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Abstract 
To a first approximation, acquisition programs never spend what they originally said 

they would spend when they began. In fact, the error bars around an initial cost estimate are 
much larger than is generally understood, once program cancellations, restructurings, 
truncations, and block upgrades have been accounted for. Worse yet, all of this uncertainty 
arises in a context where programs must fit within annual budgets—it is not enough to only 
spend as much as you said you would; you must also spend it when you said you would, or 
problems ensue. 

We have developed a methodology that uses historical program outcomes to 
characterize the year-by-year budget risk associated with a major acquisition program. This 
methodology can be applied to both development costs and procurement costs and can be 
extended to understand the aggregate affordability risk of portfolios of programs. The 
method allows Resource Managers to estimate annual budget risk levels, required 
contingency amounts to achieve a target probability of staying within a given budget, and 
many other relevant risk metrics for programs. It also allows policy makers to predict the 
impact on program affordability of proposed changes in how contingency funds are 
managed. 
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Planning Is About Not Being Surprised 

A Hypothetical New Program 

Suppose you are the Resource Manager for a portfolio of acquisition programs. A 
new helicopter program in your portfolio—call it “H-99”—has just received milestone 
approval. The H-99 Acquisition Program Baseline (APB) for development looks like Figure 1. 

 

Figure 1. Proposed H-99 Development Costs 

This is the official Service position about how many research, development, test, and 
evaluation (RDT&E) dollars this program will receive in each of the next dozen years—but it 
is not what will actually happen. What should you expect? Or, more precisely, what range of 
outcomes should you be prepared for, and how likely should you think those outcomes are? 
You don’t want to be surprised. 

Some Past Examples 

Figure 2 shows the planned and actual development costs of the MH-60S Seahawk 
(a.k.a. “Knighthawk”) helicopter program, as reported in the program’s first Selected 
Acquisition Report (SAR) in 1998 and its final SAR in 2015. The original plan was to spend 
$71 million (constant 1998 dollars) over four years of RDT&E. The program actually spent 
more than $670 million over 19 years. The original requirement was for a ship-based cargo 
helicopter that could also support search-and-rescue and torpedo recovery. After the first 50 
helicopters were built, the program evolved through several “block upgrades” to add 
airborne mine detection and countermeasures and shifted from an unarmed platform to an 
armed combat search and rescue (CSAR) and maritime interdiction platform—all within the 
same program of record. 
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Figure 2. MH-60S Development Costs 

Conversely, Figure 3 shows the planned versus actual procurement costs for the 
Armed Reconnaissance Helicopter (ARH) program. Here, the error is in the opposite 
direction; because the program was cancelled before procurement spending even began, 
none of the original estimated $3 billion (constant 2005 dollars) was ever spent. 

 

Figure 3. ARH Planned Procurement Costs (Zero Actually Spent) 
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Clearly, the dollars actually spent on development or procurement of a given 
program can vary wildly—either up or down—from what was originally planned. In order to 
manage acquisition portfolios sensibly, Resource Managers need to have some idea of just 
how much actual future resource usage might differ from its original estimate. We compiled 
original plans and actual outcomes from 115 historical major defense acquisition programs 
(MDAPs) in order to attempt to answer this question. 

The Resource Manager’s Challenge 

We saw in the previous examples that what actually happens can be vastly different 
from what was predicted. Given the range of possible program outcomes, what should 
Resource Managers be prepared for? Are there tools that could help Resource Managers 
quantify the year-by-year affordability risk they face, based on actual historical outcomes 
and observable program characteristics, so that they can allocate contingency funds wisely? 

Yes, there are tools—or at least there could be. That is the purpose of this research. 

Affordability means having a high probability of being able to buy the thing you want 
with the funds you have designated for that purpose. We often think of this as a question of 
total cost or unit cost, but in practice it is a year-by-year question of whether there is enough 
money in this year’s budget to cover this year’s costs. The Resource Manager’s goal is to 
balance the need for every program to have enough funds to execute efficiently this year 
against the demands of other programs and the overall budget. Planning sensibly for future 
years’ demands is a major part of this. Programs that get stretched for lack of immediate 
funding in the budget year not only take longer to finish, but they also grow in total cost (due 
to inefficient use of labor and a higher proportion of fixed costs). On the other hand, 
providing enough contingency funding to make every program highly likely to stay within 
budget every year would be tremendously wasteful—especially since overfunded programs 
will tend to find something to spend that money on, rather than giving it back. Major 
differences between planned and actual demands for funding lead to budget instability, 
inefficient acquisition, and cancelled programs. 

Existing Literature on Cost Growth Doesn’t Help 

What Question Are We Asking? 

Most of the literature on cost growth is focused on trying to identify causes of cost 
growth in order to avoid them. That is a noble goal, but as a Resource Manager, you are 
probably aware that people have been trying to do that for decades, with limited success. 

