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Abstract 
Department of Defense (DoD) software-intensive systems and the software content 

in other systems will continue to grow and may dominate total ownership costs (TOC) in the 
future. These costs are exacerbated by the fact that, in addition to contracted development 
costs, the bulk of software sustainment costs are also contracted. All of these factors 
indicate that DoD system software will continue to be a very expensive portion of TOC. 

The software engineering environment remains immature, with few, if any, industry-
wide standards for software development or sustainment. The Defense Acquisition System 
(DAS) is significantly dependent on mature engineering. 

System software size and complexity are key indicators of both development costs 
and sustainment costs, so initial estimates are critical for predicting and controlling TOC. 
Unfortunately, the software size estimating processes require a significant amount of 
detailed understanding of the requirements and design that is typically not available when 
operating the DAS without supplementary analyses, tools, and techniques. Available 
parametric estimating tools require much of the same detailed information and are still too 
inaccurate to be relied upon. Similarly, understanding the potential software complexity 
requires in-depth understanding of the requirements and architectural design. 

It is clear that the DoD must conduct much more thorough requirements analyses, 
provide significantly more detailed operational context, and drive the software architectural 
design well beyond the work breakdown structure (WBS) functional design typically 
provided. To accomplish this, the DAS must be supplemented with tools, techniques, and 
analyses that are currently not present. 

System Software Development and Sustainment Environmental Challenges 
While many of the TOC initiatives apply equally to hardware-oriented systems and 

software-oriented systems, there are some significant differences in both the software 
development and sustainment environments that need to be considered to gain better 
software-TOC performance. Understanding these differences in environments will help 
managers at all levels better manage the acquisition management system and provide the 
warfighter with systems that are easier and cheaper to sustain. 

The Software Engineering Environment (Naegle, 2015) 

The software engineering environment is not mature, especially when compared to 
hardware-centric engineering environments. Dr. Philippe Kruchten (2005) of the University 
of British Columbia remarks, “We haven’t found the fundamental laws of software that would 
play the role that the fundamental laws of physics play for other engineering disciplines” (p. 
17). Software engineering is significantly unbounded because there are no physical laws 
that help define environments. There is significant evidence for software engineering 
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immaturity, and it is nearly impossible to find widely accepted, industry-wide development 
standards, protocols, architectures, or formats. There is no dominant programming 
language, design and development process, standard architectures, or software engineering 
tools, which means that reusable modules and components rapidly become obsolete. All of 
these combine to make it nearly impossible to institute a widely accepted software reuse 
repository. Without significant software architecture and code reuse in developing software-
intensive weapon systems, each development process essentially starts from scratch. This 
fact is one of the main reasons that the Technology Readiness Assessment (TRA) and the 
software Technology Readiness Levels (TRLs) are ineffective in predicting software 
development risk (Naegle & Petross, 2007). 

The software engineering state-of-the-practice currently is wholly dependent on the 
requirements and operational environment cues that are passed to the software 
development team. From the requirements, a software architecture is designed, and the 
requirements “flow down” through that architecture to the individual modules and computer 
software units that are to be constructed. The software build focuses on the requirements 
that flowed down to that level and the integration required for functionality. The standards, 
protocols, formats, languages, and tools used for the build will likely be unique to the 
contractor developing the software, and will most certainly not be universally accepted or 
recognized across the software industry. 

The software architectural design is the basis for all of the current and future system 
performance, including TOC performance, that the system will achieve, and the current 
state-of-the-practice in software engineering has each project design a unique architecture. 
Like hardware, the software design will significantly impact system attributes that are 
important to the warfighter, including TOC-oriented elements of maintainability, 
upgradability, interoperability, reliability, safety, and security. Most hardware-oriented 
engineering environments address these critical areas through widely accepted industry 
standards. For example, all DoD ground combat vehicles use a 24 volt, direct current, 
negative ground electrical system. Any current or future subsystem requiring vehicle power 
will automatically be designed to operate using those industry-wide electrical power 
standards. 

The software engineering environment is in stark contrast to even our most 
advanced hardware-centric engineering environments. For example, in the automotive 
engineering field, a design that provides for easy replacement of wear-out items such as 
tires, filters, belts, and batteries obviously provides sustainability performance that is 
absolutely required. This engineering maturity helps account for derived and implied 
requirements not explicitly stated in the performance specification. Most performance 
specifications do not explicitly address this capability because they would be automatically 
considered by any competent provider within the mature automotive engineering 
environment. A mature engineering environment includes design elements and industry-
wide standards, processes, materials, and techniques to which we have grown to expect. A 
significant problem will exist if we expect the software engineering environment to perform 
the same way as other, more mature engineering fields (Naegle & Petross, 2007). 

As the example above illustrates, many system TOC elements are often 
standardized across hardware-oriented engineering environments due to the maturity of the 
sector’s engineering maturity. Without the engineering maturity, software sustainability 
performance and expectations must be specified as part of the requirements generation 
process. The capabilities-based user requirements and performance-based acquisition 
requirements are specifically not designed to provide that level of specificity. 



- 408 - 

The Software Engineering Environment Challenge 

The DoD’s acquisition management system is designed to garner innovation from 
the commercial marketplace by leveraging the mature engineering environments present in 
most disciplines. The DoD develops its requirements beginning with the capabilities-based 
language provided by the users, then translating them into performance-based language for 
the RFP. This requirements generation system is purposely designed to allow the maximum 
contractor flexibility in satisfying the warfighter’s needs. 

Within the immature software engineering environment, this requirements generation 
process creates an opportunity for significant misinterpretation, and derived and implied 
requirements that are not addressed, all resulting in requirements creep that fuels cost 
increases and schedule slippage. Unlike mature hardware-oriented engineering 
environments, where the widely accepted industry standards will be employed whether or 
not they are specified, with software, you get what you specify and very little else (Naegle, 
2015, p. 13). 

Addressing the Challenge 

There are several necessary steps to effectively address the immature software 
engineering environment challenge: 

1. The acquisition community must understand that the software 
engineering environment is different, and not mature. This must be an 
essential part of Knowledge Point 1 and of the Navy gate reviews 1 
through 5, detailed earlier. The BBP memoranda help support this step by 
its direction to “improve the professionalism of the total acquisition 
workforce.” 

2. The acquisition community must take active steps to compensate for the 
software immature engineering environment. 

a. Requirements. Fully develop all requirements so that derived and 
implied requirements are specified. Sustainment performance 
including maintainability, upgradability, interoperability, reliability, 
and safety/security must be specified to improve TOC attributes.  

b. Operational context. Provide context for the requirements beyond 
what is provided in the typical OMS/MP. Software engineers need 
to understand how the system will be used and maintained, how it 
will be modified and interfaced in the future, which features are 
critical and which are non-critical enhancers, and how the user 
expects the system to operate under stressful conditions at the 
limits of the operational envelope. All of this required information is 
not available from any other source, and certainly not available in 
the software engineering environment. 

