
SYM-AM-18-057

Acquisition Research:
Creating Synergy for Informed Change

May 9–10, 2018

Published April 30, 2018

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

- 406 -

Software Is Consuming DoD Total Ownership Cost

Brad R. Naegle, LTC, U.S. Army (Ret.)—is a Senior Lecturer within the Graduate School of
Business and Public Policy at the Naval Postgraduate School (NPS). He has served as the Academic
Associate for Program Management Curricula at NPS and has managed Distance Learning graduate
degree and certificate programs. He currently serves on the Navy’s software community of practice.
On active duty, he was the PM, 2½ Ton Extended Service Program and the Deputy PM for Light
Tactical Vehicles. He holds a master’s degree in Systems Acquisition Management from NPS and a
BS from Weber State University in economics. He is a graduate of the Command and General Staff
College and Combined Arms and Services Staff School. [bnaegle@nps.edu]

Abstract
Department of Defense (DoD) software-intensive systems and the software content

in other systems will continue to grow and may dominate total ownership costs (TOC) in the
future. These costs are exacerbated by the fact that, in addition to contracted development
costs, the bulk of software sustainment costs are also contracted. All of these factors
indicate that DoD system software will continue to be a very expensive portion of TOC.

The software engineering environment remains immature, with few, if any, industry-
wide standards for software development or sustainment. The Defense Acquisition System
(DAS) is significantly dependent on mature engineering.

System software size and complexity are key indicators of both development costs
and sustainment costs, so initial estimates are critical for predicting and controlling TOC.
Unfortunately, the software size estimating processes require a significant amount of
detailed understanding of the requirements and design that is typically not available when
operating the DAS without supplementary analyses, tools, and techniques. Available
parametric estimating tools require much of the same detailed information and are still too
inaccurate to be relied upon. Similarly, understanding the potential software complexity
requires in-depth understanding of the requirements and architectural design.

It is clear that the DoD must conduct much more thorough requirements analyses,
provide significantly more detailed operational context, and drive the software architectural
design well beyond the work breakdown structure (WBS) functional design typically
provided. To accomplish this, the DAS must be supplemented with tools, techniques, and
analyses that are currently not present.

System Software Development and Sustainment Environmental Challenges
While many of the TOC initiatives apply equally to hardware-oriented systems and

software-oriented systems, there are some significant differences in both the software
development and sustainment environments that need to be considered to gain better
software-TOC performance. Understanding these differences in environments will help
managers at all levels better manage the acquisition management system and provide the
warfighter with systems that are easier and cheaper to sustain.

The Software Engineering Environment (Naegle, 2015)

The software engineering environment is not mature, especially when compared to
hardware-centric engineering environments. Dr. Philippe Kruchten (2005) of the University
of British Columbia remarks, “We haven’t found the fundamental laws of software that would
play the role that the fundamental laws of physics play for other engineering disciplines” (p.
17). Software engineering is significantly unbounded because there are no physical laws
that help define environments. There is significant evidence for software engineering

- 407 -

immaturity, and it is nearly impossible to find widely accepted, industry-wide development
standards, protocols, architectures, or formats. There is no dominant programming
language, design and development process, standard architectures, or software engineering
tools, which means that reusable modules and components rapidly become obsolete. All of
these combine to make it nearly impossible to institute a widely accepted software reuse
repository. Without significant software architecture and code reuse in developing software-
intensive weapon systems, each development process essentially starts from scratch. This
fact is one of the main reasons that the Technology Readiness Assessment (TRA) and the
software Technology Readiness Levels (TRLs) are ineffective in predicting software
development risk (Naegle & Petross, 2007).

The software engineering state-of-the-practice currently is wholly dependent on the
requirements and operational environment cues that are passed to the software
development team. From the requirements, a software architecture is designed, and the
requirements “flow down” through that architecture to the individual modules and computer
software units that are to be constructed. The software build focuses on the requirements
that flowed down to that level and the integration required for functionality. The standards,
protocols, formats, languages, and tools used for the build will likely be unique to the
contractor developing the software, and will most certainly not be universally accepted or
recognized across the software industry.

The software architectural design is the basis for all of the current and future system
performance, including TOC performance, that the system will achieve, and the current
state-of-the-practice in software engineering has each project design a unique architecture.
Like hardware, the software design will significantly impact system attributes that are
important to the warfighter, including TOC-oriented elements of maintainability,
upgradability, interoperability, reliability, safety, and security. Most hardware-oriented
engineering environments address these critical areas through widely accepted industry
standards. For example, all DoD ground combat vehicles use a 24 volt, direct current,
negative ground electrical system. Any current or future subsystem requiring vehicle power
will automatically be designed to operate using those industry-wide electrical power
standards.

The software engineering environment is in stark contrast to even our most
advanced hardware-centric engineering environments. For example, in the automotive
engineering field, a design that provides for easy replacement of wear-out items such as
tires, filters, belts, and batteries obviously provides sustainability performance that is
absolutely required. This engineering maturity helps account for derived and implied
requirements not explicitly stated in the performance specification. Most performance
specifications do not explicitly address this capability because they would be automatically
considered by any competent provider within the mature automotive engineering
environment. A mature engineering environment includes design elements and industry-
wide standards, processes, materials, and techniques to which we have grown to expect. A
significant problem will exist if we expect the software engineering environment to perform
the same way as other, more mature engineering fields (Naegle & Petross, 2007).

As the example above illustrates, many system TOC elements are often
standardized across hardware-oriented engineering environments due to the maturity of the
sector’s engineering maturity. Without the engineering maturity, software sustainability
performance and expectations must be specified as part of the requirements generation
process. The capabilities-based user requirements and performance-based acquisition
requirements are specifically not designed to provide that level of specificity.

- 408 -

The Software Engineering Environment Challenge

The DoD’s acquisition management system is designed to garner innovation from
the commercial marketplace by leveraging the mature engineering environments present in
most disciplines. The DoD develops its requirements beginning with the capabilities-based
language provided by the users, then translating them into performance-based language for
the RFP. This requirements generation system is purposely designed to allow the maximum
contractor flexibility in satisfying the warfighter’s needs.

Within the immature software engineering environment, this requirements generation
process creates an opportunity for significant misinterpretation, and derived and implied
requirements that are not addressed, all resulting in requirements creep that fuels cost
increases and schedule slippage. Unlike mature hardware-oriented engineering
environments, where the widely accepted industry standards will be employed whether or
not they are specified, with software, you get what you specify and very little else (Naegle,
2015, p. 13).

Addressing the Challenge

There are several necessary steps to effectively address the immature software
engineering environment challenge:

1. The acquisition community must understand that the software
engineering environment is different, and not mature. This must be an
essential part of Knowledge Point 1 and of the Navy gate reviews 1
through 5, detailed earlier. The BBP memoranda help support this step by
its direction to “improve the professionalism of the total acquisition
workforce.”