Similarly, most of the literature on cost growth looks at unit cost growth—either 
actual unit cost growth or unit cost growth adjusted to control for changes in the quantity 
procured (Asher & Maggelet, 1984; McNicol, 2017; McNicol et al., 2013). That makes sense 
if you’re trying to understand the dynamics of why things cost more than expected. But as a 
Resource Manager, you don’t care nearly as much about unit costs as you do about how 
many actual dollars will be needed. 

In addition, nearly all cost growth studies describe cost growth (be it unit cost or total 
cost) in terms of a single program cost growth factor—the ratio of final total (or unit) cost to 
the originally estimated total (or unit) cost (Arena et al., 2006). To a Resource Manager, 
eventual total cost is not nearly as important as annual cost—that is, how many dollars will 
the program consume this year, and next year, and for each year in the Future Years 
Defense Plan (FYDP)? 

Finally, nearly all past efforts are aimed at predicting costs, with those predictions 
expressed as an expected value or “50%” estimate (Anderson & Cherwonik, 1997; Bitten & 
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Hunt, 2017). This is in part because the literature has been driven by the needs of cost 
estimators, who are expected to produce point estimates that can be used for budgeting 
purposes. For cost estimators, the quality of the prediction is given by its accuracy (how 
much bias) and its precision (in terms of narrow error bars). Resource Managers prefer 
accurate (unbiased) forecasts, too, but do not really care about the mean value per se. 
Instead, they care greatly about being able to assess whether a program is likely to exceed 
yearly budgets and by how much, so that adjustments can be made before the program is 
forced to shed capabilities or be stretched out in order to “fit” within the budget profile. This 
is not a question of expected total cost or expected cost growth—it is a question of how the 
annual needs can vary and how to plan for those possibilities. 

The authors are not aware of any past work that has addressed this need for annual 
resource requirement risk analyses. The Congressional Budget Office (CBO) uses 
commodity-specific cost growth factors when predicting future budget implications of current 
and predicted programs, but it does this in terms of average total program cost growth 
factors applied uniformly across all years of the planned program (CBO, 2017). As we shall 
see later, this is not an accurate estimate of when the cost growth in a given program would 
manifest itself. It is also just an average—it gives no information on the range of possible 
outcomes, and how relatively likely they are. This is the gap that our research aims to fill. 

Desirable Outputs of a Model 

Given a planned program (or set of programs—we’ll get to that later) and a budget, 
Resource Managers would very much like to answer questions such as 

 What is the distribution of funding the program will receive in year N = 1, 2, 
…? 

 What is the probability that the program will receive more funding in year N 
than is currently budgeted, for N = 1, 2, …? 

 How many total contingency dollars would be enough to achieve a given 
percent certainty that the current budget plus the contingency is enough to 
fund the program over the FYDP? 

 What is the probability that the program will use at least $X less than planned 
over the FYDP, for various values of X? 

 …etc. 

The goal of our research is to develop empirical models based on historical program 
attributes, environments, and outcomes that will allow us to answer questions like these. 

What Tools Do We Need? 
In this section, we describe the tools that are needed to attempt to answer the kinds 

of questions that Resource Managers care about. These tools are 

1. a way to describe funding profiles mathematically; 

2. a list of program attributes and environmental factors that help predict 
program outcomes; 

3. a statistical model to estimate the probability distribution of final funding 
profile shapes given the initial funding profile, environmental factors, and 
other program attributes; 

4. a mathematical characterization of how well the shape tends to fit actual 
data; and 

5. historical data on program initial plans and final outcomes. 
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A detailed discussion of each of these tools follows. 

Step 1: Modeling Funding Profiles 

It is an essential (and bothersome) fact that the various years of an acquisition 
program are not independent. If the actual RDT&E obligation authority in year 5 of 
development turns out to be higher than originally planned, it is very likely that year 6 and 
year 7 (etc.) will also be higher than originally planned. In fact, we are not interested only in 
the distribution of outcomes for year N; we are interested in the joint distribution of outcomes 
in all years—including years that were not part of the original baseline plan at all. That 
means we can’t just build separate risk models for year 1, year 2, and so forth, and then use 
that collection of models to understand the risk over the entire planning horizon. We have to 
account for the ways cost profiles change over time. 

Instead of treating the year-by-year outcomes as having some complicated joint 
distribution, we will instead use the techniques of Functional Regression to treat the 
individual year-by-year outcomes as having been generated by some (noisy) underlying 
functional form and then think about probability distributions over the parameters of those 
generating functions. 

Development Costs 

For the development portion of program funding, there is already a history of fitting 
functional models to the yearly funding requirements. In particular, Weibull distributions (or 
Rayleigh distributions, which are a special case of the Weibull) have often been used to 
describe both the shape a development program ought to have and the observed actual 
funding profiles of historical programs. Brown, White, Ritschel, and Seibel (2015) provide a 
good summary of past approaches.  

