
SYM-AM-18-058

Acquisition Research:
Creating Synergy for Informed Change

May 9–10, 2018

Published April 30, 2018

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

- 429 -

Exploring the Department of Defense Software Factbook

Christopher Miller—is a Senior Researcher at the Software Engineering Institute (SEI). Dr. Miller’s
expertise is in software metrics, measurement, and estimation of software intensive systems. His
quantitative analysis background is focused on life cycle cost estimation, evaluating project feasibility
measures, establishing performance measurements, and providing analysis for the optimization of
systems. Dr. Miller served as the Chair of the International Council on Systems Engineering
(INCOSE) Measurement Working Group (MWG) for seven years and is a certified trainer for Practical
Software and Systems Measurement (PSM). Dr. Miller earned a Masters of Engineering Management
and PhD in Systems Engineering at the George Washington University and is currently a member of
the adjunct faculty in the School of Engineering and Applied Science (SEAS). [clmiller@sei.cmu.edu]

Forrest Shull—is Assistant Director for Empirical Research at Carnegie Mellon University’s Software
Engineering Institute. His role is to lead work with the U.S. Department of Defense, other government
agencies, national labs, industry, and academic institutions to advance the use of empirically
grounded information in software engineering, cybersecurity, and emerging technologies. He has
been a lead researcher on projects for the U.S. Department of Defense, NASA’s Office of Safety and
Mission Assurance, the Defense Advanced Research Projects Agency (DARPA), the National
Science Foundation, and commercial companies. He serves on the IEEE Computer Society Board of
Governors and Executive Committee. [fjshull@sei.cmu.edu]

David Zubrow—is an Associate Director for the Software Solutions Division and Manager of the
Software Engineering Measurement and Analysis Initiative. He has been employed at the Software
Engineering Institute (SEI) at Carnegie Mellon University since 1992. For much of his 26 years at the
SEI, he has developed and transitioned quality and process improvement principles and practices
directly through the CMMI and applications of statistical analysis. More recently, his research and
transition projects have involved using machine learning methods in conjunction with software
engineering data to model program status assessments and risks as well as predicting defects.
[dz@sei.cmu.edu]

Abstract
The Carnegie Mellon Software Engineering Institute (SEI) conducted an analysis of

software engineering data owned and maintained by the Department of Defense (DoD) to
produce high-level, DoD-wide heuristics and domain-specific benchmark data. This work
yielded basic facts about software projects, such as averages, ranges, and heuristics for
requirements, size, effort, and duration. Factual, quantitatively-derived statements were
reported to provide users with easily digestible benchmarks.

Findings were also presented by system type, or super domain. The analysis in this
area focused on identifying the most and least expensive projects and the best and worst
projects within three super domains: real time, engineering, and automated information
systems. It also provided insight into the differences between system domains and
contained domain-specific heuristics.

Finally, correlations were explored among requirements, size, duration, and effort
and the strongest models for predicting change were described. The goal of this work was to
determine how well the data could be used to answer common questions related to planning
or replanning software projects. The paper provides a high-level overview of the SEI’s
research and primary findings.

- 430 -

Introduction
In 2015 the SEI undertook an analysis of the most extensive collection of software

engineering data owned and maintained by its primary sponsor, the Department of Defense
(DoD). The resulting Department of Defense Software Factbook provides an analysis of the
software resources data report (SRDR), a contract data deliverable that applies to major
contracts and subcontracts for programs with software development elements that include a
projected software effort greater than $20 million.1

The SRDR is a contract data deliverable that formalized the reporting of software
metrics data and is the primary source of data on software projects and their performance.
The SRDR reports are provided at the project level or subsystem level, not at the DoD
Acquisition Program level. It is important to note that when the analysis refer to a
“project” in this report, a project is synonymous with a software build, increment, or
release. In many cases, several projects (i.e., data points) would contribute to the overall
scope and make up of Acquisition Program (i.e., an entire weapon system).