3. The acquisition community must drive and monitor the software 
architectural design process to a much greater extent than what is 
needed for hardware-centric system. This is an essential function to reach 
Knowledge Point 2, and you literally could not achieve Knowledge Point 2 
without the ability to drive the software architectural design. This would 
also be an essential function to effectively pass through the Navy gate 
reviews 4 through 6. 
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Estimating Software Size and Cost  

Estimating the software size is essential to estimating development and sustainment 
costs. Unfortunately, estimating size is difficult for any software-intensive effort, and nearly 
impossible for unprecedented development efforts, including many DoD weapon systems. 
The DoD often seeks cutting-edge technologies pursuing dominant capabilities, driving the 
need for developing unprecedented software development. 

The Estimating Software Size and Cost Challenge 

Estimating software size, especially for a cutting-edge weapon system, is 
challenging, at best. It is essential for understanding both software developmental and 
sustainment costs, so is critical to understanding TOC.  

Software Size Estimating is an important activity in software engineering that 
is used to estimate the size of an application or component in order to be able 
to implement other program management activities such as cost estimation or 
schedule progress. The software engineer is responsible for generating 
independent estimates of the software size throughout the life cycle. These 
estimates are sometimes expressed as Software Lines of Code (SLOC), 
Function Points (FP), or Equivalent Software Lines of Code (ESLOC). An 
effective software estimate provides the information needed to design a 
workable Software Development Plan (SDP). This estimate is also input to 
the Cost Analysis Requirements Description (CARD) process. (“Software 
Management,” n.d., p. 1) 

The U.S. Air Force has published a guide for weapon system software development 
management and describes the software estimating challenge as follows: 

Weapon system acquisition programs routinely aim to develop and deliver 
unprecedented warfighting capability. This unprecedented capability is often 
realized by developing complex, SIS [software intensive system] or 
integrating existing systems and subsystems with other equally complex 
systems in new ways. Since acquisition programs are planned and estimated 
when only top-level performance requirements are available, it is extremely 
difficult to develop high confidence estimates and align expectations early in 
the program life cycle. Such early estimates are relatively subjective, involve 
numerous assumptions, and are almost always optimistic since the 
engineering activities that result in a complete understanding of the work to 
be accomplished have not been completed. This complete understanding 
typically does not mature until well into the design phase, and when it does, it 
usually confirms that initial estimates were optimistic, key assumptions (such 
as significant reuse) cannot be achieved, more work than planned needs to 
be done, and the amount of software that has to be developed and/or 
integrated is growing. (SecAF, 2008, p. 7) 

Both the AcqNotes website and the Air Force guidebook offer some guidance in 
estimating the amount of software that needs to be developed, which is not the only factor in 
the development cost, but certainly one of the most important.  

The AcqNotes website recommends the following:  

There are various ways available to the software engineer to develop a size 
estimate. It is recommended that multiple techniques be used and the results combined to 
produce the final size estimate. Methods that can be used of estimating size are: 
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 Comparable to existing programs: Compare the proposed functionality and 
other similarities to existing programs. If the proposed program has 20% 
more functionality than one program and 15% less than another, a fairly 
accurate estimate can be achieved using the actual sizes from the existing 
programs. 

 Historical data: Within a program, historical data of previous developments 
(estimates and actual) may exist. Since many of the parameters are usually 
the same (developer team, environment, platform, etc.) this is a good method 
to compare previous software builds and the proposed code. The more data 
that is used will increase the accuracy. 

 Contractor estimate: It is generally true the contractor has written software 
similar previously. They often maintain a database of past efforts (estimates 
and actual) and can produce a very accurate estimate. Since the contractor 
and the Government have different objectives, their estimate should never be 
relied on solely. 

 Expert judgment (Delphi technique): Engineers that have domain 
experience and knowledge can often accurately estimate the software size. 
Without extensive experience however, expert judgment is seldom more 
accurate than guessing. 

 Level of effort or schedule: This method does not really estimate the size to 
be developed, but rather defines the most that could be developed given 
unchangeable level of effort or schedule constraints. The software engineer 
uses productivity rates, integration time and software defect data from 
recently delivered programs to define the maximum size that could be 
developed. (“Software Management,” n.d., p. 1) 

The Air Force guidebook also has recommended considerations for estimating 
software size: 

The software estimating process consists of a series of activities that include 
estimating size of the software to be developed, modified, or reused; applying 
estimating models and techniques; and analyzing, crosschecking, and 
reporting the results. The following steps should be considered as part of any 
software estimating process:  

o Develop a notional architecture for the system, and identify program 
requirements likely to be satisfied by software.  

o Identify potential COTS, GOTS, and other sources of NDI software.  

o Identify existing software that will be modified, including the size of the 
overall software as well as the size of the expected modifications.  

o Identify software that will be newly developed for this program to 
provide functionality not available from existing software, or to 
adapt/integrate all the necessary software components.  

o Obtain software size information for all software elements, where size 
is carefully defined and measured in one of the two standard software 
size measures: non-comment source lines of code (SLOC) or function 
points.  

o Assess the uncertainty in the new and modified software sizes, based 
on historical data (if available) and engineering judgment.  
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o Assess the uncertainty associated with the reusability of existing 
software (COTS, GOTS, and NDI) in the context of the program (see 
section 3.2.4). Estimate the trade studies, familiarization, and the 
integration and testing efforts required to accommodate the 
unmodified reused code.  

o Account for software complexity and the proposed development 
approach/processes, and assess any overlaps in software builds.  

o Be realistic about expected software productivity and any assumption 
of significantly higher than historical productivity due to applying the 
best people, improved/more efficient processes, or new and improved 
development tools. Past performance, where actual size, cost, and 
same program or a very analogous program, should be heavily 
weighted. It is rare to have the A-team people for a long-duration 
embedded system development, and new processes and tools often 
fall short of expectations.  

o Apply growth factors to new/modified and reuse software, based on 
past experience and the level of uncertainty.  

o Account for all remaining uncertainties as estimate risks (see section 
3.2.2).  

o Ensure the estimate includes software support to systems 
engineering, system and sub-system requirements definition, 
configuration management, quality assurance, program management, 
system integration, and system test as appropriate.  

o Address the software development life-cycle from software 
requirements analysis through software-related system integration 
and testing. The chosen modeling/estimation approach may not 
address the entire software effort since some commercial parametric 
models focus on the period starting with the baseline set of software 
requirements and ending with a fully integrated and tested 
subsystem/functional software product ready for software/hardware 
integration and test. Estimate and include any additional effort 
required to develop, allocate, and analyze the subsystem and 
software requirements; perform software to hardware (subsystem) 
integration and test; and perform system integration and test.  

o Crosscheck estimate results with other methods such as other 
models, expert advice, rules of thumb, and historical productivity.  

o Improve the estimate over time. (SecAF, 2008, pp. 27–28) 

Both the AcqNotes and U.S. Air Force size estimating guidance suggest using 
multiple methodologies to form a more informed estimate of the likely software size of a 
developmental system. Nearly all of the guidance is dependent on an excellent 
understanding of the system requirements and operational context. 