Weibull distributions can be parametrized in several ways. We base our model of 
development cost profiles on this version, which has two parameters,  and α: 

𝑊(𝑡|𝛼, 𝜆) =  
ఈ

ఒ
ቀ

௧

ఒ
ቁ

ఈିଵ
exp ቀ− ቀ

௧

ఒ
ቁ

஑
ቁ 1(𝑡 ≥ 0)     (1) 

In this parametrization,  is a time-scaling parameter that determines how much the 
profile changes from year to year, while α is a shape parameter. The term 1(𝑡 ≥ 0) is an 
indicator function that equals 1 if 𝑡 is greater than or equal to 0 and 0 else. Figure 4 shows 
the flexibility of the Weibull for various (𝜆, 𝛼) pairs. The black (𝜆 =  1, 𝛼 =  2) and red 
(𝜆 =  2, 𝛼 =  2) profiles show how the scaling parameter 𝜆 affects how quickly the spending 
profile changes. The red profile evolves more slowly than the black one because it has a 
larger 𝜆 value. The black (𝜆 =  1, 𝛼 =  2), blue (𝜆 =  1, 𝛼 =  1.5), and teal (𝜆 =  1, 𝛼 =  4) 
profiles show how the shape parameter α affects the peakedness. The teal profile is the 
most peaked, because it has the largest 𝛼 value. Values of 𝛼 less than 1 (e.g., the green 
curve) are not appropriate for modeling spending profiles, since 𝛼 < 1 implies that peak 
spending occurs in year 0.  
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Figure 4. Weibull Distribution Shapes for Various Parameter Values 

There are two major discrepancies between the Weibull distribution and the data we 
observe. First, the data we observe is annual, and therefore discrete, while the Weibull 
distribution is continuous. Second, some programs are cancelled during development, while 
the Weibull distribution assumes they are completed. To address these issues, we discretize 
and truncate the Weibull distribution using two additional parameters: 

 the total development cost, denoted C  

 the number of years of nonzero spending, denoted T 

Let C(t) denote the costs in year t. The resulting functional form fit to the incurred 
costs in year t is 

𝐶(𝑡) =  𝐾 ⋅ 𝑊(𝑡|𝛼, 𝜆) +  𝜖(𝑡) , 𝑡 = 1, … , 𝑇     (2) 

where 𝜖(𝑡) is the independent random error in year t and the constant K is chosen such that 
∑ 𝐶(𝑡) = 𝐶்

௧ୀଵ . This scaled, discretized truncation of the Weibull profile lets us accurately fit 
the final outcomes of programs cancelled in mid-development, as well as typical 
development profiles that taper off more slowly.  

Procurement Costs 

For procurement, there is no similarly traditional functional form to use as the basis 
of a functional regression. One possibility is to use a simple two-segment piecewise linear 
shape, consisting of an initial ramp-up, followed by a linear trend line. This distribution could 
be parametrized in various ways using four parameters. The choice of functional form here 
is purely descriptive—unlike the theory behind the application of Weibull distributions to 
development profiles, there is no underlying reason why procurement profiles should be 
roughly linear following their initial low-rate initial production (LRIP) ramp-up. For purposes 
of risk characterization, it is enough that historical programs do (approximately) follow this 
pattern.  

For the remainder of this paper, we will ignore procurement costs and focus on 
modeling development cost profiles for simplicity of exposition. 
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Step 2: Identifying Potential Predictor Variables 

Given choices for functional forms, the next challenge is to somehow characterize 
how the distribution of possible actual outcome profiles could be derived for a given initial 
plan. It seems obvious that different programs involve different levels of cost risk. There is a 
long literature attempting to identify specific factors that are correlated with program cost 
and schedule growth. Some factors that have been found by past researchers to be 
correlated with (unit) cost growth and/or total program cost growth risk include 

 Commodity type (e.g., helicopter, satellite, MAIS, missile, or submarine) 
(Arena et al., 2006; Drezner et al., 1993; Tyson, Harmon, & Utech, 1994) 

 Acquiring Service (Army, Navy, Air Force, Joint, Department of Energy [DoE]) 
(Drezner & Smith, 1990; Jessup & Williams, 2015; Light et al., 2017; McNicol, 
2004) 

 New design vs. modification of existing design (Arena et al., 2006; Coonce et 
al., 2010; Drezner et al., 1993; Jimenez et al., 2016; Marshall & Meckling, 
1959) 

 New build vs. remanufacture of existing units (Tyson et al., 1989) 

 Budget climate at Milestone B (Asher & Maggelet, 1984; McNicol, 2017) 

 Number of years of spending prior to Milestone B (Jimenez et al., 2016; Light 
et al., 2017) 

 Schedule optimism (Arena et al., 2006; Asher & Maggelet, 1984; Glennan et 
al., 1993; Tate, 2016) 

 Technology maturity of the program (Adoko, Mazzuchi, & Sarkani, 2015; 
GAO, 2006) 

 Investment size (Bliss, 1991; Creedy, Skitmore, & Wong, 2010) 

Because we are only trying to understand and characterize risk, on the assumption 
that the past is a reasonable guide to the future, we do not distinguish here between risks 
arising from discretionary choices, environmental factors, or intrinsic program features. 