This work builds on a field of research begun in the 1970s into how to estimate the
cost of software development. An entire industry focused on parametric software estimation
has grown since that time, and at the core of this industry is a fundamental assumption that
the cost of developing software can be estimated based on an accurate estimate of the size
of the software product to be developed. This concept might be more accurately described
as an assumed empirical relationship between cost and software size.

A new SRDR Data Item Description (DID), DI-MGMT-82035A, with updated formats
for software development and maintenance was approved for release in November 2017.
This new DID replaces the 2016 version of the DID which superseded the 2011 Initial and
Final SRDR DIDs. The SRDR DID remains at $20 million or over for all new contracts, and
over $1 million per year maintenance efforts. Key parameters related to software cost
include functional size (in requirements), physical size (in equivalent source lines of code),
effort hours, and duration of software projects. In most DoD environments, size is measured
by requirements and the final physical size of the software product, commonly measured in
source lines of code (SLOC). The amount of effort required to deliver the software can be
estimated if you know the size. Similarly, duration (or schedule) can be derived from the
effort.

The majority of the SRDR data used in this analysis is based on the final report that
contains data about actual results. Projects used for this analysis had to include the
following information: size data (functional and product), effort data, and schedule data. Our
analysis included 287 projects from the product-event final report data and 181 pairs of
initial and final case data (to compare estimated versus actual performance).

1 For a more detailed description of programs types that require the use of the SRDR, see the
Department of Defense Software Factbook, or CSDR Requirements, OSD Defense Cost and
Resource Center, http://dcarc.cape.osd.mil/CSDR/CSDROverview.aspx#Introduction.

- 431 -

Functional Size (Requirements)
Functional size represents the overall magnitude of the software capabilities without

regard to the final solution. The benefit of using functional measures is their availability early
in the software development lifecycle. In the DoD acquisition community, requirements are
rigorously derived and used as the contractual basis for acquiring systems. Therefore
requirements and requirements documents are produced as part of the system acquisition
life cycle and are readily available for the extraction of the number of requirements.

The drawback of using functional measures is that the requirement does not
consistently correlate to a unit of effort (i.e., not all requirements take the same amount of
effort to satisfy). Using the total number of requirements to represent size is useful, but
trying to attach a unit cost (i.e., the cost per requirement) is not advised.

In general, software project data tends to be skewed. So making a transformation to
get it into a normal (Gaussian) distribution is usually necessary. This was necessary for the
SRDR requirements data. Since it was quite skewed, with the bulk of the data between 102
(~100) and 1110 (~1100) requirements, it needed to be transformed. Once the data was
normalized using a natural log transformation, the median is e6.04, or 420 requirements with
a mean of 368 requirements. Both are much closer to the raw data median of 399 than the
raw data mean of 1118 requirements (see Figure 1).

Figure 1. Functional Size, Normalized

Requirements data analyzed by super domain are presented in Figure 2. As is in
shown on the top of the figure, to the left of the line is the 25th percentile value. This
indicates that 25% of the projects have less than 100 requirements. Similarly, on the right
the 75th percentile value indicates that 25% of the projects have more than 1100
requirements. Note that 50% of the projects have between 100 and 1100 requirements, with
relatively more toward the lower end and a median or typical view of 400. The additional
lines in the figure can be similarly interpreted. Similar figures are provided throughout this
paper showing the 25th percentile, median, and 75th percentiles. An easy heuristic for the
average functional size of a DoD software project is 400 requirements.

- 432 -

Figure 2. Requirements Data by Super Domain

Product Size (ESLOC)
Another common measure of interest is product size, which is often measured in

source lines of code (SLOC). A key issue in using SLOC as a measure of work effort and
duration is the difference in work required to incorporate software from different sources,
including new code, modified code (changed in some way to make it suitable), reused code
(used without changes), and auto-generated code (created from a tool and used without
change).

Each of these sources requires a different amount of work effort to incorporate into a
software product. The challenge is in coming up with a single measure that includes all of
the code sources. The approach taken here is to normalize all code sources to the
equivalent of a new line of code. This is done by taking a portion of the measures for
modified, reused, and auto-generated code. The portioning is based on the percentage of
modification to the code based on changes to the design, code and unit test, and integration
and test documents. This approach is adopted from the COCOMO II Software Cost
Estimation Model (Boehm et al., 2000, p. 22).

