
SYM-AM-18-042

Acquisition Research:
Creating Synergy for Informed Change

May 9–10, 2018

Published April 30, 2018

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

- 139 -

Acquisition Challenges of Autonomous Systems

David M. Tate—joined the research staff of the Institute for Defense Analyses’ (IDA) Cost Analysis
and Research Division in 2000. Prior to that, he was an Assistant Professor of Industrial Engineering
at the University of Pittsburgh, and the Senior Operations Research Analyst—Telecom for Decision-
Science Applications, Inc. At IDA, he has worked on a wide variety of resource analysis and
quantitative modeling projects related to national security. These include an independent cost
estimate of Future Combat Systems development costs, investigation of apparent inequities in
Veterans’ Disability Benefit adjudications, and modeling and optimization of resource-constrained
acquisition portfolios. Tate holds bachelor’s degrees in philosophy and mathematical sciences from
the Johns Hopkins University, and MS and PhD degrees in operations research from Cornell
University. [dtate@ida.org]

David A. Sparrow—received a PhD in physics in 1974 and spent 12 years as an academic physicist.
He joined IDA in 1986 and has been a Research Staff Member ever since, with brief forays into
management and government service. He was the first Director of the IDA Simulation Center from
1989 to 1990, and Assistant Director of the Science and Technology Division from 1993 to 1997. He
then joined the government for a two-year stint as Science Advisor on Modeling and Simulation to the
Director, Operational Test and Evaluation. Since returning to IDA, he has focused on technical issues
in system development, especially ground combat systems—expansively defined to include
unexploded ordinance (UXO), counter mine, and, occasionally, missile defense. He has authored
~100 refereed papers and invited talks on various academic and national security topics.
[dsparrow@ida.org]

Abstract
The Department of Defense has stated publicly that future defense capabilities will

depend strongly on autonomous systems—systems that make sophisticated judgments
about the world and choose appropriate courses of action, and perhaps even adapt and
learn over time. Developing and deploying such systems poses more than just a technical
challenge in robotics and artificial intelligence—it also poses many challenges to the
acquisition process and workforce. From cost estimation to sustainment planning, every
aspect of acquisition will be affected. Test and evaluation, in particular, may require not only
novel methodologies and resources, but organizational and process changes as well.

Acquiring Autonomy—Bottom Line Up Front
We consider the life cycle of a typical major acquisition program, and identify the

processes and activities that are complicated by the presence of autonomy. We argue that
every aspect of acquisition planning, management, and execution will be more difficult and
less certain for systems with autonomous capabilities—and significantly more so for some of
the ambitious autonomous capabilities currently envisioned by the Department of Defense
(DoD) and emphasized in the National Defense Strategy (DoD, 2018). Designing and
implementing the autonomous capabilities will force a different approach to system
development and program management than is customary—simultaneously requiring more
rigor and more flexibility.

- 140 -

Because there will be a lack of historical precedent to guide planning, execution, and
oversight activities, a number of key “control loops” within the development effort will be
new, different, and/or more difficult:

 Diagnosis of performance issues will be harder and will thus take longer than
for non-autonomous systems.

 Determining and implementing corrective design changes will be harder and
may require simultaneous changes to hardware, software, and concepts of
operations.

 The division of responsibilities between humans and machines, and the
protocols and concepts of operations (CONOPS) that enable effective
teaming, will necessarily be part of the system design, rather than something
to be figured out and perfected after the system has already been designed
and built.

 Achieving acceptable performance will almost certainly involve iterative
experimentation of a kind usually found only in Science and Technology
(S&T) or Advanced Concept Technology Demonstration (ACTD) projects.

 Developmental Test and Evaluation (DT&E) and Operational Test and
Evaluation (OT&E) will both require more frequent tests and new kinds of test
instrumentation. Testing will also need to be more closely coupled with
contractor and Program Office design processes than is typical.

 Achieving acceptable performance will require representative human
users/operators/teammates far earlier and more frequently in the
development cycle than is common under current practice.

 Developmental and regression testing will continue throughout the acquisition
life cycle, often including occasional post-fielding regression testing.

The features of autonomous capability that will drive these changes include the
following:

 The complexity and general lack of transparency of the core artificial
intelligence (AI) modules enabling autonomy: perception, reasoning, course
of action, selection, and adaptation;

 Substantive Human-Machine Teaming, involving shared situational
awareness and understanding of mission objectives between human and
machine agents; and

 The potential for undesired emergent behaviors of the complex system.