2. The acquisition community must take active steps to compensate for the
software immature engineering environment.

a. Requirements. Fully develop all requirements so that derived and
implied requirements are specified. Sustainment performance
including maintainability, upgradability, interoperability, reliability,
and safety/security must be specified to improve TOC attributes.

b. Operational context. Provide context for the requirements beyond
what is provided in the typical OMS/MP. Software engineers need
to understand how the system will be used and maintained, how it
will be modified and interfaced in the future, which features are
critical and which are non-critical enhancers, and how the user
expects the system to operate under stressful conditions at the
limits of the operational envelope. All of this required information is
not available from any other source, and certainly not available in
the software engineering environment.

3. The acquisition community must drive and monitor the software
architectural design process to a much greater extent than what is
needed for hardware-centric system. This is an essential function to reach
Knowledge Point 2, and you literally could not achieve Knowledge Point 2
without the ability to drive the software architectural design. This would
also be an essential function to effectively pass through the Navy gate
reviews 4 through 6.

- 409 -

Estimating Software Size and Cost

Estimating the software size is essential to estimating development and sustainment
costs. Unfortunately, estimating size is difficult for any software-intensive effort, and nearly
impossible for unprecedented development efforts, including many DoD weapon systems.
The DoD often seeks cutting-edge technologies pursuing dominant capabilities, driving the
need for developing unprecedented software development.

The Estimating Software Size and Cost Challenge

Estimating software size, especially for a cutting-edge weapon system, is
challenging, at best. It is essential for understanding both software developmental and
sustainment costs, so is critical to understanding TOC.

Software Size Estimating is an important activity in software engineering that
is used to estimate the size of an application or component in order to be able
to implement other program management activities such as cost estimation or
schedule progress. The software engineer is responsible for generating
independent estimates of the software size throughout the life cycle. These
estimates are sometimes expressed as Software Lines of Code (SLOC),
Function Points (FP), or Equivalent Software Lines of Code (ESLOC). An
effective software estimate provides the information needed to design a
workable Software Development Plan (SDP). This estimate is also input to
the Cost Analysis Requirements Description (CARD) process. (“Software
Management,” n.d., p. 1)

The U.S. Air Force has published a guide for weapon system software development
management and describes the software estimating challenge as follows:

Weapon system acquisition programs routinely aim to develop and deliver
unprecedented warfighting capability. This unprecedented capability is often
realized by developing complex, SIS [software intensive system] or
integrating existing systems and subsystems with other equally complex
systems in new ways. Since acquisition programs are planned and estimated
when only top-level performance requirements are available, it is extremely
difficult to develop high confidence estimates and align expectations early in
the program life cycle. Such early estimates are relatively subjective, involve
numerous assumptions, and are almost always optimistic since the
engineering activities that result in a complete understanding of the work to
be accomplished have not been completed. This complete understanding
typically does not mature until well into the design phase, and when it does, it
usually confirms that initial estimates were optimistic, key assumptions (such
as significant reuse) cannot be achieved, more work than planned needs to
be done, and the amount of software that has to be developed and/or
integrated is growing. (SecAF, 2008, p. 7)

Both the AcqNotes website and the Air Force guidebook offer some guidance in
estimating the amount of software that needs to be developed, which is not the only factor in
the development cost, but certainly one of the most important.

The AcqNotes website recommends the following:

There are various ways available to the software engineer to develop a size
estimate. It is recommended that multiple techniques be used and the results combined to
produce the final size estimate. Methods that can be used of estimating size are:

- 410 -

 Comparable to existing programs: Compare the proposed functionality and
other similarities to existing programs. If the proposed program has 20%
more functionality than one program and 15% less than another, a fairly
accurate estimate can be achieved using the actual sizes from the existing
programs.

 Historical data: Within a program, historical data of previous developments
(estimates and actual) may exist. Since many of the parameters are usually
the same (developer team, environment, platform, etc.) this is a good method
to compare previous software builds and the proposed code. The more data
that is used will increase the accuracy.

 Contractor estimate: It is generally true the contractor has written software
similar previously. They often maintain a database of past efforts (estimates
and actual) and can produce a very accurate estimate. Since the contractor
and the Government have different objectives, their estimate should never be
relied on solely.

 Expert judgment (Delphi technique): Engineers that have domain
experience and knowledge can often accurately estimate the software size.
Without extensive experience however, expert judgment is seldom more
accurate than guessing.

 Level of effort or schedule: This method does not really estimate the size to
be developed, but rather defines the most that could be developed given
unchangeable level of effort or schedule constraints. The software engineer
uses productivity rates, integration time and software defect data from
recently delivered programs to define the maximum size that could be
developed. (“Software Management,” n.d., p. 1)

The Air Force guidebook also has recommended considerations for estimating
software size:

The software estimating process consists of a series of activities that include
estimating size of the software to be developed, modified, or reused; applying
estimating models and techniques; and analyzing, crosschecking, and
reporting the results. The following steps should be considered as part of any
software estimating process:

o Develop a notional architecture for the system, and identify program
requirements likely to be satisfied by software.

o Identify potential COTS, GOTS, and other sources of NDI software.

o Identify existing software that will be modified, including the size of the
overall software as well as the size of the expected modifications.

o Identify software that will be newly developed for this program to
provide functionality not available from existing software, or to
adapt/integrate all the necessary software components.

o Obtain software size information for all software elements, where size
is carefully defined and measured in one of the two standard software
size measures: non-comment source lines of code (SLOC) or function
points.

o Assess the uncertainty in the new and modified software sizes, based
on historical data (if available) and engineering judgment.

- 411 -

o Assess the uncertainty associated with the reusability of existing
software (COTS, GOTS, and NDI) in the context of the program (see
section 3.2.4). Estimate the trade studies, familiarization, and the
integration and testing efforts required to accommodate the
unmodified reused code.

o Account for software complexity and the proposed development
approach/processes, and assess any overlaps in software builds.

o Be realistic about expected software productivity and any assumption
of significantly higher than historical productivity due to applying the
best people, improved/more efficient processes, or new and improved
development tools. Past performance, where actual size, cost, and
same program or a very analogous program, should be heavily
weighted. It is rare to have the A-team people for a long-duration
embedded system development, and new processes and tools often
fall short of expectations.

o Apply growth factors to new/modified and reuse software, based on
past experience and the level of uncertainty.

o Account for all remaining uncertainties as estimate risks (see section
3.2.2).

o Ensure the estimate includes software support to systems
engineering, system and sub-system requirements definition,
configuration management, quality assurance, program management,
system integration, and system test as appropriate.

o Address the software development life-cycle from software
requirements analysis through software-related system integration
and testing. The chosen modeling/estimation approach may not
address the entire software effort since some commercial parametric
models focus on the period starting with the baseline set of software
requirements and ending with a fully integrated and tested
subsystem/functional software product ready for software/hardware
integration and test. Estimate and include any additional effort
required to develop, allocate, and analyze the subsystem and
software requirements; perform software to hardware (subsystem)
integration and test; and perform system integration and test.

o Crosscheck estimate results with other methods such as other
models, expert advice, rules of thumb, and historical productivity.

o Improve the estimate over time. (SecAF, 2008, pp. 27–28)

Both the AcqNotes and U.S. Air Force size estimating guidance suggest using
multiple methodologies to form a more informed estimate of the likely software size of a
developmental system. Nearly all of the guidance is dependent on an excellent
understanding of the system requirements and operational context.