Equivalent source lines of code (ESLOC), then, is the homogeneous sum of the
different code sources. The portion of each code source is determined using a formula
called an Adaptation Adjustment Factor (AAF):

AAF = (0.4 x %DM) + (0.3 x %CM) + (0.3 x %IM)

Where

%DM: Percentage Design Modified

%CM: Percentage Code and Unit Test Modified

%IM: Percentage Integration and Test Modified

- 433 -

Using a different set of percentages for the different code sources, ESLOC is
expressed as

ESLOC = New SLOC +

(AAFM x Modified SLOC) +

(AAFR x Reused SLOC) +

(AAFAG x Auto-Generated SLOC)

New code does not require any adaptation parameters, since nothing has been
modified.

Auto-generated code does not require the DM or CM adaptation parameters.
However, it does require testing, IM. If auto-generated code does require modification, then
it becomes modified code, and the adaptation factors for modified code apply.

Equivalent source lines of code (ESLOC) normalize all code sources to the
equivalent of a new line of code by computing a portion of the physical measures for
modified, reused, and auto-generated code. Figure 3 shows the ESLOC data normalized
using a natural log transformation. ESLOC by super domain is presented in Figure 4. An
easy heuristic to use for average project size is around 40,000 ESLOC for all projects.

Figure 3. Product Size in ESLOC, Normalized

- 434 -

Figure 4. ESLOC by Super Domain

Effort
The amount of effort used to create software is the major driver of the cost of the

development; the effort estimate in dollars provides the largest element in the cost estimate
for software. Effort is usually collected in hours. For simplification purposes many estimation
tools and equations use person months. When comparing effort data, ensure that the same
conversion rate is used across the data set (i.e., the number of hours in a person month
and/or number of hours in a full time equivalent). As detailed in Appendix G: Burden Labor
Rate, it is assumed here that there are 152 hours in a labor month and 1824 hours per full-
time equivalent (FTE), based on an annual labor rate of $150,000.

Figure 5 shows the effort data normalized. The effort hour data analyzed by super
domain are presented in Figure 6. An easy heuristic to use for average project effort is
around 40,000 hours, 263 person months, or 22 FTEs for a DoD software project.

- 435 -

Figure 5. Effort, Normalized

Figure 6. Effort Hours by Super Domain

Duration
Duration is a measure of the calendar time it takes to complete the software project.

Many factors affect duration, including staffing profile, schedule constraints, and release
plan. No adjustments are made for these factors in the data reported in this section.

Figure 7 shows the duration data normalized. The data indicate that the majority of
projects take between 2 ½ to 3 years. An easy heuristic to use for the duration of an
average DoD software project is approximately 3 years. Duration data analyzed by super
domain is presented in Figure 8.

- 436 -

Figure 7. Duration, Normalized

Figure 8. Duration Data by Super Domain

Team Size (People)
The size of the development team reported here is based on measures of project

effort and duration. The effort for a project is reported in labor hours. Labor hours are
converted to person months of effort (based on 152 hours/month) and divided by months of
project duration. This derives the average level of project staffing or full time equivalent
(FTE).

Figure 9 shows a histogram of the data in natural log scale. It shows that most teams
have 20 or fewer people. Recall that SRDRs are required for contracts over $20 million.
These contracts have multiple product events resulting in seemingly small team sizes which,
in fact, are due to low levels of effort over relatively long durations.

- 437 -

Figure 9. Time Size, Normalized

Figure 10 shows the data divided into three groups: small-, medium-, and large-
team-size projects. The groups are based on a cumulative percentage divided into thirds.
Small teams make up the lower third, medium size teams are in the middle third, and large
teams make up the upper third. Based on the groupings the team sizes are as follows:

 small-size teams: < 5 average staff

 medium-size teams: 5–14 average staff

 large-size teams: > 14 average staff

Medium and large team sizes are used in the effort/schedule tradeoff analysis.