One common method to estimate the software size on a new developmental 
program is to use the analogy method, that is, to compare the new system to a similar 
system that was recently developed, assuming that the software will be similar in overall 
size. The following is the first bullet in the AcqNotes software estimating guidance detailed 
previously in this section. It seems a logical approach, but has not proven particularly 
accurate in recent history: 
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The premise is that the existing system’s architecture, complexity, and 
functions are similar enough to fairly accurately predict the software 
development resources required for the new system. Unfortunately, this 
technique has proven to be ineffective as evidenced by the F-22 Raptor 
development and the follow-on F-35 Joint Strike Fighter (JSF) effort. The two 
high-performance, supersonic aircraft have overlapping missions, are 
significantly similar, and are both developed by the same contractor. The F-
22 would seem to be a very good predictor of the F-35 software development 
effort with the SwTRL [Software Technology Readiness Level] model, but it 
clearly was not: 

The lines of code necessary for the JSF’s capabilities have now 
grown to over 24 million—9.5 million on board the aircraft. By comparison, 
JSF has about 3 times more on-board software lines of code than the F-22A 
Raptor and 6 times more than the F/A-18 E/F Super Hornet. This has added 
work and increased the overall complexity of the effort. The software on-
board the aircraft and needed for operations has grown 37 percent since the 
critical design review in 2005. … Almost half of the on-board software has yet 
to complete integration and test—typically the most challenging phase of 
software development. (GAO, 2012, p. 11) 

The report goes on to state that typical software size growth in DoD systems 
development ranges from 30% to 100%.  

JSF design changes were originally supposed to taper off and be completed 
by January 2014. Actual design changes through September 2011 failed to 
taper off and continue at a significantly high rate. The projections in the GAO 
(2012) report indicated that the revised design change projections would 
continue and actually grow in number, until January 2019 (p. 16). Given this 
level of redesign, the software and system complexity growth are likely to 
continue. (Naegle, 2015) 

The second bullet guidance from AcqNotes indicates that the use of historical data 
may be useful in estimating a new system’s software size. This is particularly challenging for 
the DoD as the new weapon systems often have capabilities or features that are 
unprecedented (cutting-edge technologies). Certainly, there will be many subsystems in 
which historical data may be a good predictor for software size in existing, identical, or 
similar subsystems. However, the analogy method uses the historical data of a similar 
system as a surrogate for actual historical data, but suffers the challenges detailed 
previously. 

The third AcqNotes bullet is “contractor estimates for software size.” The problem 
with contractor estimates is that the size estimate is needed far before a development 
contractor would be involved in the process. Of course, market research contractors could 
be used to garner “contractor estimates,” but this would require two essential preconditions. 
First, the market research contractor would need an extraordinary amount of requirements, 
operational context, and design detail on the proposed system to be able to provide to the 
marketplace to garner reasonably accurate software size estimates. Second, the market 
research would be conducted with industry members who can only respond to the 
information provided, so the estimates are only as accurate as the requirements-oriented 
information provided. In addition, the surveyed companies may be unwilling to provide much 
detail about their estimate as it could provide competitors with valuable competitive 
information. 
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The expert judgement, or Delphi Method (AcqNotes bullet 4), depends on the level of 
expertise of the engineers providing the estimate and their total understanding of the system 
to be developed. The DoD may gain access to expert software engineers that are inside the 
Government or through contracting for such expertise, but the level of understanding is 
dependent on the requirements generations system and the operational context provided. 

There are also numerous parametric models, like Barry Boehm’s Constructive Cost 
Model (COCOMO), that may be used in an attempt to estimate effort and cost (USC, 2002). 
COCOMO, like other estimating models, requires a software size estimate to be used. One 
of the inputs to the model is the Annual Change Traffic (ACT), or the percentage of the 
software that needs to be accessed for sustainability purposes. Obviously, the model would 
need to know the software size to perform the percentage calculations.  

Because of all of the variables that are needed for the models, they can be quite 
misleading. For example, the University of Southern California (USC) used the models and 
then compared actual results to those estimated. They found that COCOMO “demonstrates 
an accuracy of within 20% of actuals 46% of the time for effort, and within 20% of actuals 
48% of the time for a nonincremental development schedule” (USC, 2002). They found that, 
with more initial data input, the model accuracy improved to 30% of actuals 75% of the time. 
Boehm himself stated that “a software cost estimation model is doing well if it can estimate 
software development costs within 20% of the actual costs, 70% of the time, and on its 
home turf (that is, within the class of projects to which it is calibrated)” (SecAF, 2008, p. 21). 

Obviously, using the results of parametric models alone would not result in the 
accurate estimates required by the DoD. The BBP memoranda specify “would cost” and 
“should cost” estimates that the models simply could not accurately produce. The software 
development cost and schedule estimate would necessarily need to be sufficiently accurate 
to avoid a Nunn-McCurdy violation in a software-intensive system development program. 

Addressing the Challenge 

Obviously, a fairly accurate software size estimate is necessary to predict both 
developmental and sustainment costs on a new system, and it is clear that obtaining an 
accurate size estimate is significantly challenging. The necessary precursor to software 
estimation is described earlier in this paper as compensating for the immature software 
engineering environment. Without more clearly defined requirements and operational 
context, accurately estimating software size is nearly impossible. 

As suggested in both the AcqNotes and U.S. Air Force software estimating 
guidelines, a multi-faceted approach is needed. To be successful, each approach must be 
completed with significant discipline and rigorous systems analysis that goes beyond the 
current practices. If successful, the software size estimate will help predict both 
developmental and sustainment software costs. 

Software Sustainability Architecture  

A system’s architecture and sustainability performance are strongly linked. Much of 
the design priority has been delegated to the contractor as the requirements language is 
capabilities-based on the user side and performance-based on the program management 
side. The DoD is responsible for driving the architectural design through the performance-
based specification language, which requires a very in-depth understanding and 
development of the requirements. 
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The Software Architecture Challenge 

Driving the software architectural design towards improved system TOC 
performance has numerous and complex challenges. The DoD requirements generation 
process is designed around the premise that the commercial marketplace has solutions for 
achieving the system performance specified by the DoD. This philosophy came from the 
acquisition reforms of the ’90s, when systems were much more hardware-oriented, and the 
associated engineering environments were mature. As the DoD has moved to software-
oriented systems, the philosophy did not change, even though the software engineering 
environment is not mature. This has created a significant mismatch in what the DoD 
communicates and what it expects to be delivered. Much of the mismatch can be linked to 
the software engineering immaturity: 

The lack of software engineering maturity impacts both requirements 
development and design of the architecture. To compensate for the relative 
immaturity of the software engineering environment, the DOD must conduct 
significantly more in-depth requirements analysis and provide potential 
software developers detailed performance specifications in all areas of 
software performance and sustainability. This is a significantly different mind-
set than the hardware-dominated systems acquisition of the past. 