Step 3: Describing Changes in Cost and Schedule as Changes in Profile Functions 

We saw previously that we can model development costs or production costs as 
being generated by an underlying functional form, with variation about that smooth curve 
treated as independent random noise. Mathematically,   

𝐶(𝑡) = 𝑓(𝑡|𝜃) +  𝜀(𝑡)       (3) 

where C(t) is the cost in year t, θ is the vector of fitted parameter values for the family of 
curves being used, 𝑓(⋅) is the functional form we are assuming for the generating function, 
and ε(𝑡) is a random error whose distribution may depend on the year t. Let 𝜃଴ denote the 
parameters that best fit the program’s original profile and 𝜃ଵ denote the parameters that best 
fit the program’s final profile. What we need to estimate is the conditional (joint) distribution 
of 𝜃ଵ given the appropriate program and environmental attributes and the fact that the 
program’s original estimate was best fit by the curve 𝑓(𝑡|𝜃଴). 

There are several possible approaches to this and many choices of how to 
parametrize the family of curves being fit, but the general method will be the same in all 
cases. We estimate the distribution of 𝜃ଵ as a function of the best fit parameters 𝜃଴ and the 
historical program characteristics X: 

log(𝜃ଵ) =  (𝑋, log(𝜃଴))𝛽 +  𝜂,       (4) 
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where 𝑋 includes factors such as initial estimated cost, Service, budget climate, and so 
forth. The matrix element 𝑋௝௞ gives the value of predictor 𝑘 for historical program 𝑗. The 
matrix 𝜃଴ has one column for each parameter and one row for each historical program. 
(𝑋, log(𝜃଴)) denotes the block matrix obtained by appending the componentwise natural 
logarithm of 𝜃଴ as additional columns of 𝑋, one column per parameter. 

This linear regression model implies a functional fit and distribution over the annual 
cost profile function 𝐶(𝑡). Rather than attempting to predict eventual actual cost as a 
function of initial estimated cost and other predictors, we instead attempt to predict the 
distribution of the parameters of a function that generates eventual cost, given program-
specific attributes and the parameters that generate the initial estimate. Note that this is a 
multiple output regression—we are simultaneously estimating all of the best-fit parameters 
𝜃ଵ and the covariance matrix that describes how those parameters are correlated. 

We use a Bayesian estimation framework, starting with a weakly informative prior 
distribution 𝐹௣௥௜௢௥(𝜃ଵ) and using Markov Chain Monte Carlo estimation to derive a posterior 
distribution 𝐹௣௢௦௧௘௥௜௢௥(𝜃ଵ), including the covariance matrix (Chib & Greenberg, 1995). We do 
this separately for development costs and procurement costs, using different families of 
profile-generating functions and treating their changes in shape and size as independent. 
Treating development and procurement jointly is a potential area for future research. 

Step 4: Accounting for Noisy Curve Fits 

The posterior distribution on 𝜃ଵ accounts for the uncertainty in the generating 
function parameters for the eventual profile of the program, but it does not capture the 
variability corresponding to the original error term 𝜀(𝑡) when we fit truncated Weibull 
distributions to profiles. In order to capture all of the uncertainty in actual yearly costs, we 
need to also add in yearly random error terms 𝐸(𝑡). We derive the distribution of 𝐸(𝑡) from 
the observed 𝜀(𝑡) in the best fits for actual costs of historical programs. In other words, we 
look at how much our curve fits to actual outcome profiles that tended to be off in each year, 
and we add corresponding random yearly error terms to any final profile generated from 
𝐹௣௢௦௧௘௥௜௢௥(𝜃ଵ) in order to capture that additional source of uncertainty. 

Step 5: Regression Data 

The data for the regression are the initial estimate and final actual cost profiles for 
155 completed historical MDAPs. The earliest program in the data set passed Milestone B in 
1982. The data are taken from Selected Acquisition Reports (SARs), together with compiled 
attributes and environmental factors (as described previously in Step 2) for each program. In 
this paper, we will focus solely on characterization of development (RDT&E) cost risk. The 
methodology for procurement cost risk is similar, differing only in which predictor values are 
used and in the functional form of the generating function.  

The specific predictor variables used in this paper are 

 log (𝛼଴)—natural logarithm of the shape parameter of the original estimate 
Weibull fit 

 log (𝜆଴ )—natural log of the scale parameter of the original estimate Weibull fit 

 log(𝐶଴)—natural log of the original total planned spending 

 log(𝑇଴)—natural log of the original planned number non-zero spending years 

 The Service overseeing the program (Navy, DoD, Air Force, Army, DoE) 
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 A commodity type (Air; Command, Control, Communications, Computers, 
Intelligence, Surveillance, and Reconnaissance (C4ISR); Ground; Ordnance; 
Sea; Space; other)1 

 A measure of relative Service budget tightness compared to two years ago 

 A measure of relative Service budget tightness over the last 10 years 

 A measure of budget optimism—planned spending divided by the mean 
historical actual spending for this commodity type 

 A measure of schedule optimism—planned duration divided by the mean 
historical actual duration for this commodity type 

 Whether the program is based on a modification of a preexisting design 
(binary) 

The measures of relative budget tightness were based on the year the program 
passed Milestone II/B. 