- 438 -

Figure 10. Team Size Distribution

Team size data analyzed by super domain is presented in Figure 11.

Figure 11. Team Size Data by Super Domain

Productivity
Productivity (also referred to as efficiency) is the amount of product produced for an

amount of resource. For software, productivity is commonly measured by size (ESLOC)
divided by effort hours.

Productivity in general is considered very competition sensitive and therefore rarely
shared publicly by the private sector. Since the SRDR data set is owned and maintained by
the government and the individual data provider’s productivity is protected, this compilation
of data provides a rarely available insight into software productivity across the industrial
base.

- 439 -

Figure 12 shows the productivity data after normalization. For practical purposes, the
data shows a 1:1 ESLOC: hour ratio. Productivity data analyzed by super domain is
presented in Figure 13.

Figure 12. Productivity, Normalized

Figure 13. Productivity by Super Domain

Profiles of Typical Projects
Integrating the analysis results of the individual parameters provides a general

software project profile. This section contains the profiles for a generic DoD software project,
as well as profiles for RT, ENG, and AIS projects.

As a reminder, the SRDR reports are provided at the project level or subsystem
level, not at the DoD Acquisition Program level. It is important to note that when the
analysis refer to a “project” in this report, a project is synonymous with a software

- 440 -

build, increment, or release. In many cases, several projects (i.e., data points) would
contribute to the overall scope and make up of Acquisition Program (i.e., an entire weapon
system).

Snapshot of a Typical DoD Software Project

Figure 14 provides a snapshot of the overall dataset, showing the size and scope of
a typical DoD software project. Keep in mind SRDR data points are typically submitted by
subsystem or potential increment; these numbers do not represent an entire DoD program
of record.

Figure 14. Parameters of DoD Software Projects

This data can be used to answer general questions about DoD software projects. For
example,

 Question: What is the typical (average) size of a software delivery?
Answer: 40 KESLOC

 Question: How long does an increment take?
Answer: 35 months (~3 years)

 Question: How many FTEs does a typical software project require?
Answer: 8 FTEs; some large projects may require upwards of 20 FTEs.

 Question: In general how much does a software project cost?
Answer: Software projects tend to range between $1 million and $8 million;
without knowing any details about what type of software or its composition, a
generic DoD project costs a little over $3 million.

The percentile numbers help convey the variation in the data. These data can be
utilized by oversight offices when assessing overall program feasibility. A project plan that
contains parameter values outside the 25th and 75th percentile range signifies a situation
that is not common and might require additional scrutiny. In this case, the oversight office
would want to ask for more information about the engineering and technical rationale to
justify this plan.

Given the mix of system domains, language types, environments, platforms,
functionality, and associated quality/performance parameters, these rules of thumb may not
provide a lot of value to project managers estimating their software efforts. To get the

- 441 -

information useful to them, they would need to isolate like projects in the dataset and
generate a parameter profile that best represents the system they are developing. In this
vein, the following sections provide heuristics by super domains.

Snapshot of Real-Time Software Projects

RT software is typically the most complex and intricate type of software. It tends to
be embedded in the system architecture and contributes to the success or failure of key
performance parameters of the system. Given the level of rigor this type of software
requires, the variations between the RT super domain parameters in Figure 15 are not
surprising. Of the 287 data points analyzed, 198 were classified as real time.

Figure 15. Parameters of Real-Time Software Projects

It is logical that increased system complexity would require a more detailed
articulation of the requirements, resulting in a higher requirements count and lower
productivity in comparison to the overall data set. This can also be seen in the slightly higher
effort hour percentile values.

Snapshot of Engineering Software Projects

ENG super domain software is of medium complexity. It requires engineering
external system interfaces, high reliability (but not life-critical) requirements, and often
involves coupling of modified software. Examples of software domains in this super-domain
are: mission processing, executive, automation and process control, scientific systems, and
telecommunications.

- 442 -

Figure 16 shows the key software parameters for the 50 ENG super domain data
points in the 287 data set.