In addition to the performance requirements, software architectures 
must be similarly shaped to include system attributes expected by the 
warfighter. Many DOD user representatives and acquisition professionals 
have grown accustom to the engineering maturity levels offered by the 
hardware-oriented systems that dominated past acquisitions. Providing the 
system requirements in the same fashion may not drive the architecture for 
needed attributes. As demonstrated by the F-35 JSF redesign problems, 
changing software architectures during the development cycle will likely be 
costly in terms of schedule and funding. (Naegle, 2014, p. 14) 

The DoD also provides the top levels of the work breakdown structure (WBS) to 
provide cues to the necessary design structures, but like the requirements generation 
process, the communication through the WBS is often too vague or lacking in necessary 
detail for the software engineers to understand important aspects of the design. 

Contracts resulting from proposals that are based on underdeveloped, vague, 
or missing requirements typically result in catastrophic cost and schedule 
growth as the true demands of the software development effort are 
discovered only after contract award. (Naegle, 2015, p. 8) 

The design metrics are very important to ensure that the software architecture is 
meeting the warfighter needs and expectations for the new system, including the TOC 
performance. Too often, this process serves to identify missing requirements or clarify vague 
requirements, causing significant requirements creep impacting the cost and schedule. 

Addressing the Challenge 

The requirements generation process, the Operational Mode Summary/Mission 
Profile (OMS/MP), the WBS, and the resulting performance specification and Government-
specified functional architecture (top levels of the WBS) must drive the software engineer to 
develop the detailed system architecture to the total needs of the warfighter. The software 
engineering environment will not compensate for vague or missing requirements, and there 
are virtually no industry-wide standards for sustainability.  
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Processes to both drive the software architecture and monitor the design activities 
are unlike the contractor’s hardware architecture activities and significantly more critical. 
Fifty percent or more of the software effort is expended in requirements and architectural 
design, which is far greater than typical hardware-oriented systems. This means that half or 
more of the software development resources have been used by the Preliminary Design 
Review (PDR), which occurs quite early in the developmental process. Requirements creep 
and software changes after the PDR are significantly disruptive to the design process and 
are costly in both funding and schedule. In addition, changes occurring after the design is 
complete are typically accommodated through the use of software patches. While these 
patches may function adequately, they typically weaken the software structure and add 
difficulty to the sustainment effort as they add lines of code, are not generally well 
documented, and add complexity to problem analyses in the deployed system. 

Software Sustainment Activities 

The Post Deployment Software Support (PDSS) structure—maintainers, software 
engineering tools, documentation, licenses, and so forth—must all be funded and in place at 
the initial deployment as software maintenance will likely be required immediately due to the 
complexity. Most of the DoD software sustainment effort is accomplished through 
Contracted Logistics Support (CLS) strategies, so the support contracts are critical to 
system deployment. 

As with hardware-oriented systems, the software sustainability performance is 
significantly defined by the system architecture. The software engineering immaturity means 
that there are no industry-wide standards for software sustainability, so the DoD must drive 
the desired sustainability performance into the software design. 

The two major components that help determine a system’s software sustainment 
cost are software size (SLOC count) and complexity. Many of the effort estimating tools 
need the software size to estimate the number of software maintainers that need to be 
dedicated to the sustainment effort. Complexity factors are then added into the calculations. 

The Software Sustainment Challenge 

The DoD system acquisition process is driven through the performance-based 
specifications, program WBS functional architectural cues, and high-level OMS/MP and, 
therefore, relies heavily on the contractor’s expertise backed by the industry’s mature 
engineering environments. This process is not adequate for driving the software architecture 
to a sustainable design as the immature software engineering environment has no industry-
wide standards for sustainability, so software sustainability performance must be totally 
driven through the DoD front-end processes. 

Unlike even the most sophisticated hardware system, the software maintainers must 
have the same skill sets as the design engineers, and so the DoD is typically contracting for 
software engineers to maintain the software. The software sustainment cost factors include 
maintainers, software tools, license fees, and associated contract costs for most DoD 
systems. While the non-personnel costs can be considerable, the cost of the maintainers is 
usually the largest part of the sustainment cost because the DoD is typically contracting for 
software engineers to maintain the software components.  

The events driving the need for software maintenance are not always within the 
control of the system’s PM. As the DoD continues to network platforms into Systems of 
Systems (SoSs), each platform is subject to the network’s complexities and interoperability 
requirements.  
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Addressing the Challenge 

The solutions for addressing the software sustainability challenge are rooted in 
solving the other issues presented in this section, as they all tend to build on one another. 
The DoD needs to recognize that the software engineering environment is immature, 
significantly different than the hardware-oriented engineering environments. That immaturity 
renders much of the DoD front-end processes ineffective for software-intensive systems, so 
active steps augmenting the standard acquisition processes must be taken to compensate. 

TOC performance is being influenced by the ever increasing software functionality of 
DoD systems, so improving TOC performance means effectively addressing software 
development and sustainability costs. The software costs and performance are dependent 
on how effective the acquisition front-end processes address them, and the standard DoD 
acquisition management system appears to be insufficient for the software components. 

The software TOC issues presented, and their underlying causes, call for 
supplementary Systems Engineering Process (SEP) tools, techniques, and analyses to be 
applied to the DoD acquisition process. The following sections describe recommended tools, 
techniques, and analyses that would help address the issues presented. All of these are 
designed to work within the Defense Acquisition System (DAS). 

Driving the Software Requirements and Architectures for System 
Supportability 

While the tools and techniques described in this section were designed for the 
software components, they would be just as effective for any non-software component 
because they are Systems Engineering (SE) oriented. The SEP focus used does not 
attempt to separate software from other components, so all system components would 
benefit from using these tools and techniques. 

Software Supportability Analysis 

As with hardware system components, software supportability attributes must be 
designed into the system architecture. Many hardware-oriented engineering fields are now 
quite mature, so that a number of supportability attributes would be automatically included in 
any competent design, even if they were not specified by the user community. For example, 
the state of maturity for the automotive engineering field means that, in any automotive-
related program, there would be supportability designs allowing for routine maintenance of 
system filters, lubricants, tires, brakes, batteries, and other normal wear-out items. There are 
few, if any, corresponding supportability design attributes that would be automatically 
included in even the best software construct. Virtually all of the software supportability 
attributes required must be explicitly specified because they would not likely be included in 
the design architecture without clearly stated requirements. With software, you get what you 
specify and very little else. So how does one ensure that required software supportability 
attributes are not overlooked? 