The literature on autonomous capabilities tends to focus on technical challenges of
how to implement autonomy. Very little literature exists on the practical aspects of turning
promising new AI technologies into commercial products or effective and suitable
government systems that authorities will be willing to see fielded. We consider the technical
aspects of implementing autonomy only to the extent that they can be expected to affect
acquisition success—that is, timely and affordable delivery of effective and suitable systems.
The main body of the paper discusses how the interactions among these AI modules and
between the AI modules and the human team members, coupled with certain anachronistic
features of the DoD acquisition system, create challenges throughout the acquisition
process.

- 141 -

Why Autonomy Breaks Acquisition

How Autonomy Works

What do we mean by “autonomous systems”? One way to think about this is in terms
of the “OODA loop” first described by Col. John Boyd (1995). Human beings performing
complex tasks in complex environments repeatedly:

 Observe—take in data about the environment and themselves

 Orient—use that information to create a mental model of what is going on

 Decide—identify possible courses of action and choose one

 Act—implement the decision

Autonomous systems are those that implement a nontrivial OODA loop of their own,
especially in the Orient and Decide modes. They collect sensor data for their own use, they
process the data they collect to maintain a complex world model describing their
environment and current state, and they develop possible courses of action and select
which action to implement without direct human instruction.

To distinguish the machine version of OODA from the human version (and to
emphasize the ways in which it is different), we will use a slightly different terminology. The
corresponding capabilities that enable autonomy are

 Perception—collecting data about the environment and making sense of it;
building a world model

 Reasoning—extrapolating from the world model to interpret events,
intentions, unobserved entities, etc.

 Selection—identifying available courses of action and choosing one

Some of these capabilities are more sophisticated versions of familiar system
features. Perception, for example, can be thought of as a natural extension of computer
vision and sensor fusion capabilities. Selection allows more nuanced and complex
behaviors than past state-action lookup tables.

These defining capabilities are in turn enabled by a wide array of specific AI methods
and algorithms. These include various forms of Machine Learning (ML)—supervised
learning, unsupervised learning, reinforcement learning—combined with complex constraint
processing, theorem-proving, and other Reasoning techniques. The ML subsystems are
implemented using specific learning architectures, such as Deep Learning or Generative
Adversarial Networks (GAN), and their training is accomplished using specialized
optimization techniques such as backpropagation.

The result, particularly for neural network-based forms of ML, is a system that does
not so much process information algorithmically, but instead reaches a snap judgment when
presented with an input. The system has “hunches”; the purpose of the training is to make
those hunches accurate. In general, these hunch-making systems will be nested and
combined, with feedback loops that make it essentially impossible to trace the “logic” of how
the output relates to the input. This lack of transparency turns out to have important
consequences for acquisition.

- 142 -

Engineering Design vs. Experimentation and Discovery

If you want to build a bridge, you start by deciding how much traffic of what type the
bridge will be required to carry. You consider the geology of the planned site, the force of
the current of the river you are bridging, the prevailing winds, and many other factors. You
then consider possible bridge designs that could carry that much load under those
conditions, and decide which design best meets your needs, taking into consideration cost,
useful lifetime, maintenance required, time to build, and other measures. The key here is
that you have a very good idea before you build the bridge just how much load it will be able
to carry. You don’t have to experiment; there is no trial-and-error involved. The only testing
you need to do is to confirm that you built the bridge you designed—proper materials and
processes, correct measurements, and so forth.

If you want to build an autonomous system to perform a given set of missions, there
is (at present) no corresponding engineering science you can rely on. For any but the
simplest missions, you can’t look at the performance requirements and know that if you use
Algorithm A, trained on training data set B, with decision logic C, the system will perform at
overall level X. If the autonomous system is going to interact significantly with humans in a
relationship that could be characterized as “teaming,” even very simple missions can require
considerable experimentation and fine-tuning before achieving the desired overall level of
mission performance.

Consider the case of early aircraft autopilot systems. It is fairly straightforward to
design a system that can maintain a given bearing and altitude without human intervention.
It proved to be much harder to design a CONOPS and protocol for human-autonomy
interaction that allowed humans and autopilots to cooperate smoothly without occasionally
crashing an airplane.

The value of engineering design is that it completely characterizes the behavior of a
proposed system. This means not only that you can know what a system can do without
actually having to build it, but that you can know what that system will not do. In the absence
of a well-established body of knowledge that supports predictive engineering design, all
system development will need to rely on a process of experimentation and discovery—not
only to figure out a design that works, but also to establish the dependability of that design.

