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Abstract 
The approach of the Department of Defense (DoD) to acquisition programs is 

strongly based on systems engineering. DoD Directive 5000.01 calls for “the application of a 
systems engineering approach that optimizes total system performance and minimizes total 
ownership costs” (DoD, 2007). Even when systems engineering best practices are 
employed, the cost of large systems is always increasing, and a large part of this increase is 
due to system complexity (Arena et al., 2008). 

Part of this system complexity comes from the functionalities of the system, and is 
thus justified when these functionalities are required. The remaining contribution is due to 
unnecessary intricacies in the design, to local optimization, and to oversight in the system-
level design. This complexity can lead to rising cost and schedule delays, and should be 
addressed properly. To overcome these issues regarding cost and schedule overruns, 
researchers have advocated for the adoption of a complexity budget (Sinha, 2014), which 
can help identify the effects of unintended interfaces between system elements. While most 
literature seems to agree about the existence of this issue, the solutions to the 
measurement of complexity are various and based on different approaches. 

The purpose of this research is to develop metrics that will allow the DoD to evaluate 
a complexity budget, particularly in the phases of architecture and design development. The 
metrics are developed using a set of axioms that can be applied to cyber-physical systems, 
and they assume that the architecture of the system is known. Knowledge of the system 
architecture allows for a graph representation of the system and uses graph-theoretic 
approaches to the evaluation of the topology of the system. Concepts such as graph density 
and graph energy can be used to build metrics that allow to rank architectures, thus helping 
identify possible sources of complexity. Additionally, this approach allows engineers to look 
external to the system to identify the complexity required to interoperate with legacy DoD 
systems and systems under development. This research effort is limited to a snapshot of the 
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state of the system, but can be extended to a dynamical approach with a system changing 
state or changing its structure. 

Introduction 
Complexity in engineered systems is a double-edged sword. Part of it is due to the 

functionalities of the system, and part of it to the unnecessary intricacies which deviate the 
final design from an elegant solution, the optimal one. The excess complexity in engineered 
systems can potentially contribute to increased partial or systemic risks and increased 
fragility of the system in face of various shocks and environmental changes. 

The first attempts at heavier-than-air flight were carried out by small teams of people 
that we would today call innovators. The goal of those systems was to achieve leveled flight 
over a relatively short distance. As time passed, the requirements for airplanes increased in 
almost all the applications, from military to commercial flight. The need to carry cargo, 
payloads, or passengers over increasing distances, in shorter time, at a viable cost, safely, 
and reliably has led to an increase in the complexity of these systems over the last 100 
years. As a result, today's airplane manufacturers employ tens of thousands of people, and 
have a hierarchy of suppliers with an even larger total workforce. In addition, the 
development time for a new program has also increased due to the overall increase in 
complexity. 

Airplanes are only one of the many examples of engineered systems where an 
increase in complexity is connected to an increase in cost as well as increased fragility and 
risks of the system. The costs associated with larger complexity are justified only when they 
are dictated by system requirements. These design decisions can contribute to the 
functionality of the system (i.e., functional requirements), or increase system-level 
characteristics such as resilience, reliability, or safety (i.e., non-functional requirements). 
According to Carlson and Doyle (2002), robustness is the maintenance of desired 
characteristics despite the failure or partial performance of some components of the system, 
and is correlated with complexity. As long as there is a reason for a design decision, and 
there cannot be a simpler solution obtaining the same effect at the system level, the 
increase in complexity is justified. When the increase in complexity is unintended and 
contributes to system fragility, then the design solution is not optimal and should be avoided 
or modified. Unfortunately, to determine the optimality of a design solution, it is necessary to 
have a deep knowledge of the specific application field, and to have a large set of possible 
solutions for comparison. 

The Department of Defense (DoD) faces challenges in managing complexity, 
integration, and management of the complex network of systems that it has developed over 
the past 30 years. In 1996, the Vice Chairman of the Joint Chiefs of Staff proposed 
warfighting capability would be more reliant on systems of systems (SoS) and network 
centric operations (Owens, 1996). As such, DoD systems are becoming more and more 
complex, interconnected, and reliant on other systems to provide capability to the user. This 
creates a complex environment in which systems connect to each other through a variety of 
means that may not be initially evident to systems engineers. When these systems operate 
on the battlefield, they often cross service boundaries, but their development within the 
service makes collaboration difficult in traditionally hierarchal military structures (Dahmann & 
Baldwin, 2008). Additionally, the Government Accountability Office (GAO; 2015) found that 
the DoD lacked methods and tools for conducting portfolio management at the enterprise 
level for capabilities, and noted that there were gaps in the DoD’s ability to identify, 
understand, and assess the capability portfolio. 
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This paper presents and builds on a complexity theory, network analysis, and 
systems engineering to propose a method to understand the complexity budget of a network 
of systems. It examines how the addition of a new system to a network of legacy systems 
affects the complexity of the network. As an example, the paper examines the addition of 
the F-35 Joint Strike Fighter (JSF) to the network of DoD systems and its effect on the 
complexity of the network. It examines the complexity of the network before the DoD fielded 
F 35A/B/Cs, during the transition to the JSF, and post deployment after the DoD replaced 
the legacy systems with the F-35 variants. 