Figure 16. Parameters of Engineering Software Projects

In comparison to RT systems, ENG systems tend to state their requirements at a
slightly higher level. For example, a typical requirement may be, “System X shall interface
with System Y.” In this case there are several nuances to meeting this requirement. This can
be seen by comparing the requirements parameters, ESLOC, and effort parameters of the
RT data to the ENG data.

Snapshot of Automated Information System Software Projects

AIS software automates information processing. These applications allow the
designated authority to exercise control over the accomplishment of the mission. Humans
manage a dynamic situation and respond to user input in real time to facilitate coordination
and cooperation. Examples of software domains in this super-domain include intelligence
and information systems, software services, and software applications.

- 443 -

Figure 17 shows the key software parameters for the 35 AIS super domain data
points in the 287 data set.

Figure 17. Parameters of Automated Information System Software Projects

The size and productivity parameters vary the most from the overall super domain
parameters. Based on the way AIS are developed (i.e., adaptation of existing COTS/GOTS
applications), the increase in comparison to the other super domains is not surprising.

Portfolio Performance: Common Questions
This section explores the findings by super domain to answer some common

questions about software types.

Most and Least Expensive Software

What are the most and least expensive software types to develop?

Our analysis is based on the rationale that some types of software are more difficult
to develop than other types and therefore require more effort to develop. The level of
difficulty can be caused by factors such as execution timing constraints, interoperability
requirements, commercial-off-the-shelf (COTS) software product incorporation, algorithmic
complexity, communication complexity, data-bandwidth requirements, and security
requirements. To account for the dissimilarities in project difficulty, projects are segregated
into three super domains.

The analysis proceeds by introducing two concepts: unit cost and production rate.

 Unit cost is the cost of producing a unit of software with some amount of
effort. In this case, the unit of software is thousands of equivalent source lines
of code (KESLOC). The effort is reported in labor hours, which can be
translated into cost using an average labor rate.

 Production rate is the rate at which a unit of software is delivered over a
period of time. The unit of software is a KESLOC and the time is days of
project duration.

 Cost is derived by applying a burdened labor rate to the number of labor
hours worked in a day. Hours per day are determined by dividing total hours

- 444 -

by the duration (total days). For example, if a real-time project required 1,007
total hours and 25 days, the labor hours expended in a day is 40.3 (implying
several people were working on the project).

The analysis then normalizes the unit cost with the production rate, creating a high-
level comparison. This is done because some projects may choose to employ more staff to
increase their production rate and deliver the software sooner or vice versa. The resulting
effort per day is then multiplied by an average burden labor rate to derive cost.

Unit Cost

With an average project size of 40,000 ESLOC, each of the three groups are
analyzed separately. Trends for each group were created based on a natural log-
transformation of the data. This transformation made it easier to see the relationships
between the three groups for an average project size of 40,000 ESLOC.

The difference in unit costs between the three groups is shown in Table 1. Real-time
software shows that for small amounts of size, a large amount of effort is required.
Automated information system software data shows the opposite: for large amounts of size,
a small amount of effort is required.

Table 1. Unit Costs for Different Domains

Production Rate

The production rate data analysis focused on the relationships between size and
duration for the three super domains. The analysis revealed much greater variability than
the unit cost plot. This indicates a very weak systematic relationship between size and
duration. The dispersion of the data is attributed to other factors that influence the size-
duration relationship (e.g., different levels of staffing on similar size projects can impact
duration). This is an area for further research.

For an average-size project, the production rate (how long it takes to deliver a unit of
software) is shown in Table 2.

Table 2. Production Rate for Different Domains

- 445 -

Cost Comparison

When unit cost is divided by production rate, the average number of hours each
month is determined. Using an average burden labor rate, the normalized monthly cost for
each group is shown in Table 3. The hours/day indicate that more than one person is
working per day.

Table 3. Costs for Different Domains

Real-time software is the most expensive to develop and automated information
system software is the least expensive. RT software costs 14% more to develop than ENG
software and 39% more than AIS software.