For the program manager (PM), the presence of significant experimentation during
development eliminates an important breakpoint that is built into the acquisition system.
There are critical differences between activities before and after Milestone (MS) B—the
Technology Maturation and Risk Reduction phase prior to MS B is about technology
development, whereas the Engineering and Manufacturing Development (EMD) phase after
MS B is about product and manufacturing process development. Technology development
is inherently event-driven, but the theory has been that by requiring mature technologies at
MS B, it is possible to make EMD predictable in cost and schedule. The need for
experimentation as part of the design of autonomous systems pushes the inherently event-
driven elements of the program well into EMD, where the supporting activities of Systems
Engineering (SE), DT&E, and Project Management are ill-equipped to deal with it.

Proving a Negative Is Hard

For most current systems, safety and cybersecurity requirements are the only
requirements of the form “the system must NOT ___.” These proscriptions are typically not
treated as “requirements” (in the Capability Development Document Key Performance
Parameter sense) at all, but rather as “certifications” to be granted by stovepiped authorities
separate from both the developers and the Test and Evaluation (T&E) processes. In
addition, the scope of what is considered a “safety issue” is quite limited. A rifle program’s

- 143 -

safety certification will be focused on ensuring that the rifle will not explode in the operator’s
face, will not cause burns during normal operations, and will fire bullets only in the direction
it is being aimed. The certification will not be concerned with the possibility that the rifle
could be fired at friendly forces, stolen and used against noncombatants, or deliberately
wedged into the hinges of a troop transport—those are risks to be mitigated by personnel
screening and training, not by design of the rifle.

For autonomous systems, many unwanted outcomes that are typically avoided
through proper screening and training of human operators will have to instead be avoided
through the design of the system. Compliance with these “negative requirements” is
inherently more difficult to demonstrate, for the familiar reason that you cannot prove a
negative. It is easy to demonstrate that a skilled marksman can hit a six-inch target at 400
meters, by having a marksman do that. Reliability is more difficult, but can be demonstrated
statistically. However, demonstrating that something will never happen is much more
challenging. We don’t even attempt to demonstrate that an infantryman will never shoot a
civilian—accidentally or deliberately—but an autonomous system may well require us to
provide convincing evidence of that.

In practice, we do not require proof that unacceptable outcomes will not occur; we
require reasonable confidence. This makes T&E of autonomous systems an exercise in risk
management; however, this is very different from the typical 5-by-5 “risk cube” approach
typically used in defense program management. The familiar approach focuses on identified
risks that are both serious and reasonably likely (~5% probability) to occur. In the case of
complex autonomous capabilities, the program will need to produce evidence that the
unidentified risks that may be catastrophic are extremely rare (multiple zeros in the
probability). Further, in general, the argument supporting this assertion will need to be
persuasive outside the program office.

State Space Explosion, Design of Experiments, and Autonomy

If you were given the task of testing a new passenger automobile tire, it would be a
mistake to only test the tire on dry, straight, smooth, asphalt roads. Anyone who has done
much driving knows that tires also need to be able to cope with curves, water (or ice), a
variety of paving materials and surface conditions, and perhaps a range of temperatures. All
of those things occur naturally in typical driving, and all of them matter.

For some systems, the set of parameters that matter, and the set of values they can
take, is small enough that you could actually test every combination, to verify that the
system performs acceptably in all of them. Similarly, for sufficiently simple software, it is
possible to explicitly test every possible execution path of the software, to verify that the
application behaves as intended. This is exhaustive testing. It is not very efficient, but it
conveys a very high degree of confidence in the dependability of the system that was tested.
The set of all possible combinations of relevant parameters is called the state space of the
system in question.

For our automobile tire example, there is no chance that you could test every single
possible combination of surface, surface condition, temperature, moisture, curviness, and so
forth. This is state space explosion—when the number of configurations of interest grows
faster than our testing needs can handle. However, we know the range of possible values
each of those parameters can take, and we have a very strong physics-based
understanding of which parameters are important and how performance varies with these
factors and their interactions. It is possible to infer what a test of every possible combination
would reveal by testing a much smaller number of well-chosen combinations of the
parameters, using statistical inference to draw conclusions about how the tire would perform

- 144 -

in situations between the ones that were explicitly tested. Design of Experiments (DOE) is
the branch of statistics that studies how to do this efficiently and effectively, choosing a
minimum set of design points to characterize system performance everywhere in the state
space. DOE has been incredibly important in establishing the effectiveness and suitability of
military systems with increasingly large state spaces.

DOE only solves the problem of state space explosion when

 We know which parameters are important.

 There aren’t too many important parameters.

 We can reasonably expect that changes in system performance will be
smooth in the regions of the state space that are between design points.