Regression Methodology 
Let 𝑖 = 1,2, … , 𝐼 index over the historical programs in our data set; let the subscript 

𝑙 = 0 denote an original profile estimate and 𝑙 = 1 denote an actual realized profile. We 
compiled original estimates and actual outcomes for 𝐼 = 115 historical programs. For each 
historical program 𝑖, we fit scaled, discretized Weibull distributions2 to the original estimated 
and actual development cost profiles 𝐶௜଴(𝑡) and 𝐶௜ଵ(𝑡):  

𝐶௜௟(𝑡) = 𝐾௜௟  𝑊(𝑡|𝛼௜௟ , 𝜆௜௟) +  𝜖௜௟(𝑡), 𝑡 = 1, … , 𝑇             (5) 

As before, the constants 𝐾௜௟ are chosen so that ∑ 𝐶௜௟(𝑡) = 𝐶௜௟
்
௧ୀଵ , the total cost of the 

original/final profile for program 𝑖. 

                                            
 

 

1 More precise commodity categories (e.g., distinguishing helicopters from fixed-wing aircraft) might 
be useful, given enough data. We found that increasing the sample size in each category led to better 
results than increasing the precision of the categories. 
2 For historical profiles, we set T = estimated years to reach Milestone C and C = total development 
cost through year T. We added fictitious years of zero spending in year 0 and year T + 1, then fit a 
Weibull distribution to the scaled yearly costs. For actual profiles, we set C = actual total cost and T = 
actual years of spending. We then fit a Weibull to the scaled annual costs, holding the sum of costs 
through year T equal to C. We used the Levenberg-Marquardt algorithm to perform the nonlinear 
least-squares optimizations to find the best fits. 
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Let 𝜃௜௟  =  (𝐶௜௟ , 𝑇௜௟ , 𝛼௜௟ , 𝜆௜௟) be the parameters of those best-fit curves. Then 𝜃௜଴ are the 
best fit parameters to the initial profiles and 𝜃௜ଵ are the best fit parameters to the actual 
outcomes. We model the distribution of 𝜃௜ଵ as a function of 𝜃௜଴ and a set of predictor 
variables 𝑋௜ simultaneously over all programs, where 𝑋 includes the program-specific and 
environmental factors previously listed. Parametric linear models are simultaneously fit to 
obtain a predictive model for the final profile parameters 𝜃ଵ. The parameters that uniquely 
identify a profile are 𝜃௜ଵ = (𝐶௜ଵ, 𝑇௜ଵ, 𝛼௜ଵ, 𝜆௜ଵ) where 𝐶௜௟ = ∑ 𝐶௜௟(𝑡)

்೔೟
௧ୀଵ  and the other parameters 

are as previously defined. The models are 

log(𝐶௜௟) = (𝑋; log (𝜃଴))𝛽஼ + 𝜂஼ ,    (6) 

log(𝑇௜௟) = (𝑋; log(𝜃଴))𝛽் + 𝜂் ,     (7) 

log(𝛼௜௟) = (𝑋; log (𝜃଴))𝛽ఈ + 𝜂ఈ ,     (8) 

log (𝜆௜௟) = (𝑋; log (𝜃଴))𝛽ఒ + 𝜂ఒ ,    (9) 

where the error terms are assumed to be jointly normally distributed. The covariates X 
include information about previously finished programs that had initial planned spending 
profiles and actual final profiles. Using these historical data, the model is fit to predict final 
actual profiles using only information available from a program’s Milestone B date. The 
parameters 𝛽 = (𝛽஼ , 𝛽் , 𝛽ఈ , 𝛽ఒ)  are jointly estimated using a Bayesian Seemingly Unrelated 
Regressions model with prior distributions on the parameters 𝛽 and 𝑉𝑎𝑟[log(𝜃௜ଵ) |𝑋] ≡ Σ.  

The prior for 𝛽 has a multivariate normal distribution, calibrated such that prior belief 
is that there is no change in the profile from initial estimate to final actual profile and no other 
traits of the initial profile are predictive of the final actual profile. This prior belief is fairly 
strong in order to induce regularization. This prior choice balances the bias-versus-variance 
tradeoff to produce better predictions. 

The prior for Σ has an inverse Wishart distribution, chosen to account for the errors 
in the initial profile fits to the Weibull curve. In addition, it includes central limit theorem 
estimates of the final length and size of actual programs. It also includes correlation 
between the final length, scale, and size parameters. 