Logistics Supportability Analysis (LSA), performed extremely early, is one of the keys 
for developing the system supportability attributes needed and expected by the warfighter. 
The F/A 18 Super Hornet aircraft was designed for higher reliability and improved ease of 
maintenance compared to its predecessors (“F/A 18,” n.d.) because of warfighter needs for 
generating combat power in the form of aircraft sorties available. The LSA performed on the 
F/A 18 determined that a design fostering higher reliability and faster maintenance 
turnaround time (the engines are attached to the airframe at 10 locations and can be 
changed in about 20 minutes by a four-man team) would result in more aircraft being 
available to the commander when needed. The concept for software LSA is no different, but 
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implementing sound supportability analyses on the software components has been spotty, 
at best, and completely lacking, at worst. 

To assist in effective software LSA, a focus on these elements is key: Maintainability, 
Upgradeability, Interoperability/Interfaces, Reliability, and Safety & Security—MUIRS.  

Maintainability 

The amount of elapsed time between initial fielding and the first required software 
maintenance action can probably be measured in hours, not days. The effectiveness and 
efficiency of these required maintenance actions is dependent on several factors, but the 
software architecture that was developed from the performance specifications provided is 
critical. The DoD must influence the software architecture through the performance 
specification process to minimize the cost and time required to perform essential 
maintenance tasks. 

Maintenance is one area in which software is fundamentally different from hardware. 
Software is one of the very few components in which we know that the fielded product has 
shortcomings, and we field it anyway. There are a number of reasons why this happens; for 
instance, there is typically not enough time, funding, or resources to find and correct every 
error, glitch, or bug, and not all of these are worth the effort of correcting. Knowing this, 
there must be a sound plan and resources immediately available to quickly correct those 
shortcomings that do surface during testing and especially those that arise during 
warfighting operations. Even when the system software is operating well, changes and 
upgrades in other interfaced hardware and software systems will drive some sort of software 
maintenance action to the system software. In other words, there will be a continuous need 
for software maintenance in the planned complex SoS architecture envisioned for net-
centric warfare.  

Because the frequency of required software maintenance actions is going to be 
much higher than in other systems, the cost to perform these tasks is likely to be higher as 
well. One of the reasons for this is that software is not maintained by ”maintainers,” as are 
most hardware systems, but is maintained by the same type of people that originally 
developed it—software engineers. These engineers will be needed immediately upon 
fielding, and a number will be needed throughout the lifespan of the system to perform 
maintenance, add capabilities, and upgrade the system. There are several models available 
to estimate the number of software engineers that will be needed for support; planning for 
funding these resources must begin very early in the process. Because the DoD has a very 
limited capability for supporting software internally, early software support is typically 
provided by the original developer and is included in the RFP and proposal for inclusion into 
the contract or as a follow-on Contractor Logistics Support (CLS) contract. 

Upgradeability  

A net-centric environment composed of numerous systems developed in an 
evolutionary acquisition model will create an environment of almost continuous change as 
each system upgrades its capabilities over time. System software will have to accommodate 
the changes and will have to, in turn, be upgraded to leverage the consistently added 
capabilities. The software architecture design will play a major role in how effective and 
efficient capabilities upgrades are implemented, so communicating the known, anticipated, 
and likely system upgrades will impact how the software developer designs the software for 
known and unknown upgrades. 

Trying to anticipate upgrade requirements for long-lived systems is extremely 
challenging to materiel developers, but is well worth their effort. Unanticipated software 
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changes in the operational support phase cost 50 to 200 times the cost in early design, so 
any software designed to accommodate an upgrade that is never realized costs virtually 
nothing when compared to changing software later for a capability that could have been 
anticipated. For example, the Army Tactical Missile System (ATACMS) Unitary was a 
requirement to modify the missile from warhead air delivery to surface detonation—that is, 
flying the warhead to the ground. The contract award for the modification was $119 million. 
The warhead was not new technology, nor particularly challenging to integrate with the 
missile body. The vast majority of this cost was to reengineer the software to guide the 
missile to the surface. Had there been an upgrade requirement for this type of mission in the 
original performance specification, this original cost (including potential upgrades, even if 
there were 10 other upgrade requirements that were never applied) would have been a 
fraction of this modification cost. 

Interfaces/Interoperability 

OA design focuses on the strict control of interfaces to ensure the maximum flexibility 
in adding or changing system modules, whether they are hardware or software in nature. 
This presupposes that the system modules are known—which seems logical, as most 
hardware modules are well-defined and bounded by both physics and mature engineering 
standards. In sharp contrast to hardware, software modularity is not bounded by physics, 
and there are very few software industry standards for the modular architecture in software 
components. This is yet another area in which the software developer needs much more 
information about operational, maintenance, reliability, safety, and security performance 
requirements, as well as current, planned, and potential system upgrades. These 
requirements, once well-defined and clearly communicated, will drive the developer to 
design a software modular architecture supporting OA performance goals. For example, if a 
system uses a Global Positioning System (GPS) signal, it is likely that the GPS will change 
over the life of the system. Knowing this, the software developer creates a corresponding 
discrete software module that is much easier and less expensive to interface, change, and 
upgrade as the GPS system does so. 

With the system software modular architecture developed, the focus returns to the 
interfaces between hardware and software modules, as well as to the external interfaces 
needed for the desired interoperability of the net-centric force. Software is, of course, one of 
the essential enablers for interoperability and provides a powerful tool for interfacing 
systems, including systems that were not designed to work together. Software performing 
the function of “middleware” allows legacy and other dissimilar systems to interoperate. 
Obviously, this interoperation provides a significant advantage, but it comes with a cost in 
the form of maintainability, resources, and system complexity. As software interfaces with 
other components and actually performs the interface function, controlling it and ensuring 
the interfaces provide the desired OA capability becomes a major software-management 
and software-discipline challenge.  

One method being employed by the DoD attempts to control the critical interfaces 
through a set of parameters or protocols rather than through active management of the 
network and network environment. This method falls short on several levels. It fails to 
understand and control the effects of aggregating all of the systems in a net-centric scheme. 
For instance, each individual system may meet all protocols for bandwidth, but when all 
systems are engaged on the network, all bandwidth requirements are aggregated on the 
network—overloading the total bandwidth available for all systems.  

While these standards may present a step in the right direction, they are 
limited in the extent to which they facilitate interoperability. At best, they 
define a minimal infrastructure that consists of products and other standards 
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on which systems can be based. They do not define the common message 
semantics, operational protocols, and system execution scenarios that are 
needed for interoperation. They should not be considered system 
architectures. For example, the C4ISR domain-specific information (within the 
JTA) identifies acceptable standards for fiber channels and radio 
transmission interfaces, but does not specify the common semantics of 
messages to be communicated between C4ISR systems, nor does it define 
an architecture for a specific C4ISR system or set of systems. (Morris et al., 
2004, p. 38) 

Clearly, understanding and controlling the interfaces is critical for effective 
interoperation at both the system and SoS levels. The individual PM must actively manage 
all systems’ interfaces impacting OA performance, and a network PM must do the same for 
the critical network interfaces. Due to this necessity of constant management, a parameters-
and-protocols approach to net-centric OA performance is unlikely to produce the capabilities 
and functionality expected by the warfighter. 