 We know in advance which regions of the state space are likely to exhibit
rapid changes in performance for small changes in the parameters.

Unfortunately, those will generally not all be true for autonomous systems.

As noted previously, we have no engineering design theory for autonomy the way we
do for tires, or for ships or aircraft or missiles. We don’t know which inputs to the autonomy
software will be important, we can’t exhaustively test all of the possible execution paths of
the software, and we can’t statistically characterize performance over the entire state space
using DOE. We are going to have to do something else—something that the Defense
Acquisition System assumes you are never, ever going to do. We are going to have to
experiment—a lot—at every stage of the acquisition process, probably including post-
fielding sustainment.

The PM is then confronted with the following situation—the state space is too large
for comprehensive exploration. It is not well enough understood for purely mathematical or
statistical approaches such as DOE to ensure adequate coverage. The program office will
need to use exploratory tools that are designed to preferentially find areas of potential
concern, dynamically guiding the state space exploration in both simulation and real testing.
There are a number of such approaches in development, but none that have become part of
the standard development or T&E toolkit.

Emergent Behavior and Transparency

Emergent behavior is the general term for high-level behavior exhibited by a system
that is hard to predict from the characteristics of the individual elements of the system. In
physics, a classic example is trying to predict whether a given molecule will behave as a
solid, liquid, or gas at a given temperature and pressure. Similarly, the tendency of
snowflakes to exhibit hexagonal symmetry is an emergent behavior of water.

Human systems also exhibit emergent behavior. True gridlock—that state of urban
traffic in which nobody can move—is an emergent behavior of individual driver behavior. In
satellite communication systems, the tendency of speakers to speak and pause
simultaneously is an emergent behavior of the combination of normal human speech
patterns and the delay inherent in the communications system.

Autonomous systems, and autonomous systems interacting with humans, are even
more prone to undesired emergent behavior than human systems are. Avoiding unwanted
emergent behavior will be an important part of system development—which brings us back
to the problem of proving a negative. Furthermore, when emergent behavior does arise, the
problem of diagnosing the causes will be made much more complex by the inherent lack of
transparency of the underlying algorithms in the autonomy.

- 145 -

For traditional systems, a common approach to avoiding unintended and undesired
behaviors is to consider the worst-case scenarios of system behaviors, identify what states
the system would have to be in for those behaviors to occur, then work backwards to
determine how those states could be reached during actual operation of the system. For
autonomous systems, there are severe limits on the effectiveness of this approach. In
particular, the backwards causal trace of what conditions could lead to the undesired state
may not be feasible if the undesired state is in part the output of a “black box” ML algorithm.
Characterizing which inputs to, for example, a Deep Learning network would lead to
specified outputs is not generally possible.

This lack of transparency is a big problem for verification and validation (V&V) of ML-
based capabilities, even without the added issue of emergent behavior. For example,
suppose that a target identification and cueing system is sometimes failing to warn its
human teammates of a certain type of threat. Is the problem that the sensors are not seeing
that threat? That the perception is not correctly identifying it? That the reasoning is
concluding that it isn’t important? That the selection is incorrectly choosing not to report that
target? Some combination of the above? If the perception is the problem, is the failure due
to the algorithm being used, the input data used to train the ML, or bugs in the code?

We will need to find novel ways to instrument what (and how) the autonomy is
thinking, if we are to be able to develop and certify these systems on useful timelines. This
is a new requirement. We will also need to open up the black box of the software to DT&E.
This is also new, and both technically and organizationally challenging. It is technically
challenging because this is fundamentally a new type of instrumentation with few
precedents. It is organizationally challenging in part because of intellectual property and
trade secrets issues: The vendor may regard this “instrumentation” as an effort to acquire
intellectual property that was not contracted for, or as putting intellectual property at risk of
unauthorized disclosure.

Testing Autonomy Will Have to Be Different

Developmental Test and Evaluation (DT&E)

DT&E has many purposes, including

 To help produce the information necessary for efficient and successful
development of the desired system capabilities

 To verify the adequacy of the system design

 To quantify reduction of technical risk

 To verify contract technical performance

 To certify readiness for OT&E

These purposes can be roughly lumped into three overarching categories:

 Characterization—how exactly is the system (or some subsystem)
behaving?

 Diagnosis—why isn’t the (sub)system behaving properly?

 Certification—can we conclude that an interim performance goal for the
system has been achieved?