The joint posterior distribution of 𝛽 and Σ incorporates the prior beliefs and the 
historical data to arrive at an updated posterior belief. The Bayesian machinery is especially 
useful for our purposes because it allows us to obtain random draws from the posterior 
distribution of 𝛽 and Σ, which in turn allows us to generate random draws of a final profile 
distribution 𝜃෠ଵ for any program with known initial profile characterized by 𝜃଴ and 
covariates 𝑋 = 𝑥. This lets us estimate the complete (posterior) distribution of final profiles, 
rather than just a point estimate and variance measure. 
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Applying the Model to a Specific Program 
Experimentation with the predictors listed previously and the 115 programs in our 

data set indicated that only the coefficients for log(𝐶௜଴), log(𝑇௜଴) , log(𝛼௜଴) , log(𝜆௜଴) and 
Service = Army were significant predictors of final RDT&E development profile shape and 
size.3 However, all predictors were retained in the model and strongly regularized to improve 
predictive performance. 

Returning to the hypothetical H-99 program we introduced early on, assume that the 
program passed Milestone B in 2014. The resulting X covariate values for estimating the 
distribution of eventual actual development expenditure profiles are 

 Commodity = Aircraft 

 𝛼଴ = 3.3 

 𝜆଴ = 5.3 

 𝐶଴  =  = $766.2 Million 

 𝑇଴ = 12 

 Two-year tightness = -0.073 

 10-year tightness = 1.0 

 Service = Army 

 Commodity Size Optimism = 0.18 

 Commodity Length Optimism = 1.11 

Using these inputs, we compute the posterior distribution 𝐹௣௢௦௧௘௥௜௢ (𝜃ଵ) of the 
parameter vector 𝜃ଵ that describes the best Weibull fit to the eventual actual development 
cost profile. In the Bayesian paradigm, this is not a point estimate for a best-fit curve, but 
instead an updated joint probability distribution that summarizes both our new beliefs about 
what those parameters are likely to be and our uncertainty about them. We can think of this 
posterior distribution as a probability distribution over funding profiles. 

We also need to account for the fact that the best-fit curve isn’t a perfect fit. We also 
estimate the year-by-year error distributions 𝐸(𝑡) using our historical data on how well 
Weibull distributions fit actual development profiles. 

We now have all of the machinery we need to characterize year-by-year cost risk. 
We use Monte Carlo simulation to sample repeatedly from the 𝐹௣௢௦௧௘௥௜௢௥(𝜃ଵ) distribution, 
generating a large number of possible funding profiles. For each profile generated, we then 
perturb the annual values using offsets generated from the 𝐸(𝑡) distributions. We repeat this 
process tens of thousands of times, collecting year-by-year statistics on how frequently the 
required dollars in that year exceeded any given threshold. The result is a set of annual 
“dollars required” distributions that can be compared against both the original estimate and a 
hypothetical budget. 

                                            
 

 

3 Using type 2 sum of squared errors. 
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Monte Carlo Risk Analysis 

Approach 

Suppose that we have budgeted a program at some level, possibly different from its 
predicted cost profile. Let 𝐵(𝑡) be the budgeted funds in year t, and let  𝐶଴(𝑡) be the 
predicted cost that will be incurred in year t. There are many questions we might wish to ask 
about the program’s affordability risk: 

 In how many years will the program exceed the planned budget?  

 How many total dollars over budget will the program spend? 

 What is the probability of exceeding the budget at least once over the FYDP?  

 How much contingency funding would be needed to achieve 90% confidence 
of staying within budget, assuming unspent contingency carries over to the 
next year? 

These are all questions of potential interest to both Program Managers and 
Resource Managers. Using the posterior final profile distribution derived from the original 
profile 𝐶଴, we can perform many counterfactual Monte Carlo analyses to answer these kinds 
of questions. The general pattern for these analyses is as follows: 

1. Given the initial development estimate for a program… 

2. Define a yearly budget level 𝐵(𝑡), and a contingency fund size (if any). 

3. Use the regression described previously to determine the posterior 
distribution on the parameters of the best fit to the final actual 
development profile for the program. 

4. Define outcomes or events of interest. 

5. For s = 1,…,S (indexing over iterations of the Monte Carlo algorithm): 

a. “Draw” random parameter vector 𝜃ଵ
(௦)

 from the posterior 
distribution. 

b. Compute the corresponding yearly values by evaluating the best 

fit curve at 𝑡 = 1, …, 𝑇ଵ
(௦) and computing  𝐾(௦) 𝑊 ቀ𝑡|𝜃ଵ

(௦)
ቁ..  

c. Add random noise 𝐸(𝑡) drawn from the estimated distribution of 
the historical errors in fitting curves to final development cost 

profiles to get a final spending profile 𝐶ଵ
(௦)

(𝑡), 𝑡 =  1, … , 𝑇ଵ
(௦). 

d. Evaluate and store any events or outcomes of interest. 

Note that the value of 𝑇ଵ
(௦) used in step 5b is determined as part of 𝜃(௦) in step 5a. 