One common method to estimate the software size on a new developmental
program is to use the analogy method, that is, to compare the new system to a similar
system that was recently developed, assuming that the software will be similar in overall
size. The following is the first bullet in the AcqNotes software estimating guidance detailed
previously in this section. It seems a logical approach, but has not proven particularly
accurate in recent history:

- 412 -

The premise is that the existing system’s architecture, complexity, and
functions are similar enough to fairly accurately predict the software
development resources required for the new system. Unfortunately, this
technique has proven to be ineffective as evidenced by the F-22 Raptor
development and the follow-on F-35 Joint Strike Fighter (JSF) effort. The two
high-performance, supersonic aircraft have overlapping missions, are
significantly similar, and are both developed by the same contractor. The F-
22 would seem to be a very good predictor of the F-35 software development
effort with the SwTRL [Software Technology Readiness Level] model, but it
clearly was not:

The lines of code necessary for the JSF’s capabilities have now
grown to over 24 million—9.5 million on board the aircraft. By comparison,
JSF has about 3 times more on-board software lines of code than the F-22A
Raptor and 6 times more than the F/A-18 E/F Super Hornet. This has added
work and increased the overall complexity of the effort. The software on-
board the aircraft and needed for operations has grown 37 percent since the
critical design review in 2005. … Almost half of the on-board software has yet
to complete integration and test—typically the most challenging phase of
software development. (GAO, 2012, p. 11)

The report goes on to state that typical software size growth in DoD systems
development ranges from 30% to 100%.

JSF design changes were originally supposed to taper off and be completed
by January 2014. Actual design changes through September 2011 failed to
taper off and continue at a significantly high rate. The projections in the GAO
(2012) report indicated that the revised design change projections would
continue and actually grow in number, until January 2019 (p. 16). Given this
level of redesign, the software and system complexity growth are likely to
continue. (Naegle, 2015)

The second bullet guidance from AcqNotes indicates that the use of historical data
may be useful in estimating a new system’s software size. This is particularly challenging for
the DoD as the new weapon systems often have capabilities or features that are
unprecedented (cutting-edge technologies). Certainly, there will be many subsystems in
which historical data may be a good predictor for software size in existing, identical, or
similar subsystems. However, the analogy method uses the historical data of a similar
system as a surrogate for actual historical data, but suffers the challenges detailed
previously.

The third AcqNotes bullet is “contractor estimates for software size.” The problem
with contractor estimates is that the size estimate is needed far before a development
contractor would be involved in the process. Of course, market research contractors could
be used to garner “contractor estimates,” but this would require two essential preconditions.
First, the market research contractor would need an extraordinary amount of requirements,
operational context, and design detail on the proposed system to be able to provide to the
marketplace to garner reasonably accurate software size estimates. Second, the market
research would be conducted with industry members who can only respond to the
information provided, so the estimates are only as accurate as the requirements-oriented
information provided. In addition, the surveyed companies may be unwilling to provide much
detail about their estimate as it could provide competitors with valuable competitive
information.

- 413 -

The expert judgement, or Delphi Method (AcqNotes bullet 4), depends on the level of
expertise of the engineers providing the estimate and their total understanding of the system
to be developed. The DoD may gain access to expert software engineers that are inside the
Government or through contracting for such expertise, but the level of understanding is
dependent on the requirements generations system and the operational context provided.

There are also numerous parametric models, like Barry Boehm’s Constructive Cost
Model (COCOMO), that may be used in an attempt to estimate effort and cost (USC, 2002).
COCOMO, like other estimating models, requires a software size estimate to be used. One
of the inputs to the model is the Annual Change Traffic (ACT), or the percentage of the
software that needs to be accessed for sustainability purposes. Obviously, the model would
need to know the software size to perform the percentage calculations.

Because of all of the variables that are needed for the models, they can be quite
misleading. For example, the University of Southern California (USC) used the models and
then compared actual results to those estimated. They found that COCOMO “demonstrates
an accuracy of within 20% of actuals 46% of the time for effort, and within 20% of actuals
48% of the time for a nonincremental development schedule” (USC, 2002). They found that,
with more initial data input, the model accuracy improved to 30% of actuals 75% of the time.
Boehm himself stated that “a software cost estimation model is doing well if it can estimate
software development costs within 20% of the actual costs, 70% of the time, and on its
home turf (that is, within the class of projects to which it is calibrated)” (SecAF, 2008, p. 21).

Obviously, using the results of parametric models alone would not result in the
accurate estimates required by the DoD. The BBP memoranda specify “would cost” and
“should cost” estimates that the models simply could not accurately produce. The software
development cost and schedule estimate would necessarily need to be sufficiently accurate
to avoid a Nunn-McCurdy violation in a software-intensive system development program.

Addressing the Challenge

Obviously, a fairly accurate software size estimate is necessary to predict both
developmental and sustainment costs on a new system, and it is clear that obtaining an
accurate size estimate is significantly challenging. The necessary precursor to software
estimation is described earlier in this paper as compensating for the immature software
engineering environment. Without more clearly defined requirements and operational
context, accurately estimating software size is nearly impossible.

As suggested in both the AcqNotes and U.S. Air Force software estimating
guidelines, a multi-faceted approach is needed. To be successful, each approach must be
completed with significant discipline and rigorous systems analysis that goes beyond the
current practices. If successful, the software size estimate will help predict both
developmental and sustainment software costs.

Software Sustainability Architecture

A system’s architecture and sustainability performance are strongly linked. Much of
the design priority has been delegated to the contractor as the requirements language is
capabilities-based on the user side and performance-based on the program management
side. The DoD is responsible for driving the architectural design through the performance-
based specification language, which requires a very in-depth understanding and
development of the requirements.

- 414 -

The Software Architecture Challenge

Driving the software architectural design towards improved system TOC
performance has numerous and complex challenges. The DoD requirements generation
process is designed around the premise that the commercial marketplace has solutions for
achieving the system performance specified by the DoD. This philosophy came from the
acquisition reforms of the ’90s, when systems were much more hardware-oriented, and the
associated engineering environments were mature. As the DoD has moved to software-
oriented systems, the philosophy did not change, even though the software engineering
environment is not mature. This has created a significant mismatch in what the DoD
communicates and what it expects to be delivered. Much of the mismatch can be linked to
the software engineering immaturity:

The lack of software engineering maturity impacts both requirements
development and design of the architecture. To compensate for the relative
immaturity of the software engineering environment, the DOD must conduct
significantly more in-depth requirements analysis and provide potential
software developers detailed performance specifications in all areas of
software performance and sustainability. This is a significantly different mind-
set than the hardware-dominated systems acquisition of the past.