Understanding the software interfaces begins with the software architecture; 
controlling the interfaces is a unique challenge encompassing the need to integrate legacy 
and dissimilar systems and the lack of software interface standards within the existing 
software engineering environment. As stated earlier, the architecture needs to be driven 
through detailed performance specifications, which will help define the interfaces to be 
controlled. An effective method for controlling the interfaces is to intensely manage a well-
defined Interface Control Document (ICD), which should be a Contract Data Requirements 
List (CDRL) deliverable on any software-intensive or networked system.  

Reliability 

While the need for highly reliable weapon systems is obvious, the impact on total 
system reliability of integrating complex software components is not so obvious. Typically, 
as system complexity increases, maintaining system reliability becomes more of a 
challenge. Add the complexity of effectively networking an SoS (all of which are individually 
complex) to a critical warfighting capability that is constantly evolving over time, and 
reliability becomes daunting. 

Once again, the software developer must have an understanding of reliability 
requirements before crafting the software architecture and developing the software 
applications. Highly reliable systems often require redundant capability, and this holds true 
for software components as well. In addition, software problems tend to propagate, resulting 
in a degradation of system reliability over time. For example, a Malaysian Airlines Boeing 
777 suffered several flight control problems resulting in the following: a near-stall situation, 
contradicting instrument indications, false warnings, and difficulty controlling the aircraft in 
both autopilot and manual flight modes. The problems were traced to software in an air data 
inertial reference unit that was feeding erroneous data to the aircraft’s primary flight 
computer (PFC), which is used in both autopilot and manual flight modes. The PFC 
continued to try to correct for the erroneous data received, adjusting flight control surfaces in 
all modes of flight, displaying indications that the aircraft was approaching stall speed and 
overspeed limits simultaneously, and causing wind shear alarms to sound close to landing 
(Dornheim, 2005, p. 46). It is critical for system reliability that the software developers 
understand how outputs from software applications are used by interfaced systems so that 
appropriate reliability safeguards can be engineered into the developed software.  

Software that freezes or shuts down the system when an anomaly occurs is certainly 
not reliable nor acceptable for critical weapon systems, yet these characteristics are 
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prevalent in commercially based software systems. Mission reliability is a function of the 
aggregation of the system’s subcomponent reliability, so every software subcomponent is 
contributing to or detracting from that reliability. The complexity of software makes 
understanding all failure modes nearly impossible, but there are many techniques that 
software developers can employ when designing the architecture and engineering the 
applications to improve the software component reliability. Once requirements are clearly 
communicated to the developers, the software can be engineered with redundancy or “safe 
mode” capabilities to vastly improve mission reliability when anomalies occur. The key is 
identifying the reliability requirements and making them clear to the software developers. 

Safety & Security 

Very few software applications have the required safety margins associated with 
critical weapon systems used by warfighters in combat situations—where they are 
depending on these margins for their survival. Typically, the software developers have only 
a vague idea of what their software is doing and how critical that function is to the warfighter 
employing the weapon system. Safety performance must be communicated to the software 
developers from the beginning of development so they understand the link between 
software functionality and systems safety. For example, suppose a smart munition senses 
that it does not have control of a critical directional component, and it calculates that it 
cannot hit the intended target. The next set of instructions the software provides to the 
malfunctioning system may well be critical to the safety of friendly troops, so software 
developers must have the necessary understanding of operational safety to decide how to 
code the software for what will happen next.  

Software safety is clearly linked with reliability since software that is more reliable is 
inherently safer. It is critical that the software developer understands how the warfighter 
expects the software to operate in abnormal situations, in degraded modes, and when 
inputs are outside of expected values. Much commercially based software simply ceases to 
function under these conditions or gives error messages that supersede whatever function 
was being performed, none of which are acceptable in combat operations. 

With software performing so many critical functions, there is little doubt that software 
applications are a prime target for anyone opposing U.S. and Allied forces. Critical weapon 
system and networking software must be resistant to hacking, spoofing, mimicking, and all 
other manners of attack. There must be capabilities for isolating attacks and portions of 
networks that have been compromised without losing the ability to continue operations in 
critical combat situations. The software developer must know that all of these capabilities 
are essential before he or she constructs software architectures and software programs, as 
this knowledge will be very influential for the software design and application development. 
The Software Engineering Institute’s Quality Attribute Workshop states, “As an example, 
consider security. It is difficult, maybe even impossible, to add effective security to a system 
as an afterthought. Components as well as communication mechanisms and paths must be 
designed or selected early in the lifecycle to satisfy security requirements” (Barbacci et al., 
2003, p. 2). 

Interoperability challenges are increased when the SoS has the type of security 
requirements needed by the DoD. Legacy systems and existing security protocols will likely 
need to be considered before other security architecture can be effectively designed. OA 
capabilities will be hampered by the critical need for security; both must be carefully 
balanced to optimize system performance and security. This balance of OA and security 
must be managed by the DoD and not the software developer. 
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Physical security schemes and operating procedures will also have an impact on the 
software architecture. For example, many communication security (COMSEC) devices need 
only routine security until the keys, usually software programs, are applied; then, much more 
stringent security procedures are implemented. Knowledge of this security feature would be 
a key requirement of the developer; he or she must understand how and when the critical 
software pieces are uploaded to the COMSEC device. The same holds true for weapon 
systems that upload sensitive mission data just prior to launch. 

Residual software on equipment or munitions that could fall into enemy hands 
presents another type of security challenge that needs to be addressed during the 
application development. For example, the ATACMS missile air-delivers some of its 
warheads, leaving the missile body to freefall to the surface. It is very conceivable that the 
body could be intact and, of course, unsecured. If critical mission software was still within 
the body and found by enemy forces, valuable information might be gleaned from knowing 
how the system finds its targets. The Government would certainly want the developer to 
design the applications in a way that would make anything recovered useless to the enemy, 
but this is a capability that is not intuitive to the software developers (Naegle, 2006, pp. 17–
25).  

Effective Software Development Tools Supporting System TOC Analyses 

Software Engineering Institute’s Quality Attribute Workshop  

The Quality Attribute Workshop (QAW) is designed to help identify a complete (or as 
complete as possible) inventory of system software requirements through analysis of system 
quality attributes. One of the intents is to develop the derived and implied requirements from 
the user-stated requirements, which is a necessary step when user-stated requirements are 
provided in terms of capabilities needed as prescribed by the Joint Capabilities Integration 
Development System (JCIDS) process. A system’s TOC, and those elements that contribute 
to TOC, are system quality attributes. Although obviously important to the warfighter, the 
associated operations and support, training/education, and facility costs are rarely 
addressed in much detail and need to be derived from stated requirements or augmented 
with implied requirements through the QAW process, or something similar.  