What makes these categories distinct is that each of them requires a different kind of
testing, collecting different measurements under different ranges of conditions. A common
error in test planning is to assume that the same test event (or kind of test event) can
support all of these disparate goals simultaneously. Just as a physician orders different

- 146 -

kinds of blood tests, depending on whether the purpose is a general physical exam,
diagnosis of a specific set of symptoms, or confirmation that a particular result has been
achieved, so too DT&E must tailor its test designs to the particular purpose at hand. Early in
the DT&E process, characterization will be primary. Late in the DT&E process, with luck,
certification will be primary.

Autonomous capabilities complicate all three of these categories of DT&E. Autonomy
is fundamentally a software-enabled capability, which means that autonomous systems
inherit all of the T&E problems associated with complex software. In addition, the particular
challenges posed by autonomous capabilities are not well addressed by traditional T&E
practices, organizations, and resources. Although the kind of testing will vary with the
characterization, diagnosis, or certification goals, there are new tools and new uses of
existing approaches that will apply to all three. Although exhaustive testing is presumed
infeasible, virtual testbeds allowing for extensive testing in a Live/Virtual/Constructive
environment will be essential. The testing in this world will require the following:

 Novel Modeling and Simulation (M&S) techniques, enabling exploration of
the decision space, rather than high fidelity representation of the physical
space. Without this capability, characterization is impossible.

 Novel instrumentation techniques, enabling visibility into the perception,
reasoning, and selecting functions. Without this capability, the data to support
diagnosis (and ultimately certification) cannot be obtained.

 New approaches to test design, probably including adversarial test design,
to allow efficient exploration of the extensive decision space.

The existing resources are not sufficient to support these activities, and in some
cases include techniques that do not yet exist.

To be effective, DT&E will need to be more of a continuous engagement than a
sequence of episodic events, with much more feedback into the architecture and design
parts of development—the “D” in DT&E. This will require shorter test-redesign-test cycles
that will probably continue much longer into the development cycle before morphing into the
more familiar test-fix-test cycles. The “E” part of DT&E might require maintaining a detailed
log of system and subsystem performance throughout the development cycle, to be used by
downstream T&E and certification processes. This paradigm of continuous accumulation of
evidence, rather than passing a convincing test event at the end of development, would be
new—and is not supported by current organizational structures, division of responsibilities,
or test resources.

When substantial human-machine teaming is intended, there will be additional
challenges. The teaming CONOPS must be engineered into the machine. This will require
active participation by users and user surrogates during the early stages of development.
However, CONOPS development is not usually a program management office (PMO)
responsibility, and the PMO may not have the authority to influence it.

With these challenges in mind, we turn back to the categories.

- 147 -

Characterization

For software systems, the question “What is the system doing?” is traditionally
answered at the code execution level, by tracing the execution path and verifying that it is
implementing the desired logic. If the complexity of the code is such that tracing the
execution is impractical, or the logic of the algorithm is not understandable by humans, then
some other way of interpreting what the system is doing will be required.

For systems with significant autonomous capabilities, much of the important system
behavior will be implemented by algorithms that cannot be interpreted by humans as
sequential logic. For example, any subsystem that relies on neural network models trained
by supervised learning will not be executing sequential logic in the usual sense. Instead,
when the neural network is presented with input data, it generates a “hunch” about the
appropriate output, based on its training. Tracing the execution of the code that generates
this output is unhelpful; it is merely a large number of weighted sums and transfer functions,
uninterpretable at that level. Making sense of the hunch would require reverse-engineering
the functioning of the neural network, in order to assign human-understandable meanings to
patterns of weights in the network. This is a new requirement; we have not historically
needed to instrument the internal states of mission software in order to decide whether it is
performing well for the right reasons.

Diagnosis

A vital role of DT&E is to provide the measurements that enable testers to
understand why the system is not behaving as intended. For software systems, this has
traditionally meant finding bugs in the software that are causing it to implement incorrect
logic.

For autonomous systems, because we have no engineering theory that would enable
predicting system behavior from the software design, we cannot assume that undesired
system behavior is being caused by bugs. The problem might just as easily be due to
incorrect or inappropriate training data, a poor choice of algorithm, or unanticipated
emergent behavior. If, for example, the system is failing to react appropriately to the actions
of certain entities, it is difficult to tell from the outside whether the system is failing to see
those entities (perception), failing to identify them correctly (reasoning), or failing to consider
or choose the appropriate response (selection). If this is a system that continues to learn
and self-modify after fielding, the system might have begun working correctly, but has
learned a “bad habit” that is impairing performance (adaptation).