In addition to the performance requirements, software architectures
must be similarly shaped to include system attributes expected by the
warfighter. Many DOD user representatives and acquisition professionals
have grown accustom to the engineering maturity levels offered by the
hardware-oriented systems that dominated past acquisitions. Providing the
system requirements in the same fashion may not drive the architecture for
needed attributes. As demonstrated by the F-35 JSF redesign problems,
changing software architectures during the development cycle will likely be
costly in terms of schedule and funding. (Naegle, 2014, p. 14)

The DoD also provides the top levels of the work breakdown structure (WBS) to
provide cues to the necessary design structures, but like the requirements generation
process, the communication through the WBS is often too vague or lacking in necessary
detail for the software engineers to understand important aspects of the design.

Contracts resulting from proposals that are based on underdeveloped, vague,
or missing requirements typically result in catastrophic cost and schedule
growth as the true demands of the software development effort are
discovered only after contract award. (Naegle, 2015, p. 8)

The design metrics are very important to ensure that the software architecture is
meeting the warfighter needs and expectations for the new system, including the TOC
performance. Too often, this process serves to identify missing requirements or clarify vague
requirements, causing significant requirements creep impacting the cost and schedule.

Addressing the Challenge

The requirements generation process, the Operational Mode Summary/Mission
Profile (OMS/MP), the WBS, and the resulting performance specification and Government-
specified functional architecture (top levels of the WBS) must drive the software engineer to
develop the detailed system architecture to the total needs of the warfighter. The software
engineering environment will not compensate for vague or missing requirements, and there
are virtually no industry-wide standards for sustainability.

- 415 -

Processes to both drive the software architecture and monitor the design activities
are unlike the contractor’s hardware architecture activities and significantly more critical.
Fifty percent or more of the software effort is expended in requirements and architectural
design, which is far greater than typical hardware-oriented systems. This means that half or
more of the software development resources have been used by the Preliminary Design
Review (PDR), which occurs quite early in the developmental process. Requirements creep
and software changes after the PDR are significantly disruptive to the design process and
are costly in both funding and schedule. In addition, changes occurring after the design is
complete are typically accommodated through the use of software patches. While these
patches may function adequately, they typically weaken the software structure and add
difficulty to the sustainment effort as they add lines of code, are not generally well
documented, and add complexity to problem analyses in the deployed system.

Software Sustainment Activities

The Post Deployment Software Support (PDSS) structure—maintainers, software
engineering tools, documentation, licenses, and so forth—must all be funded and in place at
the initial deployment as software maintenance will likely be required immediately due to the
complexity. Most of the DoD software sustainment effort is accomplished through
Contracted Logistics Support (CLS) strategies, so the support contracts are critical to
system deployment.

As with hardware-oriented systems, the software sustainability performance is
significantly defined by the system architecture. The software engineering immaturity means
that there are no industry-wide standards for software sustainability, so the DoD must drive
the desired sustainability performance into the software design.

The two major components that help determine a system’s software sustainment
cost are software size (SLOC count) and complexity. Many of the effort estimating tools
need the software size to estimate the number of software maintainers that need to be
dedicated to the sustainment effort. Complexity factors are then added into the calculations.

The Software Sustainment Challenge

The DoD system acquisition process is driven through the performance-based
specifications, program WBS functional architectural cues, and high-level OMS/MP and,
therefore, relies heavily on the contractor’s expertise backed by the industry’s mature
engineering environments. This process is not adequate for driving the software architecture
to a sustainable design as the immature software engineering environment has no industry-
wide standards for sustainability, so software sustainability performance must be totally
driven through the DoD front-end processes.

Unlike even the most sophisticated hardware system, the software maintainers must
have the same skill sets as the design engineers, and so the DoD is typically contracting for
software engineers to maintain the software. The software sustainment cost factors include
maintainers, software tools, license fees, and associated contract costs for most DoD
systems. While the non-personnel costs can be considerable, the cost of the maintainers is
usually the largest part of the sustainment cost because the DoD is typically contracting for
software engineers to maintain the software components.

The events driving the need for software maintenance are not always within the
control of the system’s PM. As the DoD continues to network platforms into Systems of
Systems (SoSs), each platform is subject to the network’s complexities and interoperability
requirements.

- 416 -

Addressing the Challenge

The solutions for addressing the software sustainability challenge are rooted in
solving the other issues presented in this section, as they all tend to build on one another.
The DoD needs to recognize that the software engineering environment is immature,
significantly different than the hardware-oriented engineering environments. That immaturity
renders much of the DoD front-end processes ineffective for software-intensive systems, so
active steps augmenting the standard acquisition processes must be taken to compensate.

TOC performance is being influenced by the ever increasing software functionality of
DoD systems, so improving TOC performance means effectively addressing software
development and sustainability costs. The software costs and performance are dependent
on how effective the acquisition front-end processes address them, and the standard DoD
acquisition management system appears to be insufficient for the software components.

The software TOC issues presented, and their underlying causes, call for
supplementary Systems Engineering Process (SEP) tools, techniques, and analyses to be
applied to the DoD acquisition process. The following sections describe recommended tools,
techniques, and analyses that would help address the issues presented. All of these are
designed to work within the Defense Acquisition System (DAS).

Driving the Software Requirements and Architectures for System
Supportability

While the tools and techniques described in this section were designed for the
software components, they would be just as effective for any non-software component
because they are Systems Engineering (SE) oriented. The SEP focus used does not
attempt to separate software from other components, so all system components would
benefit from using these tools and techniques.

Software Supportability Analysis

As with hardware system components, software supportability attributes must be
designed into the system architecture. Many hardware-oriented engineering fields are now
quite mature, so that a number of supportability attributes would be automatically included in
any competent design, even if they were not specified by the user community. For example,
the state of maturity for the automotive engineering field means that, in any automotive-
related program, there would be supportability designs allowing for routine maintenance of
system filters, lubricants, tires, brakes, batteries, and other normal wear-out items. There are
few, if any, corresponding supportability design attributes that would be automatically
included in even the best software construct. Virtually all of the software supportability
attributes required must be explicitly specified because they would not likely be included in
the design architecture without clearly stated requirements. With software, you get what you
specify and very little else. So how does one ensure that required software supportability
attributes are not overlooked?

Logistics Supportability Analysis (LSA), performed extremely early, is one of the keys
for developing the system supportability attributes needed and expected by the warfighter.
The F/A 18 Super Hornet aircraft was designed for higher reliability and improved ease of
maintenance compared to its predecessors (“F/A 18,” n.d.) because of warfighter needs for
generating combat power in the form of aircraft sorties available. The LSA performed on the
F/A 18 determined that a design fostering higher reliability and faster maintenance
turnaround time (the engines are attached to the airframe at 10 locations and can be
changed in about 20 minutes by a four-man team) would result in more aircraft being
available to the commander when needed. The concept for software LSA is no different, but

- 417 -

implementing sound supportability analyses on the software components has been spotty,
at best, and completely lacking, at worst.

