get updated cost and 
schedule estimates on an ongoing basis, keeping the cost estimators up to date on any 
changes in the autonomy or teaming design. In practice, although DoD guidance strongly 
encourages this kind of “living cost estimate,” there are strong political and organizational 
incentives that drive programs to avoid doing that. 

Conclusions 
Current U.S. military strategy has placed great weight on developing and fielding 

advanced AI-enabled systems with autonomous capabilities that will allow these systems to 
operate themselves to a significant degree. They will also need to team with human 
warfighters as collaborating agents rather than as tools to be operated. We have shown that 
even if the technical challenges of implementing these new autonomous capabilities can be 
solved, they pose significant unprecedented challenges to the defense acquisition system, 
its organizations, and its processes. 

At root, these challenges all arise from the absence of a mature scientific theory or 
engineering practice for autonomous systems that would enable designers to predict the 
macro-level behavior of an autonomous system from a description of its enabling algorithms 
and data. Until we can accurately predict how a given design will behave without building 
and testing it, we must instead develop systems through iterative experimentation and 
adjustment. At the same time, we must invent test, evaluation, and certification techniques 
that will enable reasonable assurance that a given autonomous system will perform 
dependably—safely, securely, effectively, reliably, etc.—within a specified range of mission 
contexts. 

Establishing dependability with certainty would require proving a series of 
negatives—that the system will not behave unsafely, will not exhibit undesired emergent 
behavior, does not have exploitable cyber vulnerabilities, does not have exploitable training 
biases, does not have exploitable reasoning or selection algorithm foibles, and so forth. 
Since proving a negative is impossible, we recommend an approach inspired by Karl 
Popper’s (2002) notion of falsification: namely, that a system can be considered dependable 
to the extent that we have tried as hard as possible to prove that it is not dependable and 
have failed. This approach would be a significant departure from current test practice, which 
is focused on doing the minimum possible amount of testing that can support a conclusion 
that a performance threshold has been met. 

Implementing this approach will require novel T&E methodologies, such as intelligent 
adversarial testing in highly virtualized environments. These methodologies will in turn 
depend on T&E resources and infrastructure that do not yet exist—live/virtual/constructive 
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simulation testbeds, instrumentation of AI internal states, sophisticated human/machine 
teaming support, copious data collection and archiving to establish dependability over time, 
etc. Such testing also implies developmental and operational test plans that are 
fundamentally unpredictable in duration and scope. 

The defense acquisition system is predicated in large measure on the assumption 
that such unpredictability has been ironed out of a program by the time it passes Milestone 
B. That is generally not true even today; it will be far less true for the kind of experimental 
discovery processes needed to field effective autonomy. The DoD needs to be aware of that 
if they are serious about making autonomy a cornerstone of future military capability. 
Without significant changes to how we develop and test systems, the DoD will either not 
field autonomous systems, or will have very little reason to believe that its fielded systems 
will be safe, secure, and effective. 
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