Literature Review 
This section presents a review of the relevant literature to include a discussion on 

systems engineering, complexity theory, and network analysis. The portion on systems 
engineering focuses on the foundation of systems engineering and the application of the 
ilities to help engineers manage complexity and the non-functional attributes of engineered 
systems. Additionally, the literature review includes a discussion on complexity theory and 
the impact of increases in technology and reliance on other systems. Finally, the literature 
provides an overview of network analysis techniques that serve as a basis for the 
quantification of complexity and analysis of the network of DoD systems. 

Systems Engineering 

As a discipline, systems engineering faces increased complexity of systems as 
technology progress and systems are more interconnected. In 2006, a workshop consisting 
of thought leaders from a variety of disciplines met to discuss the issue of complex systems, 
and one area that received substantial attention was the modeling of complex systems with 
an emphasis on the dynamic, networked nature of systems (Rouse, 2007). International 
Council on Systems Engineering (INCOSE) defines Systems Engineering as “an 
interdisciplinary approach and means to enable the realization of successful systems. It 
focuses on defining customer needs and required functionality early in the development 
cycle, documenting requirements, and then proceeding with design synthesis and system 
validation while considering the complete problem” (INCOSE, 2007).  

Systems engineers differ from traditional engineers in that they consider the system 
in its entirety, lead the conceptual design of systems, and bridge the gaps between 
traditional engineering (Kossiakoff et al., 2011). As such, systems engineers have 
developed a variety of means—system architecture, system of systems analysis, and 
enterprise architecture—to deal with complexity. To manage complexity and the qualitative 
nature of systems engineering, systems engineers have developed the ilities as a construct 
for assessing nonfunctional attributes of a system. Systems engineers have begun to 
recognize the criticality of these non-traditional design criteria and have begun to include 
them in the design of systems (McManus et al., 2009). However, these properties and 
attributes of a system often manifest themselves after engineers have designed and put the 
system into operation (de Weck et al., 2012). Further study of the ilities examines how 
system-level ilities begin to emerge from the subsystem level, where systems engineers can 
design in these non-functional attributes (Lee & Collins, 2017). 
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Complexity Theory 

Wade and Heydari (2014) categorized complexity definition into three major groups, 
according to the point of view of the observer. When the observer is external to the system 
and can only interact with it as a black box, then the type of complexity that can be 
measured is called behavioral complexity, since it looks at the overall behavior of the 
system. When the observer has access to the internal structure of the system, such as 
blueprints and source code for engineered systems or scientific knowledge for natural 
systems, then the structural complexity of the system is what is being measured. If the 
process of constructing the entity is under observation, then it is the constructive complexity 
being measured, which is the complexity of the building process. This definition relates 
complexity to the difficulty of determining the output of the system. 

Sheard and Mostashari (2011) developed a framework for the categorization of 
complexity types. Engineered systems have two types of complexity: structural and 
dynamic. Dynamic complexity can be short term or long term. Short term complexity is 
related to the operation of the system. System behavior can be unpredictable due to non-
linear relationships among the system components. The environment can also play a major 
role on system behavior. Long-term complexity is related with the evolution of the system, its 
growth, and its adaptation to its environment which plays an important role in shaping the 
new generations. Structural complexity is instead interested in a snapshot of the system 
architecture and can be divided into three components: size, connectivity, and topology. 

Metrics of structural complexity have been proposed in literature. The most common 
type of metrics is based on the concepts of entropy (Akundi, 2016; Gell-Mann & 
Lloyd,1996), information content, or logical depth (Fischi, Nilchiani, & Wade, 2016). Another 
common type of structural complexity metrics considers the spectrum (the set of 
eigenvalues) of the graph representation of the system. These metrics are known as 
spectral metrics and are the ones adopted in this research. The fist spectral metric, 
proposed by Gutman in 1978 (Gutman, 2011), is known as Graph Energy and is 
represented by 

𝐸 (𝐺) = |𝜆 |                                                                                        (1) 

where 𝜆  are the eigenvalues of the adjacency matrix of the graph G. A variation of this 
metric, proposed by Gutman as well (Gutman & Zhou, 2006), is the Laplacian Graph 
Energy, represented as 

𝐸 (𝐺) = 𝜇 −
2𝑚

𝑛
                                                                             (2) 

where 𝜇  are the eigenvalues of the Laplacian matrix, 𝑛 the number of nodes and 𝑚 the 
number of edges of the graph G. Cavers, Fallat, and Kirkland (2010) provided a 
generalization of these two metrics that can be applied to any matrix representing a graph, 
which is represented by 

𝐸 (𝐺) = 𝜆 (𝑀) −
𝑡𝑟(𝑀)

𝑛
                                                                (3) 

where 𝜆 (𝑀) are the eigenvalues of the matrix M, and 𝑡𝑟(𝑀) its trace. 