To assist in effective software LSA, a focus on these elements is key: Maintainability,
Upgradeability, Interoperability/Interfaces, Reliability, and Safety & Security—MUIRS.

Maintainability

The amount of elapsed time between initial fielding and the first required software
maintenance action can probably be measured in hours, not days. The effectiveness and
efficiency of these required maintenance actions is dependent on several factors, but the
software architecture that was developed from the performance specifications provided is
critical. The DoD must influence the software architecture through the performance
specification process to minimize the cost and time required to perform essential
maintenance tasks.

Maintenance is one area in which software is fundamentally different from hardware.
Software is one of the very few components in which we know that the fielded product has
shortcomings, and we field it anyway. There are a number of reasons why this happens; for
instance, there is typically not enough time, funding, or resources to find and correct every
error, glitch, or bug, and not all of these are worth the effort of correcting. Knowing this,
there must be a sound plan and resources immediately available to quickly correct those
shortcomings that do surface during testing and especially those that arise during
warfighting operations. Even when the system software is operating well, changes and
upgrades in other interfaced hardware and software systems will drive some sort of software
maintenance action to the system software. In other words, there will be a continuous need
for software maintenance in the planned complex SoS architecture envisioned for net-
centric warfare.

Because the frequency of required software maintenance actions is going to be
much higher than in other systems, the cost to perform these tasks is likely to be higher as
well. One of the reasons for this is that software is not maintained by ”maintainers,” as are
most hardware systems, but is maintained by the same type of people that originally
developed it—software engineers. These engineers will be needed immediately upon
fielding, and a number will be needed throughout the lifespan of the system to perform
maintenance, add capabilities, and upgrade the system. There are several models available
to estimate the number of software engineers that will be needed for support; planning for
funding these resources must begin very early in the process. Because the DoD has a very
limited capability for supporting software internally, early software support is typically
provided by the original developer and is included in the RFP and proposal for inclusion into
the contract or as a follow-on Contractor Logistics Support (CLS) contract.

Upgradeability

A net-centric environment composed of numerous systems developed in an
evolutionary acquisition model will create an environment of almost continuous change as
each system upgrades its capabilities over time. System software will have to accommodate
the changes and will have to, in turn, be upgraded to leverage the consistently added
capabilities. The software architecture design will play a major role in how effective and
efficient capabilities upgrades are implemented, so communicating the known, anticipated,
and likely system upgrades will impact how the software developer designs the software for
known and unknown upgrades.

Trying to anticipate upgrade requirements for long-lived systems is extremely
challenging to materiel developers, but is well worth their effort. Unanticipated software

- 418 -

changes in the operational support phase cost 50 to 200 times the cost in early design, so
any software designed to accommodate an upgrade that is never realized costs virtually
nothing when compared to changing software later for a capability that could have been
anticipated. For example, the Army Tactical Missile System (ATACMS) Unitary was a
requirement to modify the missile from warhead air delivery to surface detonation—that is,
flying the warhead to the ground. The contract award for the modification was $119 million.
The warhead was not new technology, nor particularly challenging to integrate with the
missile body. The vast majority of this cost was to reengineer the software to guide the
missile to the surface. Had there been an upgrade requirement for this type of mission in the
original performance specification, this original cost (including potential upgrades, even if
there were 10 other upgrade requirements that were never applied) would have been a
fraction of this modification cost.

Interfaces/Interoperability

OA design focuses on the strict control of interfaces to ensure the maximum flexibility
in adding or changing system modules, whether they are hardware or software in nature.
This presupposes that the system modules are known—which seems logical, as most
hardware modules are well-defined and bounded by both physics and mature engineering
standards. In sharp contrast to hardware, software modularity is not bounded by physics,
and there are very few software industry standards for the modular architecture in software
components. This is yet another area in which the software developer needs much more
information about operational, maintenance, reliability, safety, and security performance
requirements, as well as current, planned, and potential system upgrades. These
requirements, once well-defined and clearly communicated, will drive the developer to
design a software modular architecture supporting OA performance goals. For example, if a
system uses a Global Positioning System (GPS) signal, it is likely that the GPS will change
over the life of the system. Knowing this, the software developer creates a corresponding
discrete software module that is much easier and less expensive to interface, change, and
upgrade as the GPS system does so.

With the system software modular architecture developed, the focus returns to the
interfaces between hardware and software modules, as well as to the external interfaces
needed for the desired interoperability of the net-centric force. Software is, of course, one of
the essential enablers for interoperability and provides a powerful tool for interfacing
systems, including systems that were not designed to work together. Software performing
the function of “middleware” allows legacy and other dissimilar systems to interoperate.
Obviously, this interoperation provides a significant advantage, but it comes with a cost in
the form of maintainability, resources, and system complexity. As software interfaces with
other components and actually performs the interface function, controlling it and ensuring
the interfaces provide the desired OA capability becomes a major software-management
and software-discipline challenge.

One method being employed by the DoD attempts to control the critical interfaces
through a set of parameters or protocols rather than through active management of the
network and network environment. This method falls short on several levels. It fails to
understand and control the effects of aggregating all of the systems in a net-centric scheme.
For instance, each individual system may meet all protocols for bandwidth, but when all
systems are engaged on the network, all bandwidth requirements are aggregated on the
network—overloading the total bandwidth available for all systems.

While these standards may present a step in the right direction, they are
limited in the extent to which they facilitate interoperability. At best, they
define a minimal infrastructure that consists of products and other standards

- 419 -

on which systems can be based. They do not define the common message
semantics, operational protocols, and system execution scenarios that are
needed for interoperation. They should not be considered system
architectures. For example, the C4ISR domain-specific information (within the
JTA) identifies acceptable standards for fiber channels and radio
transmission interfaces, but does not specify the common semantics of
messages to be communicated between C4ISR systems, nor does it define
an architecture for a specific C4ISR system or set of systems. (Morris et al.,
2004, p. 38)

Clearly, understanding and controlling the interfaces is critical for effective
interoperation at both the system and SoS levels. The individual PM must actively manage
all systems’ interfaces impacting OA performance, and a network PM must do the same for
the critical network interfaces. Due to this necessity of constant management, a parameters-
and-protocols approach to net-centric OA performance is unlikely to produce the capabilities
and functionality expected by the warfighter.

Understanding the software interfaces begins with the software architecture;
controlling the interfaces is a unique challenge encompassing the need to integrate legacy
and dissimilar systems and the lack of software interface standards within the existing
software engineering environment. As stated earlier, the architecture needs to be driven
through detailed performance specifications, which will help define the interfaces to be
controlled. An effective method for controlling the interfaces is to intensely manage a well-
defined Interface Control Document (ICD), which should be a Contract Data Requirements
List (CDRL) deliverable on any software-intensive or networked system.

Reliability

While the need for highly reliable weapon systems is obvious, the impact on total
system reliability of integrating complex software components is not so obvious. Typically,
as system complexity increases, maintaining system reliability becomes more of a
challenge. Add the complexity of effectively networking an SoS (all of which are individually
complex) to a critical warfighting capability that is constantly evolving over time, and
reliability becomes daunting.