Cost Heuristics

Units for cost vary based on the office reporting them and the types of decisions that
are being made. Engineering organizations often prefer to discuss things in technical units
(e.g., requirement and SLOC) and effort (e.g., hours or person months, months). Cost
offices tend to communicate in terms of dollars and fiscal years. Table 4 is a translation table
that shows the same unit cost, production rate, and cost data expressed in different units.

Table 4. Unit Cost and Productivity

Table 4 provides the unit cost (hours/KESLOC) and its inverse, productivity
(ESLOC/hour). Depending on the type of information needed, one of the metrics may be
preferred over the other. Alternatively, production rate is a metric that can be expressed in
terms of units of product produced in a period of time (days/KESLOC) or units of time to
produce a single product (ESLOC/day). It also provides monthly and annual costs by
domain. The cost by year represents the annual costs for an average project for a full
calendar year. This number doesn’t help an engineering organization determine the total
cost of a particular project, but it is a useful metric to technical managers when they are
required to submit an annual budget.

Best-in-Class/Worst-in-Class

What differences are there between best-in-class and worst-in-class software
projects?

- 446 -

This analysis examines the best- and worst-in-class projects within each of the three
super-domains discussed in the previous section. To assess differences between projects,
the three derived metrics explained in the previous section are used: unit cost, production
rate, and cost.

Analysis Approach

An average size project within each super domain is used to derive unit cost,
production rate, and cost. A ±1 standard error (SE) about the unit cost and production rate
trend lines were used to identify best- and worst-in-class projects.

The definition of best-in-class and worst-in-class projects were developed as follows:

 Best-in-class projects: at or below the −1 SE value are projects that used less
effort or less time to finish than an average project. This boundary represents
the worst of the best-in-class projects—performance may actually be better.

 Worst-in-class projects: at or above the +1 SE value are projects that used
more effort or more time to finish than an average project. This boundary
represents the best of the worst-in-class projects—performance may actually
be worse.

Real-Time (RT) Software

Unit Cost

The average-size RT project (34,000 ESLOC for the RT domain) expends 39,664
labor hours of effort. Best-in-class projects expend 18,361 labor hours and worst-in-class
projects expend 85,687 labor hours, a 10-fold increase. The difference between a best- or
worst-in-class project from the average project is 21,304 labor hours. It is important to
understand the context of the labor-hour differences in conjunction with project duration.

Production Rate

The average-size project delivers a product in 997 days (32.8 months). A best-in-
class project delivers a product in 538 days (17.7 months). A worst-in-class project delivers
a product in 1,848 days (60.8 months).

Cost

Table 5 summarizes the differences in unit cost and production rate between best-,
average-, and worst-in-class RT projects. An average RT size project of 34,000 ESLOC was
used to determine effort and schedule. Best-in-class RT projects are 2 times more efficient
than average projects and 4.7 times more efficient than worst-in-class projects. Best-in-class
projects are 1.8 times faster than an average projects and 3.4 times faster than a worst-in-
class project. As mentioned earlier, the noted results for the best-in-class are the lowest
reported numbers in the best-in-class bracket. Conversely, the reported results for worst-in-
class are the highest reported numbers in the worst-in-class bracket.

Table 5. Real-Time Software Best and Worst Summary

- 447 -

Using a burden labor rate of $150,000 per year, the best-in-class project saves
$1.752 million dollars over an average project and $5.537 million over a worst-in-class
project.

Engineering (ENG) Software

Unit Cost

There are 50 projects in the ENG super-domain. The average-size project (32,000
ESLOC for the ENG domain) expends 30,780 labor hours of effort. The best-in-class
expends 14,468 labor hours and the worst-in-class expends 65,485, a 4.5 increase times
the amount of best in class. The difference between a best- and worst-in-class project from
the average project is 16,312 hours.

Production Rate

The best-in-class project delivers a software product in 640 days (21 months), an
average project in 1,031 days (33.9 months), and a worst-in-class project in 1,659 days
(54.6 months).