To diagnose the source of the problem, it will be necessary not only to instrument the
internal states of the software, but also to have a normative model of what correct function
looks like, in all modules and at multiple levels of descriptions, to compare the resulting
measurements against. The instrumentation will be especially challenging on platforms that
are highly constrained in available space, weight, or power—it will be difficult to observe
system function without distorting system function. The development of normative models
may be equally challenging, especially for enabling capabilities like ML, where proper
function depends as much on how the model was trained as it does on correct
implementation of the algorithm.

It is also important to mention that correct diagnosis does not always lead to a
unique potential corrective action. If the reasoning functions are drawing incorrect
conclusions from the world model built by the perception functions, it may not be obvious
which module should be changed. Both may be functioning correctly according to the
original design specification. Again, it will require experimentation to find the best way to
achieve the intended functionality. Sometimes, the solution might involve adding a new run-

- 148 -

time monitoring process that watches for problematic cases and intervenes when
appropriate. This not only adds to the design complexity; it also introduces new modules
that themselves will need to be verified and validated.

All of these challenges are exacerbated by an extreme version of the traditional
chicken-and-egg problem posed by simultaneous hardware and software development. In
general, software developers would prefer representative working hardware to test on, in
order to verify that the software is working as intended. At the same time, hardware
developers need representative working software to execute, to verify that the hardware is
working as intended. Avoiding gridlock is not easy, especially if you can’t be sure whether a
given observed problem is due to hardware problems, software problems, or integration
problems. Autonomous systems have all of these issues, but add the further complication of
needing to develop the human-machine teaming CONOPS in parallel with both hardware
and software. Correct diagnosis will require determining whether the hardware, the software,
or the human team members are not behaving as intended, or whether the problem is in the
algorithms chosen, the CONOPS design, or some combination of those things.

Certification

For autonomous or semi-autonomous weapon systems subject to DoD Directive
(DoDD) 3000.09, Autonomy in Weapon Systems (DoD, 2017), there are certification
requirements even before formal program initiation:

Before a decision to enter into formal development, the USD(P), USD(AT&L),
and CJCS shall ensure:

(1) The system design incorporates the necessary capabilities to allow
commanders and operators to exercise appropriate levels of human
judgment in the use of force.

In other words, if DoDD 3000.09 applies, there are certifications about the design
that must be made before development begins. The basis for these certifications is not yet
well-defined.

In general, the T&E to support the various certification activities will involve open air
testing of full up systems or major components. However, even these activities will require
range safety releases, which are themselves a kind of certification. The Joint Software
Systems Safety Engineering Handbook (DoD, 2010) addresses the relationship between
autonomy embedded in the software and safety-critical functions.

For autonomous systems, safety release will generally depend upon a combination
of a safety argument based on the entire development history and some specific “kill switch”
function. A “kill switch” feature might itself depend on internal monitoring by an autonomous
process, which could pose additional challenges, since internal monitoring may affect
mission performance by competing with mission systems for power and computational
resources.

Finally, the DT&E results are key inputs into Operational Test (OT) Readiness
Reviews. While not a formal certification, readiness for OT typically requires the system
under test to be “production representative.” The current working definitions of “production
representative” are all highly hardware-centric—they refer to tooling and production lines.
For continually evolving complex software systems in general, the question of whether the
system is yet production representative is difficult to answer. This is particularly true for ML
systems. Many approaches to ML require extensive data for training. If the system were
retrained using different data, it would exhibit different performance. Thus, the training data
set itself needs to be production representative in some sense.

- 149 -

This vision for a persistent, intrusive instrumentation and experimentation process
that includes CONOPS and training as design attributes is very different from what DT&E
has looked like in the recent past. Even M&S, which is already familiar, would need to be
used in novel ways for which little support currently exists. However, these are at least
activities well within the traditional scope of a PMO’s authority. Human teaming, human
training, and CONOPS development are emphatically not part of a PM’s traditional authority,
and yet they will be essential elements of the system design. Safety issues introduced by
the possibility of an incompetent or insane operator also demand novel T&E data collection,
test designs, and information sharing across traditional organizational boundaries. This will
introduce many of the same development issues as are seen when a program’s design
depends on decisions made in an external program—but in an unfamiliar context for which
no administrative processes yet exist.

Operational Test and Evaluation (OT&E)

The purpose of operational testing is to determine whether or not a particular system
is effective and suitable when used by warfighters in execution of their missions. The
presumption is that DT&E has already established system performance over the intended
range of operating conditions; all that needs to be confirmed is mission effectiveness and
suitability when in the hands of intended users.