Once again, the software developer must have an understanding of reliability
requirements before crafting the software architecture and developing the software
applications. Highly reliable systems often require redundant capability, and this holds true
for software components as well. In addition, software problems tend to propagate, resulting
in a degradation of system reliability over time. For example, a Malaysian Airlines Boeing
777 suffered several flight control problems resulting in the following: a near-stall situation,
contradicting instrument indications, false warnings, and difficulty controlling the aircraft in
both autopilot and manual flight modes. The problems were traced to software in an air data
inertial reference unit that was feeding erroneous data to the aircraft’s primary flight
computer (PFC), which is used in both autopilot and manual flight modes. The PFC
continued to try to correct for the erroneous data received, adjusting flight control surfaces in
all modes of flight, displaying indications that the aircraft was approaching stall speed and
overspeed limits simultaneously, and causing wind shear alarms to sound close to landing
(Dornheim, 2005, p. 46). It is critical for system reliability that the software developers
understand how outputs from software applications are used by interfaced systems so that
appropriate reliability safeguards can be engineered into the developed software.

Software that freezes or shuts down the system when an anomaly occurs is certainly
not reliable nor acceptable for critical weapon systems, yet these characteristics are

- 420 -

prevalent in commercially based software systems. Mission reliability is a function of the
aggregation of the system’s subcomponent reliability, so every software subcomponent is
contributing to or detracting from that reliability. The complexity of software makes
understanding all failure modes nearly impossible, but there are many techniques that
software developers can employ when designing the architecture and engineering the
applications to improve the software component reliability. Once requirements are clearly
communicated to the developers, the software can be engineered with redundancy or “safe
mode” capabilities to vastly improve mission reliability when anomalies occur. The key is
identifying the reliability requirements and making them clear to the software developers.

Safety & Security

Very few software applications have the required safety margins associated with
critical weapon systems used by warfighters in combat situations—where they are
depending on these margins for their survival. Typically, the software developers have only
a vague idea of what their software is doing and how critical that function is to the warfighter
employing the weapon system. Safety performance must be communicated to the software
developers from the beginning of development so they understand the link between
software functionality and systems safety. For example, suppose a smart munition senses
that it does not have control of a critical directional component, and it calculates that it
cannot hit the intended target. The next set of instructions the software provides to the
malfunctioning system may well be critical to the safety of friendly troops, so software
developers must have the necessary understanding of operational safety to decide how to
code the software for what will happen next.

Software safety is clearly linked with reliability since software that is more reliable is
inherently safer. It is critical that the software developer understands how the warfighter
expects the software to operate in abnormal situations, in degraded modes, and when
inputs are outside of expected values. Much commercially based software simply ceases to
function under these conditions or gives error messages that supersede whatever function
was being performed, none of which are acceptable in combat operations.

With software performing so many critical functions, there is little doubt that software
applications are a prime target for anyone opposing U.S. and Allied forces. Critical weapon
system and networking software must be resistant to hacking, spoofing, mimicking, and all
other manners of attack. There must be capabilities for isolating attacks and portions of
networks that have been compromised without losing the ability to continue operations in
critical combat situations. The software developer must know that all of these capabilities
are essential before he or she constructs software architectures and software programs, as
this knowledge will be very influential for the software design and application development.
The Software Engineering Institute’s Quality Attribute Workshop states, “As an example,
consider security. It is difficult, maybe even impossible, to add effective security to a system
as an afterthought. Components as well as communication mechanisms and paths must be
designed or selected early in the lifecycle to satisfy security requirements” (Barbacci et al.,
2003, p. 2).

Interoperability challenges are increased when the SoS has the type of security
requirements needed by the DoD. Legacy systems and existing security protocols will likely
need to be considered before other security architecture can be effectively designed. OA
capabilities will be hampered by the critical need for security; both must be carefully
balanced to optimize system performance and security. This balance of OA and security
must be managed by the DoD and not the software developer.

- 421 -

Physical security schemes and operating procedures will also have an impact on the
software architecture. For example, many communication security (COMSEC) devices need
only routine security until the keys, usually software programs, are applied; then, much more
stringent security procedures are implemented. Knowledge of this security feature would be
a key requirement of the developer; he or she must understand how and when the critical
software pieces are uploaded to the COMSEC device. The same holds true for weapon
systems that upload sensitive mission data just prior to launch.

Residual software on equipment or munitions that could fall into enemy hands
presents another type of security challenge that needs to be addressed during the
application development. For example, the ATACMS missile air-delivers some of its
warheads, leaving the missile body to freefall to the surface. It is very conceivable that the
body could be intact and, of course, unsecured. If critical mission software was still within
the body and found by enemy forces, valuable information might be gleaned from knowing
how the system finds its targets. The Government would certainly want the developer to
design the applications in a way that would make anything recovered useless to the enemy,
but this is a capability that is not intuitive to the software developers (Naegle, 2006, pp. 17–
25).

Effective Software Development Tools Supporting System TOC Analyses

Software Engineering Institute’s Quality Attribute Workshop

The Quality Attribute Workshop (QAW) is designed to help identify a complete (or as
complete as possible) inventory of system software requirements through analysis of system
quality attributes. One of the intents is to develop the derived and implied requirements from
the user-stated requirements, which is a necessary step when user-stated requirements are
provided in terms of capabilities needed as prescribed by the Joint Capabilities Integration
Development System (JCIDS) process. A system’s TOC, and those elements that contribute
to TOC, are system quality attributes. Although obviously important to the warfighter, the
associated operations and support, training/education, and facility costs are rarely
addressed in much detail and need to be derived from stated requirements or augmented
with implied requirements through the QAW process, or something similar.

The QAW helps provide a facilitating framework and process designed to more fully
develop the derived and implied requirements that are critical to clearly communicate to
potential contractors and software developers. Including a robust LSA process using the
MUIRS focus elements, described previously, within the QAW process will likely significantly
improve requirements analysis for those associated TOC elements and vastly improve the
accuracy of system TOC projections. While improving the system requirements
development, QAW is designed to work with another SEI process called the Architectural
Tradeoff Analysis MethodologySM (ATAMSM) to further improve the understanding of the
system for potential contractors and software developers.

SEI’s Architectural Tradeoff Analysis MethodologySM

The Software Engineering Institute’s Architectural Tradeoff Analysis MethodologySM
(ATAMSM) is an architectural analysis tool designed to evaluate design decisions based on
the quality attribute requirements of the system being developed. The methodology is a
process for determining whether the quality attributes, including TOC attributes, are
achievable by the architecture as it has been conceived before enormous resources have
been committed to that design. One of the main goals is to gain insight into how the quality
attributes trade off against each other (Kazman, Klein, & Clements, 2000, p. 1).