The QAW helps provide a facilitating framework and process designed to more fully 
develop the derived and implied requirements that are critical to clearly communicate to 
potential contractors and software developers. Including a robust LSA process using the 
MUIRS focus elements, described previously, within the QAW process will likely significantly 
improve requirements analysis for those associated TOC elements and vastly improve the 
accuracy of system TOC projections. While improving the system requirements 
development, QAW is designed to work with another SEI process called the Architectural 
Tradeoff Analysis MethodologySM (ATAMSM) to further improve the understanding of the 
system for potential contractors and software developers. 

SEI’s Architectural Tradeoff Analysis MethodologySM  

The Software Engineering Institute’s Architectural Tradeoff Analysis MethodologySM 
(ATAMSM) is an architectural analysis tool designed to evaluate design decisions based on 
the quality attribute requirements of the system being developed. The methodology is a 
process for determining whether the quality attributes, including TOC attributes, are 
achievable by the architecture as it has been conceived before enormous resources have 
been committed to that design. One of the main goals is to gain insight into how the quality 
attributes trade off against each other (Kazman, Klein, & Clements, 2000, p. 1).  
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Within the Systems Engineering Process (SEP), the ATAMSM provides the critical 
requirements loop process, tracing each requirement or quality attribute to corresponding 
functions reflected in the software architectural design. Whether ATAMSM or another 
analysis technique is used, this critical SEP process must be performed to ensure that 
functional- or object-oriented designs meet all stated, derived, and implied warfighter 
requirements. In complex systems development such as weapon systems, half or more than 
half of the total software development effort will be expended in the architectural design 
process. Therefore, the DoD PMs must ensure that the design is addressing requirements in 
context and that the resulting architecture has a high probability of producing the 
warfighters’ JCIDS stated, derived, or implied requirements. 

The ATAMSM focuses on quality attribute requirements, so it is critical to have precise 
characterizations for each. To characterize a quality attribute, the following questions must 
be answered: 

 What are the stimuli to which the architecture must respond? 

 What is the measurable or observable manifestation of the quality attribute by 
which its achievement is judged? 

 What are the key architectural decisions that impact achieving the attribute 
requirement? (Kazman et al., 2000, p. 5) 

The ATAMSM scenarios are a key to providing the necessary information to answer 
the first two questions, driving the software engineer to design the architecture to answer the 
third. This is a critical point at which all of the MUIRS elements need to be considered and 
appropriate scenarios developed. 

The ATAMSM uses three types of scenarios: Use-case scenarios involve typical uses 
of the system to help understand quality attributes in the operational context; growth 
scenarios involve anticipated design requirements, including upgrades, added interfaces 
supporting SoS development, and other maturity needs; and exploratory scenarios involve 
extreme conditions and system stressors, including Failure Modes and Effects Criticality 
Analysis (FMECA) scenarios (Kazman et al., 2000, pp. 13–15). As depicted in Figure 1, the 
scenarios build on the basis provided in the JCIDS documents and requirements developed 
through the QAW process. These processes lend themselves to development in an 
Integrated Product Team (IPT) environment led by the user/combat developer and including 
all of the system’s stakeholders. The IPT products will include a set of scenarios, prioritized 
by the needs of the warfighter for system capability. The prioritization process provides a 
basis for architecture trade-off analyses. When fully developed and prioritized, the scenarios 
provide a more complete understanding of requirements and quality attributes in context 
with the operation and support (including all of the MUIRS elements) of the system over its 
life cycle. A more complete understanding of the system’s TOC elements should emerge 
from this type of analysis. 
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Figure 1. QAW & ATAMSM Integration Into Software Life-Cycle Management 

Just as the QAW process provides a methodology supporting RFP, source-selection 
activities, and the Software Specification and System Requirements Reviews (SSR and 
SRR), the ATAMSM provides a methodology supporting design analyses, test program 
activities, and the System Functional and Preliminary Design Reviews (SFR and PDR). The 
QAW and ATAMSM methodologies are probably not the only effective methods supporting 
software development efforts, but they fit particularly well with the DoD’s goals, models, and 
SEP emphasis. The user/combat developer (blue arrow block in Figure 4) is kept actively 
involved throughout the development process—providing key insights the software 
developer needs to successfully develop warfighter capabilities in a sustainable design for 
long-term effectiveness and suitability. The system development activities are conducted 
with superior understanding and clarity, reducing scrap and rework, and saving cost and 
schedule. The technical reviews and audits (part of the DoD overarching SEP) are 
supported with methodologies that enhance both the visibility of the necessary development 
work as well as the progress toward completing it.  

One of the main goals in analyzing the scenarios is to discover key architectural 
decision points that pose risks for meeting quality requirements. Sensitivity points are 
determined, such as real-time latency performance shortfalls in target tracking. Trade-off 
points are also examined so that TOC impacts resulting from proposed trade-offs can be 
analyzed. The Software Engineering Institute explained, “Trade-off points are the most 
critical decisions that one can make in an architecture, which is why we focus on them so 
carefully” (Kazman et al., 2000, p. 23). 

The ATAMSM provides an analysis methodology that complements and enhances 
many of the key DoD acquisition processes. It provides the requirements loop analysis in 
the SEP, extends the user/stakeholder JCIDS involvement through scenario development, 
provides informed architectural trade-off analyses, and vastly improves the software 
developer’s understanding of the quality requirements in context. Architectural risk is 
significantly reduced, and the software architecture presented at the Preliminary Design 
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Review (PDR) is likely to have a much higher probability of meeting the warfighters’ need for 
capability, including TOC elements. 

Together, the QAW and ATAMSM provide effective tools for addressing problem 
areas common in many DoD software-intensive system developments: missing or vaguely 
articulated performance requirements, significantly underestimated software development 
efforts (resulting in severely underestimated schedules and budgets), and poor 
communication between the software developer and the Government (both user and PM). 
Both tools provide frameworks for more detailed requirements development and more 
effective communication, but they are just tools—by themselves, they will not replace the 
need for sound planning, management techniques, and effort. Both QAW and ATAMSM 
provide methodologies for executing SEP Requirements Analysis and Requirements Loop 
functions, effective architectural design transition from user to developer, and SEP design 
loop and verification loop functions within the test-case development. 