Cost

Table 6 summarizes the differences in unit cost and production rate between best,
average, and worst-in-class ENG projects. An average ENG size project of 32,000 ESLOC
was used to determine effort and schedule. The best-in-class ENG projects are 2.3 times
more efficient than average projects and 5.3 times more efficient than worst-in-class
projects. The best-in-class project is 1.6 times faster than an average project and 2.6 times
faster than a worst-in-class project.

Table 6. Best and Worst Summary of Engineering Software

Best-in-class projects save $1.341 million dollars over average projects and $4.195
million dollars over a worst-in-class project.

Automated Information System (AIS)

Unit Cost

Using an average-size project of 72,000 ESLOC, best-in-class, average, and worst-
in-class projects expended an average of 22,400, 39,114, and 68,297 labor hours of effort,
respectively. There is a three-fold increase in effort between best and worst-in-class. The
difference between a best or worst-in-class project and the average project is 16,713 labor
hours.

Production Rate

The best-in-class average-size project delivers a product in 445 days (14.6 months).
The average project delivers a product in 880 days (29 months). The worst-in-class a project
delivers product in 1,743 days (57.3 months).

- 448 -

Cost

Table 7 summarizes the differences in unit cost and production rate between best,
average, and worst-in-class projects. An average AIS size project of 72,000 ESLOC was
used to determine effort and schedule. That makes best-in-class projects 1.7 times more
efficient than average projects and 3 times more efficient than a worst-in-class projects.
Best-in-class projects are 2 times faster than average projects and 4 times faster than worst-
in-class projects.

Best-in-class projects save $1.375 million over average projects and $3.774 million
over worst-in-class projects.

Table 7. Best and Worst Summary of AIS Software

Project Planning, Trade-Offs and Risk
As part of our analysis we also explored correlations among requirements, size,

duration, and effort. The goal of this work was to determine how well the data could be used
to answer common questions related to planning or replanning software projects, such as
“How much growth should we plan for?” and “How well can initial estimates be used to
predict final outcomes?”

The Department of Defense Software Factbook provides a more extensive
description of our work in this area, while this paper provides a brief overview of the
strongest models we found to predict growth in requirements, ESLOC, schedule, and effort
from the initial estimates. Each of the models can be used to construct predicted growth
intervals for any given initial estimate, although we caution against using the model outside
the bounds indicated by the 5th and 95th percentiles for each variable.

Estimation Relationships

Among the many factors and models for estimating effort, the SRDR data allows us
to investigate the relationship between requirements and the size of the effort and then the
relationship between the estimated size and the estimated effort as well as the final effort. A
simple look at the correlations among requirements, size, duration, and effort found that the
only actionable correlation was between size and effort.

Predicting Actual Total Effort by Estimated ESLOC

The following model shows that an initial estimate of ESLOC can also be used to
predict the total actual effort. Although the model is only moderately strong, it is presented
here in case an initial estimate of effort is not available, but an estimate of size (ESLOC) is
available.

- 449 -

The table shows the predictions have a “sweet spot” that is +/− 10% in the range
from 75KESLOL to 200 KESLOC. The model accounts for over 67% of the variance. Below
are the predicted (forecast) values and prediction ranges for a set of new given inputs,
followed by a graphic showing the actual data fitted to the model along with the associated
prediction intervals. Predicted values show an underestimate of the initial by 158% at the
low end (500 ESLOC) but an overestimate of −22% at the high end (500K ESLOC). This
indicated that the model is reasonably good fit to the data.

Table 8. Prediction Values for Actual Total Hours (Effort) Using ESLOC

- 450 -

Figure 18. +/−10% is the Range for 75,000 to 200,000 Initial ESLOC Estimates With
+/−10%

Software Growth—Predicting Outcomes

To determine if final outcomes can be predicted from initial estimates we examined
the project performance as represented by 181 paired initial and final contractor
submissions. As such, we measured the difference between the initial estimates and the
actual outcomes.