The scoping of OT under these conditions is straightforward—in some cases, a
single scenario will suffice. For example, Air Superiority aircraft are usually tested in 1v1,
2v2, and 2v4 scenarios, but the number is manageable and predictable. For a ground
vehicle, one would conduct both Major Combat Operations and Stability Operations
scenarios, but again the scope is manageable and predictable.

For systems with autonomous capabilities, we have already seen that it may not be
feasible to cover the state space during DT&E. For operational systems with substantial
autonomous capabilities, there is no current understanding of how to scope the set of test
missions by analogy to the air combat and ground combat examples. If suitability for
autonomous systems requires the absence of unwanted emergent behavior, we do not
know in general what would constitute sufficient evidence of that. In a previous paper (Tate
et al., 2016), the authors argue that “sufficient evidence” might need to include the entire
test history of the system, with the time series of improving performance and elimination of
failure modes providing a degree of assurance not obtainable through pass/fail testing at the
end of the development cycle.

Surprising uses of weapon systems by their operators have been observed during
operational tests, even for systems with no autonomous capabilities. The probability of
surprising emergent behavior is much higher when humans are teaming with autonomous
systems rather than merely operating them, or when the systems are operating by
themselves. This increases the probability of a test that cannot be conducted safely, or a
test for which the wrong instrumentation or supporting data was available. As with DT&E,
autonomous systems will generally require more test events in OT&E than traditional
systems.

For systems subject to DoDD 3000.09, there are additional requirements that apply
after IOT&E. In particular, Enclosure 2 of the Directive states,

(b) After initial operational test and evaluation (IOT&E),any further changes to
the system will undergo V&V and T&E in order to ensure that critical safety
features have not been degraded.

- 150 -

(1) A regression test of the software shall be applied to validate critical
safety features have not been degraded. Automated regression testing
tools will be used whenever feasible. The regression testing shall identify
any new operating states and changes in the state transition matrix of the
autonomous or semi-autonomous weapon system.

(2) Each new or revised operating state shall undergo integrated T&E to
characterize the system behavior in that new operating state. Changes to
the state transition matrix may require whole system follow-on operational
T&E, as directed by the Director of Operational Test and Evaluation
(DOT&E).

In general, we do not yet know how to determine how much testing will be enough—
or even whether the testing that has been done so far is sufficient. Even for systems for
which DoDD 3000.09 does not apply, ongoing regression testing of software for safety and
performance determination is certainly a best practice, where the same questions apply.

The earliest challenges for the PMO will be planning for the IOT&E. Scoping the
tests will be more challenging than for systems without autonomous capabilities. In the case
of robust teaming, scoping an OT that adequately explores the teaming arrangement
remains an unsolved problem. The prospect of emergent behavior during the test may
render the test unexecutable or uninformative. More time and resources will typically be
required to execute the test events needed, and IOT&E will probably need to instrument
more completely and archive more data in order to support post-fielding regression testing.

Cost and Schedule Estimation
Before you can do a meaningful Analysis of Alternatives (AoA), you need to have at

least a rough guess at the cost, schedule, and operational effectiveness associated with
each of the alternatives. (Ideally, you should also have a good idea of the risks and
uncertainties associated with those attributes. The DoD does not have a stellar record in
that regard.)

Standard cost and schedule estimating techniques were developed for sequential
processes, in which the number, nature, and precedence relationships among tasks is
known in advance. They work very well for routine construction projects. They work quite
well for new system development when the new system is similar to past systems. They can
even be useful for unprecedented new system development. They do not work well at all for
projects with branching or looping logic, where the set of tasks and/or the number of times
you will have to do each of them is not known with certainty.

In practice, cost estimators assume that experimentation is over—that the proposed
design is (essentially) the design that will be built. They also tend to assume that the total
cost of the program will be the sum of the costs of the components, failing to account
adequately for critical path dependencies and costs of integration. The process of refining
the design during development might involve test-fix-retest cycles to confirm that the design
was implemented correctly, but it will not involve test-diagnose-redesign cycles at the higher
levels of system architecture, design, or CONOPS.

This is already a bad assumption for software-intensive systems, first-of-a-kind
science facilities, or complex system of systems integration (not to mention systems whose
requirements keep changing over time). As noted above, autonomous systems partake of all
three of those problematic categories, with the additional problem of necessary
experimentation due to a lack of underlying engineering theory. Standard cost and schedule
estimates for autonomous systems will always underestimate development time and

- 151 -

resources required—and thus will underestimate cost as well. Until a substantial body of
historical autonomy program data can be amassed, a new kind of estimating methodology
will be needed, specially crafted to account for the uncertainty in how many diagnosis,
redesign, and integration cycles will be required, to produce accurate forecasts of cost,
schedule, and development risk.