A significant product resulting from the ATAMSM is the development of test cases 
correlating to the use case, growth, and exploratory scenarios developed and prioritized. 
Figure 2 depicts the progression from user-stated capability requirements in the JCIDS 
documents to the ATAMSM scenario development, and finally to the corresponding test 
cases developed. The linkage to the user requirements defined in the JCIDS documents is 
very strong as those documents drive the development of the three types of scenarios, and, 
in turn, the scenarios drive the development of the use cases. The prioritization of the 
scenarios from user-stated Key Performance Parameters (KPPs), Critical Operational 
Issues (COIs), and FMECA analysis flows to the test cases, helping to create a system test 
program designed to focus on effectiveness and suitability tests—culminating in the system 
Operational Test and Evaluation (OT&E). FMECA is one of the focus areas that will have a 
dynamic impact on TOC analysis because it will help identify software components that 
need higher reliability and back-up capability. The MUIRS focus helps ensure that TOC 
elements are addressed in design and test.  

 

Figure 2. Progression From User-Stated Capability Requirements Through 
Scenario Development to Test-Case Development 
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Capabilities-Based ATAMSM Scenario Development 
The traceability from user-stated requirements through scenario development to test-

case development provides a powerful communication and assessment methodology. The 
growth scenarios and resulting test cases are particularly suited for addressing and 
evaluating TOC design requirements because the system evolves over its life cycle, which is 
often overlooked in current system development efforts. 

The software developer’s understanding of the eventual performance required in 
order to be considered successful guides the design of the architecture and every step of 
the software development, coding, and testing through to the Full Operational Capability 
(FOC) delivery and OT&E. Coding and early testing of software units and configuration 
items is much more purposeful due to this level of understanding. The MUIRS and FMECA 
focus will help the design process for better TOC performance. 

The resulting test program is very comprehensive as each prioritized scenario 
requires testing or other verification methodologies to demonstrate how the software 
performs in each related scenario and satisfies the quality attributes borne of the user 
requirements. The testing supports the SEP design loop by verifying that the software 
performs the functions allocated to it and, in aggregate, performs the verification loop 
process by demonstrating that the final product produces the capability identified in the user 
requirements through operational testing. 

Both QAW and ATAMSM require the capturing of essential data supporting decision-
making and documenting decisions made. These databases would be best used in a 
collaborative IT system, as described in the next section.  

Conclusions and Recommendations: Major Thrusts to Control Software 
Component TOC 

Conclusions  

DoD software-intensive systems and the software content in other systems will 
continue to grow and may dominate the TOC costs in the future. These costs are 
exacerbated by the fact that, in addition to contracted development costs, the bulk of the 
software sustainment costs are also contracted. In addition, the skill sets needed for 
software sustainment are the same as for software development, so the DoD is contracting 
for software engineers to perform maintenance functions. All of these factors indicate that 
DoD system software will continue to be a very expensive portion of TOC. 

The software engineering environment remains immature, with few, if any, industry-
wide standards for software development or sustainment. The Defense Acquisition System 
(DAS) is significantly dependent on mature engineering environments to compensate for the 
gaps and interpretation requirements presented with the performance-based specifications, 
vague Operational Mission Summary/Mission Profiles, and high-level work breakdown 
structures (WBSs) that the DoD provides during the request for proposal (RFP) process. 

The developer software engineers will consume 50% or more of their contract 
resources analyzing requirements and developing the architectural design. This effort is 
expended before the Preliminary Design Review (PDR) and requirement additions 
(requirements creep), or changes beyond that point have disastrous effects on the software 
design and can even cause a complete redesign at extreme cost in funding and schedule. 

The system software size and complexity are key indicators of both the development 
costs and the sustainment costs, so the initial estimates are critical for predicting and 
controlling TOC. Unfortunately, the software size estimating processes require a significant 



- 426 - 

amount of detailed understanding of the requirements and design that is typically not 
available when operating the DAS without supplementary analyses, tools, and techniques. 
Available parametric estimating tools require much of the same detailed information and are 
still too inaccurate to be relied upon. Similarly, understanding the potential software 
complexity requires in-depth understanding of the requirements and architectural design. 

It is clear that the DoD must conduct much more thorough requirements analyses, 
provide significantly more detailed operational context, and drive the software architectural 
design well beyond the WBS functional design typically provided. To accomplish this, the 
DAS must be supplemented with tools, techniques, and analyses that are currently not 
present. 

Recommendations 

Program managers for software-intensive systems must supplement the DAS 
processes to 

 compensate for the immature software engineering environment 

 gain sufficient detailed information to perform reasonable software size and 
complexity estimates critical to understanding and managing system TOC 

 complete the inventory of derived and implied requirements, including the 
often neglected sustainability requirements, before the RFP is issued 

 provide more detailed system operational context, beyond what exists in most 
OMS/MP documents 

 obtain more realistic contractor proposals in terms of cost and schedule 
associated with the software development and sustainment 

 drive the software architecture for a more sustainable, less complex design 

 monitor the software design process (metrics) to ensure the effort is 
progressing towards an effective, supportable, and testable design supporting 
the warfighter 

The tools, techniques, and analyses presented in this research are designed to 
accomplish the tasks outlined above, and are compatible with the Systems Engineering 
Process (SEP) supporting the DAS. They also are designed to work together in a synergistic 
method to improve the software-intensive system development and sustainment 
performance influencing system TOC. They are certainly not the only tools, techniques, and 
analyses available to improve the process, and others may be as effective, as long as they 
can address the bulleted items above. 

The maintainability, upgradability, interoperability, reliability, and safety/security 
(MUIRS) analysis technique is designed to help identify derived and implied requirements 
that need to be more fully articulated to ensure that the software engineer adequately 
considers these critical system attributes. These were selected because they are often 
missing from the user’s capability-based requirements documents and the resulting 
performance specification, yet they are critical for the warfighter and are significant TOC 
drivers. 

The Quality Attribute Workshop (QAW) is a technique to help more fully detail all 
requirements, including derived and implied. It is often used with the system WBS to more 
fully develop the desired functional design, especially when combined with the MUIRS 
analyses. 

The Architectural Tradeoff Analysis MethodologySM (ATAMSM) is designed to be used 
with the QAW and provides detailed operational context through the scenario development, 
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providing critical design cues to the software development engineers. The scenarios include 
Use Cases (how the system will be used and maintained if fielded today), Growth Cases 
(how the system will likely change over its life cycle, including future networking), and 
Exploratory Scenarios (how the system is to operate under unusual or stressful conditions). 
This research recommends including the MUIRS analyses in the ATAM, as well as Failure 
Modes and Effects Criticality Analyses (FMECA) to identify critical functionality 
requirements. 

Combined, the tools, techniques, and analyses provide a much improved 
understanding of the system and identify critical attributes that the software developers need 
to know to design an effective and supportable design. These tools help compensate for the 
immature software engineering environment, provide more detailed information needed to 
perform size and complexity estimates, and provide detailed operational context needed for 
proper software architectural design. They help produce superior RFPs and garner more 
realistic contractor proposals. They provide processes for monitoring critical software design 
activities and full test matrix crosswalks. All of these enhancements will help more 
accurately estimate and manage software TOC attributes. 
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