- 422 -

Within the Systems Engineering Process (SEP), the ATAMSM provides the critical
requirements loop process, tracing each requirement or quality attribute to corresponding
functions reflected in the software architectural design. Whether ATAMSM or another
analysis technique is used, this critical SEP process must be performed to ensure that
functional- or object-oriented designs meet all stated, derived, and implied warfighter
requirements. In complex systems development such as weapon systems, half or more than
half of the total software development effort will be expended in the architectural design
process. Therefore, the DoD PMs must ensure that the design is addressing requirements in
context and that the resulting architecture has a high probability of producing the
warfighters’ JCIDS stated, derived, or implied requirements.

The ATAMSM focuses on quality attribute requirements, so it is critical to have precise
characterizations for each. To characterize a quality attribute, the following questions must
be answered:

 What are the stimuli to which the architecture must respond?

 What is the measurable or observable manifestation of the quality attribute by
which its achievement is judged?

 What are the key architectural decisions that impact achieving the attribute
requirement? (Kazman et al., 2000, p. 5)

The ATAMSM scenarios are a key to providing the necessary information to answer
the first two questions, driving the software engineer to design the architecture to answer the
third. This is a critical point at which all of the MUIRS elements need to be considered and
appropriate scenarios developed.

The ATAMSM uses three types of scenarios: Use-case scenarios involve typical uses
of the system to help understand quality attributes in the operational context; growth
scenarios involve anticipated design requirements, including upgrades, added interfaces
supporting SoS development, and other maturity needs; and exploratory scenarios involve
extreme conditions and system stressors, including Failure Modes and Effects Criticality
Analysis (FMECA) scenarios (Kazman et al., 2000, pp. 13–15). As depicted in Figure 1, the
scenarios build on the basis provided in the JCIDS documents and requirements developed
through the QAW process. These processes lend themselves to development in an
Integrated Product Team (IPT) environment led by the user/combat developer and including
all of the system’s stakeholders. The IPT products will include a set of scenarios, prioritized
by the needs of the warfighter for system capability. The prioritization process provides a
basis for architecture trade-off analyses. When fully developed and prioritized, the scenarios
provide a more complete understanding of requirements and quality attributes in context
with the operation and support (including all of the MUIRS elements) of the system over its
life cycle. A more complete understanding of the system’s TOC elements should emerge
from this type of analysis.

- 423 -

Figure 1. QAW & ATAMSM Integration Into Software Life-Cycle Management

Just as the QAW process provides a methodology supporting RFP, source-selection
activities, and the Software Specification and System Requirements Reviews (SSR and
SRR), the ATAMSM provides a methodology supporting design analyses, test program
activities, and the System Functional and Preliminary Design Reviews (SFR and PDR). The
QAW and ATAMSM methodologies are probably not the only effective methods supporting
software development efforts, but they fit particularly well with the DoD’s goals, models, and
SEP emphasis. The user/combat developer (blue arrow block in Figure 4) is kept actively
involved throughout the development process—providing key insights the software
developer needs to successfully develop warfighter capabilities in a sustainable design for
long-term effectiveness and suitability. The system development activities are conducted
with superior understanding and clarity, reducing scrap and rework, and saving cost and
schedule. The technical reviews and audits (part of the DoD overarching SEP) are
supported with methodologies that enhance both the visibility of the necessary development
work as well as the progress toward completing it.

One of the main goals in analyzing the scenarios is to discover key architectural
decision points that pose risks for meeting quality requirements. Sensitivity points are
determined, such as real-time latency performance shortfalls in target tracking. Trade-off
points are also examined so that TOC impacts resulting from proposed trade-offs can be
analyzed. The Software Engineering Institute explained, “Trade-off points are the most
critical decisions that one can make in an architecture, which is why we focus on them so
carefully” (Kazman et al., 2000, p. 23).

The ATAMSM provides an analysis methodology that complements and enhances
many of the key DoD acquisition processes. It provides the requirements loop analysis in
the SEP, extends the user/stakeholder JCIDS involvement through scenario development,
provides informed architectural trade-off analyses, and vastly improves the software
developer’s understanding of the quality requirements in context. Architectural risk is
significantly reduced, and the software architecture presented at the Preliminary Design

- 424 -

Review (PDR) is likely to have a much higher probability of meeting the warfighters’ need for
capability, including TOC elements.

Together, the QAW and ATAMSM provide effective tools for addressing problem
areas common in many DoD software-intensive system developments: missing or vaguely
articulated performance requirements, significantly underestimated software development
efforts (resulting in severely underestimated schedules and budgets), and poor
communication between the software developer and the Government (both user and PM).
Both tools provide frameworks for more detailed requirements development and more
effective communication, but they are just tools—by themselves, they will not replace the
need for sound planning, management techniques, and effort. Both QAW and ATAMSM
provide methodologies for executing SEP Requirements Analysis and Requirements Loop
functions, effective architectural design transition from user to developer, and SEP design
loop and verification loop functions within the test-case development.

A significant product resulting from the ATAMSM is the development of test cases
correlating to the use case, growth, and exploratory scenarios developed and prioritized.
Figure 2 depicts the progression from user-stated capability requirements in the JCIDS
documents to the ATAMSM scenario development, and finally to the corresponding test
cases developed. The linkage to the user requirements defined in the JCIDS documents is
very strong as those documents drive the development of the three types of scenarios, and,
in turn, the scenarios drive the development of the use cases. The prioritization of the
scenarios from user-stated Key Performance Parameters (KPPs), Critical Operational
Issues (COIs), and FMECA analysis flows to the test cases, helping to create a system test
program designed to focus on effectiveness and suitability tests—culminating in the system
Operational Test and Evaluation (OT&E). FMECA is one of the focus areas that will have a
dynamic impact on TOC analysis because it will help identify software components that
need higher reliability and back-up capability. The MUIRS focus helps ensure that TOC
elements are addressed in design and test.

Figure 2. Progression From User-Stated Capability Requirements Through
Scenario Development to Test-Case Development

- 425 -

Capabilities-Based ATAMSM Scenario Development
The traceability from user-stated requirements through scenario development to test-

case development provides a powerful communication and assessment methodology. The
growth scenarios and resulting test cases are particularly suited for addressing and
evaluating TOC design requirements because the system evolves over its life cycle, which is
often overlooked in current system development efforts.

The software developer’s understanding of the eventual performance required in
order to be considered successful guides the design of the architecture and every step of
the software development, coding, and testing through to the Full Operational Capability
(FOC) delivery and OT&E. Coding and early testing of software units and configuration
items is much more purposeful due to this level of understanding. The MUIRS and FMECA
focus will help the design process for better TOC performance.

The resulting test program is very comprehensive as each prioritized scenario
requires testing or other verification methodologies to demonstrate how the software
performs in each related scenario and satisfies the quality attributes borne of the user
requirements. The testing supports the SEP design loop by verifying that the software
performs the functions allocated to it and, in aggregate, performs the verification loop
process by demonstrating that the final product produces the capability identified in the user
requirements through operational testing.

Both QAW and ATAMSM require the capturing of essential data supporting decision-
making and documenting decisions made. These databases would be best used in a
collaborative IT system, as described in the next section.