To make matters worse, the cost and schedule estimates depend on the details of
the CONOPS—how autonomy and human-autonomy teaming are to be used in performing
the mission. The details of this CONOPS will not be known early in the program; they will
necessarily be the result of substantial experimentation. This means that even this
hypothetical novel estimating methodology, specially adapted for autonomous systems, will
be subject to additional uncertainty due to reliance on educated guesses about key design
features.

This suggests that it will be especially important for the PM to get updated cost and
schedule estimates on an ongoing basis, keeping the cost estimators up to date on any
changes in the autonomy or teaming design. In practice, although DoD guidance strongly
encourages this kind of “living cost estimate,” there are strong political and organizational
incentives that drive programs to avoid doing that.

Conclusions
Current U.S. military strategy has placed great weight on developing and fielding

advanced AI-enabled systems with autonomous capabilities that will allow these systems to
operate themselves to a significant degree. They will also need to team with human
warfighters as collaborating agents rather than as tools to be operated. We have shown that
even if the technical challenges of implementing these new autonomous capabilities can be
solved, they pose significant unprecedented challenges to the defense acquisition system,
its organizations, and its processes.

At root, these challenges all arise from the absence of a mature scientific theory or
engineering practice for autonomous systems that would enable designers to predict the
macro-level behavior of an autonomous system from a description of its enabling algorithms
and data. Until we can accurately predict how a given design will behave without building
and testing it, we must instead develop systems through iterative experimentation and
adjustment. At the same time, we must invent test, evaluation, and certification techniques
that will enable reasonable assurance that a given autonomous system will perform
dependably—safely, securely, effectively, reliably, etc.—within a specified range of mission
contexts.

Establishing dependability with certainty would require proving a series of
negatives—that the system will not behave unsafely, will not exhibit undesired emergent
behavior, does not have exploitable cyber vulnerabilities, does not have exploitable training
biases, does not have exploitable reasoning or selection algorithm foibles, and so forth.
Since proving a negative is impossible, we recommend an approach inspired by Karl
Popper’s (2002) notion of falsification: namely, that a system can be considered dependable
to the extent that we have tried as hard as possible to prove that it is not dependable and
have failed. This approach would be a significant departure from current test practice, which
is focused on doing the minimum possible amount of testing that can support a conclusion
that a performance threshold has been met.

Implementing this approach will require novel T&E methodologies, such as intelligent
adversarial testing in highly virtualized environments. These methodologies will in turn
depend on T&E resources and infrastructure that do not yet exist—live/virtual/constructive

- 152 -

simulation testbeds, instrumentation of AI internal states, sophisticated human/machine
teaming support, copious data collection and archiving to establish dependability over time,
etc. Such testing also implies developmental and operational test plans that are
fundamentally unpredictable in duration and scope.

The defense acquisition system is predicated in large measure on the assumption
that such unpredictability has been ironed out of a program by the time it passes Milestone
B. That is generally not true even today; it will be far less true for the kind of experimental
discovery processes needed to field effective autonomy. The DoD needs to be aware of that
if they are serious about making autonomy a cornerstone of future military capability.
Without significant changes to how we develop and test systems, the DoD will either not
field autonomous systems, or will have very little reason to believe that its fielded systems
will be safe, secure, and effective.

References
Boyd, J. R. (1995). The essence of winning and losing (Briefing).

DoD. (2010). Joint software systems safety engineering handbook [Ver. 1.0]. Retrieved from
http://www.acqnotes.com/Attachments/Joint-SW-Systems-Safety-Engineering-
Handbook.pdf

DoD. (2017). Autonomy in weapon systems, incorporating Change 1 (DoD Directive
3000.09). Retrieved from http://www.dtic.mil/

DoD. (2018). Summary of the 2018 national defense strategy of the United States of
America: Sharpening the American military’s competitive edge. Retrieved from
https://www.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-
Summary.pdf

Popper, K. (2002). The logic of scientific discovery. New York, NY: Routledge. Retrieved
from https://archive.org/details/PopperLogicScientificDiscovery (Original work published
1935)

Tate, D. M., Grier, R. A., Martin, C. A., Moses, F. L., & Sparrow, D. A. (2016). A framework
for evidence-based licensure of adaptive autonomous systems (IDA Paper P-5325).
Alexandria, VA: Institute for Defense Analyses.

Acknowledgments
Valuable comments reflected in the paper were provided by Phil Sarnecki. John

Biddle, Nick Kaminsky, and Poornima Madhavan contributed valuable discussions.

www.acquisitionresearch.net