Based on historical SRDR data transformed to natural logarithms, we determined
that we can predict (with a known degree of certainty) the expected outcomes for software
size, schedule, and effort. The models presented enable predictions of final outcomes based
on initial estimates. Each of the models can be used to construct outcome prediction
intervals for any given initial value, although we caution against using the model outside the
bounds indicated by the 5th and 95th percentiles for each variable.

While the full report describes the data and statistical analyses in more detail, we
provide here an overview of the strongest models to emerge from this analysis:

Predicting productivity is less strong unless we separate the underestimated cases
from the overestimated cases, which then yield very strong models (r2 equals .886 and .758,
respectively). This indicates that if the productivity could be assessed during the

- 451 -

development effort, then the actual outcome could be more accurately predicted. If we also
account for the type of super domain, these models increase in strength.

Schedule duration can also be separately predicted for the three services. We show
that total effort hours can also be predicted by using the initial estimate for ESLOC, although
the fit is not as strong (r2 = .674) as using the initial estimate for hours. We also show how
the prediction interval becomes tighter when the confidence level for the prediction is
reduced.

Perhaps the most useful takeaway from this analysis are the prediction tables. The
tables provide the predicted value along with the prediction interval at a 95% confidence
level. These can be used in the absence of any available estimates, or as a sanity check
against estimates coming from other sources. New values can easily produce a ballpark
forecast by interpolation or the actual equation can be used for calculation. The data sets we
used are also available for distribution which enable users to reproduce the models with
their own statistical software.

As mentioned earlier, no further adjustments were made in case selection once the
data were trimmed. Undoubtedly, the models could be improved (and the predictive intervals
narrowed) with substantive knowledge concerning the behavior of outliers which could
provide meaningful reasons for their exclusion from a model. Also, any additional data
supplied during the interim of the project—which is under consideration by the DoD—could
further calibrate and improve a model’s fit. This would be especially useful in the productivity
models where the best fits were determined by whether the original submission over- or
underestimated the productivity. A midcourse determination of productivity would then
indicate which sub-model was appropriate to estimate the final productivity for the project.

Conclusion
The analyses conducted by the SEI shows that the cost of software development

varies depending on several factors. The class or super-domain of software makes a
difference in the cost of software. Different super domains have different levels of difficulty
that cause more effort to be expended on more difficult software. On an average-size
project, AIS software costs $31,350 a month and RT software costs $101,250 a month—
more than three times as much.

The time to develop software also drives cost. Based on an average-size project,
shorter duration projects cost disproportionately more than longer duration projects. It was
shown that team size is clearly NOT determined solely by the size of the software to be built.
The performance of a project also drives cost. The analysis looked at best-, average-, and
worst-performing projects within each super-domain.

Perhaps the most valuable contribution of this study is the ability to provide, for the
first time, guidance to decision makers about projects that is based on empirical analysis.
Table 9 summarizes the basic benchmarks that can now be used throughout the DoD.

- 452 -

Table 9. Basic Benchmarks for DoD Software Projects

While this information is valuable, there was not enough background data on projects
to investigate some important issues, such as why best and worst projects perform
differently. This leads to the next steps. There is an effort to link the project data back to
source documents and other data to provide the capability to investigate the data more fully.
There is a lot of data and source material, and some progress has been made to date with a
lot more to do. While more analysis will be done, we would like to hear from you. What are
the important questions that need answers? For comments and suggestions, please
contact: fact-book@sei.cmu.edu.

- 453 -

Reference
Boehm, B., Abts, C., Brown, W., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer,

R., & Steece, B. (2000). Software cost estimation with COCOMO II. Prentice Hall.

Disclaimer and Distribution Statement
Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and
development center.

The view, opinions, and/or findings contained in this material are those of the
author(s) and should not be construed as an official Government position, policy, or
decision, unless designated by other documentation.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties of
any kind, either expressed or implied, as to any matter including, but not limited to, warranty
of fitness for purpose or merchantability, exclusivity, or results obtained from use of the
material. Carnegie Mellon University does not make any warranty of any kind with respect to
freedom from patent, trademark, or copyright infringement.

[Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM18-0428

www.acquisitionresearch.net