Conclusions and Recommendations: Major Thrusts to Control Software
Component TOC

Conclusions

DoD software-intensive systems and the software content in other systems will
continue to grow and may dominate the TOC costs in the future. These costs are
exacerbated by the fact that, in addition to contracted development costs, the bulk of the
software sustainment costs are also contracted. In addition, the skill sets needed for
software sustainment are the same as for software development, so the DoD is contracting
for software engineers to perform maintenance functions. All of these factors indicate that
DoD system software will continue to be a very expensive portion of TOC.

The software engineering environment remains immature, with few, if any, industry-
wide standards for software development or sustainment. The Defense Acquisition System
(DAS) is significantly dependent on mature engineering environments to compensate for the
gaps and interpretation requirements presented with the performance-based specifications,
vague Operational Mission Summary/Mission Profiles, and high-level work breakdown
structures (WBSs) that the DoD provides during the request for proposal (RFP) process.

The developer software engineers will consume 50% or more of their contract
resources analyzing requirements and developing the architectural design. This effort is
expended before the Preliminary Design Review (PDR) and requirement additions
(requirements creep), or changes beyond that point have disastrous effects on the software
design and can even cause a complete redesign at extreme cost in funding and schedule.

The system software size and complexity are key indicators of both the development
costs and the sustainment costs, so the initial estimates are critical for predicting and
controlling TOC. Unfortunately, the software size estimating processes require a significant

- 426 -

amount of detailed understanding of the requirements and design that is typically not
available when operating the DAS without supplementary analyses, tools, and techniques.
Available parametric estimating tools require much of the same detailed information and are
still too inaccurate to be relied upon. Similarly, understanding the potential software
complexity requires in-depth understanding of the requirements and architectural design.

It is clear that the DoD must conduct much more thorough requirements analyses,
provide significantly more detailed operational context, and drive the software architectural
design well beyond the WBS functional design typically provided. To accomplish this, the
DAS must be supplemented with tools, techniques, and analyses that are currently not
present.

Recommendations

Program managers for software-intensive systems must supplement the DAS
processes to

 compensate for the immature software engineering environment

 gain sufficient detailed information to perform reasonable software size and
complexity estimates critical to understanding and managing system TOC

 complete the inventory of derived and implied requirements, including the
often neglected sustainability requirements, before the RFP is issued

 provide more detailed system operational context, beyond what exists in most
OMS/MP documents

 obtain more realistic contractor proposals in terms of cost and schedule
associated with the software development and sustainment

 drive the software architecture for a more sustainable, less complex design

 monitor the software design process (metrics) to ensure the effort is
progressing towards an effective, supportable, and testable design supporting
the warfighter

The tools, techniques, and analyses presented in this research are designed to
accomplish the tasks outlined above, and are compatible with the Systems Engineering
Process (SEP) supporting the DAS. They also are designed to work together in a synergistic
method to improve the software-intensive system development and sustainment
performance influencing system TOC. They are certainly not the only tools, techniques, and
analyses available to improve the process, and others may be as effective, as long as they
can address the bulleted items above.

The maintainability, upgradability, interoperability, reliability, and safety/security
(MUIRS) analysis technique is designed to help identify derived and implied requirements
that need to be more fully articulated to ensure that the software engineer adequately
considers these critical system attributes. These were selected because they are often
missing from the user’s capability-based requirements documents and the resulting
performance specification, yet they are critical for the warfighter and are significant TOC
drivers.

The Quality Attribute Workshop (QAW) is a technique to help more fully detail all
requirements, including derived and implied. It is often used with the system WBS to more
fully develop the desired functional design, especially when combined with the MUIRS
analyses.

The Architectural Tradeoff Analysis MethodologySM (ATAMSM) is designed to be used
with the QAW and provides detailed operational context through the scenario development,

- 427 -

providing critical design cues to the software development engineers. The scenarios include
Use Cases (how the system will be used and maintained if fielded today), Growth Cases
(how the system will likely change over its life cycle, including future networking), and
Exploratory Scenarios (how the system is to operate under unusual or stressful conditions).
This research recommends including the MUIRS analyses in the ATAM, as well as Failure
Modes and Effects Criticality Analyses (FMECA) to identify critical functionality
requirements.

Combined, the tools, techniques, and analyses provide a much improved
understanding of the system and identify critical attributes that the software developers need
to know to design an effective and supportable design. These tools help compensate for the
immature software engineering environment, provide more detailed information needed to
perform size and complexity estimates, and provide detailed operational context needed for
proper software architectural design. They help produce superior RFPs and garner more
realistic contractor proposals. They provide processes for monitoring critical software design
activities and full test matrix crosswalks. All of these enhancements will help more
accurately estimate and manage software TOC attributes.

References
Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C., & Wood, W. (2003,

August). Quality attribute workshops (QAWs) (3rd ed.; CMU/SEI-2003-TR-016).
Pittsburgh, PA: Carnegie Mellon University, Software Engineering Institute.

Dornheim, M. A. (2005, September). A wild ride. Aviation Week & Space Technology, 163,
46.

F/A 18. (n.d.). In Wikipedia. Retrieved from
http://www.wikipedia.org/wiki/McDonnell_Douglas_F/A-18_Hornet

GAO. (2012, March 20). Joint Strike Fighter: Restructuring added resources and reduced
risk, but concurrency is still a major concern (GAO-12-525T). Retrieved from
http://www.gao.gov

Kazman, R., Klein, M., & Clements, P. (2000, August). ATAMSM: Method for architecture
evaluation (CMU/SEI-2000-TR-004). Pittsburgh, PA: Carnegie Mellon University,
Software Engineering Institute.

Kruchten, P. (2005, March/April). Software design in a postmodern era. IEEE Software,
18(2), 17.

Morris, E., Levine, L., Meyers, C., Place, P., & Plakosh, D. (2004, April). System of systems
interoperability (SOSI): Final report. Pittsburg, PA: Carnegie Mellon University, Software
Engineering Institute.

Naegle, B. R. (2006, September). Developing software requirements supporting open
architecture performance goals in critical DoD system-of-systems (NPS-AM-06-035).
Monterey, CA: Naval Postgraduate School.

Naegle, B. R. (2015, February 4). Gaining control and predictability of software-intensive
systems development and sustainment (NPS-AM-14-194). Monterey, CA: Naval
Postgraduate School.

Naegle, B. R., & Petross, D. (2007, October). Developing software requirements supporting
open architecture performance goals in critical DoD system-of-systems (NPS-AM-07-
104). Monterey, CA: Naval Postgraduate School.

Secretary of the Air Force (SecAF). (2008, August). Weapon system software management
guidebook. Washington, DC: Author.

- 428 -

Software management: Software size estimate. (n.d.). In AcqNotes. Retrieved March 9,
2017, from http://www.acqnotes.com/acqnote/careerfields/software-size-estimate

University of Southern California. (2002, September). COCOMO. Retrieved March 9, 2017,
from http://sunset.usc.edu/cse/pub/research/COCOMOII/cocomo_main.html

www.acquisitionresearch.net