After S iterations, calculate the statistics of interest over the stored events or 

outcomes. For example, count the number of times N that 𝐶ଵ
(௦)

(𝑡) < 𝐵(𝑡) for 𝑡 = 1…5 and 

compute 𝑁 𝑆ൗ . This is the estimated probability of staying within budget for the first five 
years. The Monte Carlo framework can also allow comparison of different management 
policies. For example, one could compare the effect of pre-allocating contingency to specific 
program years versus maintaining a contingency fund to be spent down over time as 
needed. 

In general, we would do this not only for development profiles, but also for 
procurement spending. In that case, policy makers might be interested in how much 
difference it would make to be able to manage both RDT&E and Procurement using a single 
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combined budget and/or a single program contingency fund, rather than having to manage 
separate budgets and contingency amounts due to “color of money” prescriptions. 

Example 

Consider the H-99 program. Figure 5 shows the mean of the final estimated profile 
distribution, shown with the original (blue) estimated profile for comparison. Note that not 
only is the average predicted outcome longer and more expensive in total, but it also ramps 
up more slowly than the estimate, so that the year-by-year errors change sign over time. 

 

Figure 5. H-99 Original Estimate and Mean Estimated Final Profile 

Figure 6 plots the initial planned profile (solid blue) against three different yearly 
quantile estimates. The dashed gray line shows the median predicted actual expense in 
each future year estimated from the Monte Carlo simulation. By “median profile,” we mean 
the year-by-year median spending levels medianఏభ

(𝐶ଵ(𝑡)) over the distribution of all profiles; 
the shape of the dashed gray line does not correspond to any one set of 𝜃ଵ values. The solid 
black lines in Figure 6 show the original cost estimate profile against upper and lower 10% 
probability bands. The interpretation of these bands is that, in a given year, there is a 10% 
chance that the H-99 program will receive less funding than the lower band, and a 10% 
chance that the H-99 program will receive more funding than the upper band. Note that 
these probabilities are conditional on looking forward at Milestone II/B—if you already know 
that a program fell below the 10% band in year 4, this plot provides no information about 
what to expect in years 5 and beyond. 
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Figure 6. Quantiles of Predicted Annual H-99 Costs 

Suppose you, as the Resource Manager for H-99, are interested in how the program 
will perform in its first FYDP, that is, the first five years of its profile. You wish to know how 
much additional contingency funding you should expect to require. Table 1 gives the 
expected overages for consecutive five-year periods. 

Table 1. Expected Budget Overages in Five-Year Bins 

 

The table shows that, on average, you would need $2.6 million more than was 
originally budgeted in years 1 through 5. In contrast, in years 6 through 10, you would need 
$336.6 million more than planned, on average. Note that even though this table goes out to 
30 years, it is unlikely that spending would continue for 30 years. These averages include 
spending of $0 for outcomes where the program ends prior to that time frame. 

It is important to remember that these single estimates of overage are summaries of 
distributions. Figure 7 shows a box-and-whisker plot that helps to visualize the distribution of 
the FYDP overages. In each five-year bin, there is a large point mass at zero overage and a 
highly-skewed distribution of nonzero overages. In all but the second and third bins, the 
median overage is zero. 
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Figure 7. Distribution of Total Cost Overages in Five-Year Bins 

Characterizing Mid-Life Programs 
We have shown how our model can characterize the affordability risk of a new 

program’s development budget. However, programs are only new once. For a program in 
the middle of its development, we would like to be able to take advantage of the program’s 
history to date to make an updated, more precise characterization of the remaining cost risk. 

A straightforward approach to this might be to add new predictive variables to the 
functional regression model, reflecting factors such as the age of the development program 
in years, the relative cost and schedule growth to date (compared to the original estimate), 
and the relative growth in the program’s estimated cost at completion. These could be 
combined with a revised best-fit functional curve reflecting the program’s actual history. In 
this approach, the same regression model would be used for all points in the development 
life cycle, with the original estimated profile being a special case with program age = 0 and 
cost growth factor = 1. 

A second possible approach would be to use different regression models for 
programs at different points in their life cycle. This approach would have the advantage that 
different underlying functional forms could be used for profiles (or for remaining profiles), 
depending on the actual outcomes thus far. However, each prediction would then be based 
on a smaller historical data set, with corresponding loss of statistical power. 

Using either of these approaches and the Monte Carlo framework, it would be 
possible to characterize the future year-by-year development cost risk of every program. 
Extending the technique to procurement cost risk is also (again) straightforward—the 
relevant predictive factors might be how many years the program has been in production, 
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how actual unit costs compare to predicted unit costs, any change in planned quantity, etc. 
As we discuss below, this would allow defense resource analysts to completely characterize 
the collective behavior of the entire acquisition portfolio, or any subset of it. 

Portfolios: More Than One Program at a Time 
We have shown how our model can characterize the affordability risk of a single 

program’s development budget. In practice, it would be even more useful to be able to 
characterize the affordability risk of a group of projects or programs being managed with a 
common contingency pool. If the outcomes of these programs are approximately 
independent, this is not much more complicated than the single-program case. 

If we have estimated the 𝐹௣௢௦௧௘௥௜௢௥(θଵ) and 𝐸(𝑡) distributions for each of a set of 
programs, we can apply the same kind of Monte Carlo analysis to the sum of their annual 
costs, compared against a collective portfolio budget and contingency fund. This could be 
done separately for RDT&E and Procurement, each with its own budget, or it could be done 
using a combined investment budget. This would enable true affordability analysis of 
portfolios as envisioned by the Better Buying Power initiatives,4 but with considerably more 
realism than current affordability analyses that are based on point-estimate cost profiles 
assuming fixed program content and quantities. 

One potential use of such a model would be to quantify the benefits of portfolio-level 
contingency funding versus program-level contingency funding. It is well known in the 
project management world that allocating reserve funds to specific cost areas before you 
actually know where the cost growth is going to occur leads to less efficient use of those 
reserve funds. However, it is often politically impossible to protect funds that are not part of 
the base budget for some cost element. In the DoD, apart from a highly limited ability to 
reprogram funds from one program element or line item to another, there is currently no 
ability to reserve funds for contingency use outside of a specific program’s budget. 

Potential Criticisms of the Method 
At this point, it would not be unreasonable to object that this modeling approach 

assumes that the DoD is incapable of learning to estimate costs more accurately or to 
contain cost growth more effectively. Worse yet, if Resource Managers were to actually use 
tools like these to manage portfolios of programs more efficiently, the resulting changes in 
program outcomes might invalidate the models. 

There are perhaps two points of optimism: 

 If use of these tools improves the efficiency of contingency funding of 
portfolios, and therefore reduces cost and schedule growth due to program 
stretches and funding instability, that will tend to cause users of the model to 
overestimate the required contingency. That isn’t a bad thing; the opportunity 
cost of allocating a little too much contingency is far less than the marginal 
cost of allocating too little contingency. As noted previously, even small 
funding shortfalls lead to additional cost growth due to schedule stretches, 
increased fixed costs and overhead, and inefficient use of resources. 

                                            
 

 

4 DoD, Better Buying Power, http://bbp.dau.mil/index.html.  
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 Over time, as the outcomes of recent programs are fed back into the 
regression models, the posterior distributions produced by the model will 
correctly adjust to the new reality. If the changes are substantial, one could 
include “year of program start” as a predictor variable to capture the trend of 
improvement. 

In the meantime, if the drivers of program outcomes are systemic—built into the 
incentive structure of defense acquisition—the models will continue to capture the likely 
results of those incentives. 

A different potential criticism of this work is that it offers no insights into why costs 
and schedules deviate from their original estimates or how this could be “fixed.” That is 
correct—we take cost and schedule changes as given. We do not distinguish between 
“good” and “bad” causes. If a program is cancelled after seven years, that is just another 
source of negative cost and schedule growth. If a system turns out to be so useful that the 
original buy is tripled, or successive block upgrades continue for 30 years, that is just 
another source of positive cost and schedule growth. The difference between those is very 
important to warfighters, but it is not relevant to the question of how many dollars we can 
expect to spend within these programs over the next N years. 

Finally, we note that this method explicitly models how much funding a program will 
receive in a given year—not how much it needs, or ought to receive, or would receive if 
there was more money to go around. As such, the model data incorporate the history of 
negotiations between the Services, the Office of the Secretary of Defense, and the 
Congress regarding how much to fund programs year by year, and when to cancel them. If 
there were to be a fundamental change in the dynamic of how those decisions are made, 
then that, too, might invalidate the link between historical outcomes and future program 
outcomes, at least until enough new data could be collected. 

Conclusion 

Quantifying Annual Resource Risks for a Program or Portfolio  

To a first approximation, acquisition programs never spend what they said they 
would when they began. In fact, the error bars around an initial cost estimate are much 
larger than is generally understood once program cancellations, restructurings, truncations, 
and block upgrades have been accounted for. Worse yet, all of this uncertainty arises in a 
context where programs must fit within annual budgets—it is not enough to only spend as 
much as you said you would; you must also spend it when you said you would, or problems 
ensue. 

We have developed a methodology to characterize the year-by-year budget risk 
associated with a major acquisition program. This methodology can be applied to both 
development costs and procurement costs and can be extended to understand the 
aggregate affordability risk of portfolios of programs. The method allows Resource 
Managers to estimate annual budget risk levels, required contingency amounts to achieve a 
specified probability of staying within a given budget, and a host of other relevant risk 
metrics for programs. It also allows policy makers to predict the impact on program 
affordability of proposed changes in how contingency funds are managed. 

Future Research 

This technique is currently in the prototype stage and is based on a relatively sparse 
set of historical program outcome data. There is still much work to be done on improved 
statistical techniques for the functional regressions, modeling of procurement profile risk, 
conditional modeling of procurement given development outcomes, and characterization of 
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the distribution of residuals around the best-fit functional curve. There is also a great deal to 
be learned about how managers could best use the information provided by this method to 
manage actual programs and portfolios, and what the implications might be for 
recommending changes to acquisition law and regulations. 
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