- 140 - 

Graph energy has been embedded in a structural complexity metric provided by 
Sinha (2014), as a contribution of the topology of the graph. The formula 

𝐶(𝑛, 𝑚, 𝐴) = 𝛼 + 𝛽 𝐴 𝛾𝐸(𝐴)                                           (4) 

where 𝛼  represents the inner complexity of each node, and 𝛽  the complexity of the edges, 
is based on the idea that structural complexity has three contributions: components, 
connections, and topology (Sheard & Mostashari, 2011). 

Another type of spectral structural metric has been proposed by Wu et al. (2010) 
considers the eigenvalues of the adjacency matrix as an exponential function, and adjusts 
the value through a logarithmic scale 

𝑁 (𝐺) = ln
1

𝑛
𝑒                                                                         (5) 

The coefficient 1/𝑛 is a way of normalizing the graph according to the number of 
nodes, which allows one to compare graphs of different sizes. This approach has been used 
by Sinha as well with the coefficient 𝛾 = 1/𝑛. These metrics have been used as a starting 
point for the development of 12 metrics that consider the system as a graph and are based 
on the eigenvalues of a certain matrix representing this graph. 

Capability Development in the DoD 

The DoD generates requirements through the Joint Capability Integration and 
Development (JCIDS) process, which they then pass to the acquisitions community to 
develop and procure warfighting systems. As a part of this process, DoD systems engineers 
analyze the current state of legacy systems and determine how the new capability will 
integrate with these systems. The DoD designed the system to ensure validated military 
capability requirements support resourcing decisions for programs. The 2003 Joint Defense 
Capability Study first presented the concept of JCIDS and proposed a transition from 
requirements-based acquisition to a capability-based approach (Joint Chiefs of Staff, 2004). 
The JCIDS process supports the Chairman’s and the Joint Requirements Oversight 
Committee’s (JROC) statutory responsibilities to identify, assess, validate, and prioritize joint 
military capability requirements (Joint Chiefs of Staff, 2012a). The JCIDS process requires 
sponsors to generate three main documents—Initial Capability Document (ICD), Capability 
Development Document (CDD), and the Capability Production Document (CPD)—that 
support different phases in the development and acquisition process by providing 
traceability from warfighter capability requirements to fielded systems (Joint Chiefs of Staff, 
2012b). 

As part of the JCIDS process, the Joint Staff requires several DoD Architecture 
Framework (DoDAF) viewpoints to support the development of warfighter capabilities. 
Architecture frameworks assist decision makers by serving as a communication tool by 
presenting a manageable amount of information from a set of data to assist stakeholders in 
managing complex systems (Richards et al., 2006). System architects use DoDAF, one of 
several common frameworks, to capture multiple perspectives of a warfighting capability’s 
system architecture. All architecture frameworks include specific taxonomies, artifacts, and 
terminologies for describing a system to ensure standardization across multiple individual 
architectures (Friedenthal, Moore, & Steiner, 2012). DoDAF includes eight different 
viewpoints that capture data relevant capability requirements, integration, military 
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operations, and program management aspects of a system (DoD Chief Information Officer, 
2010). The DoD designed DoDAF to meet the needs of a diverse set of stakeholders and 
decision makers by abstracting essential pieces of information and presenting them in 
manageable pieces depending on their perspective (DoD Chief Information Officer, 2010). 
The required DoDAF products provide valuable data at the individual system level; however, 
they do not provide much insight into the larger, aggregated network of systems. 

One shortfall of the DoDAF architectures used in capability development is that they 
do not capture a DoD-wide perspective of the interactions between individual systems. 
Several efforts have attempted to aggregate independent DoDAF products along mission 
threads; however, they still limit their approach to a subset of the entire DoD capability 
network of systems. Ring et al. (2009) proposed the Activity-Based Methodology, which 
aggregates DoDAF architectures into an integrated architecture that captures the 
organization, system, and role aspects of DoD systems. Another effort proposed 
aggregating independent architectures through a system, capability, and mission 
perspective by utilizing independent DoDAF viewpoints (Enos, 2014). 

F-35 Joint Strike Fighter 

The F-35 JSF is a joint, multi-role fighter and attack aircraft that is entering service 
with the Air Force, Navy, and Marines to replace a variety of legacy systems. The F-35 is a 
fifth-generation fighter aircraft that incorporates stealth technology into the design of the 
aircraft and uses a common airframe across all three versions of the aircraft (Church, 2015). 
The F-35A is the conventional take-off and landing version of the JSF that incorporates an 
advanced sensor package and situational awareness capability to drastically improve the 
effectiveness of the aircraft (U.S. Air Force, 2014). The Air Force plans to replace both the 
F-16 and A-10 with the F 35A beginning in 2016 as it fields their version of the F-35 in air-
superiority, suppression of enemy air defense, and close air support roles (Church, 2015). 
The Marine Corps began fielding the F-35B short takeoff and vertical landing (STOVL) 
version of the JSF in that provides the capability to take off and land on extremely short 
runways. The Marine Corps plans to use the F-35B to replace both the F/A-18 Hornet and 
the A/V-8B Harrier II with the JSF (JSF Program Office, 2017). The Navy’s version of the 
JSF, the F-35C, includes increased wing area and structural enhancements to support 
carrier landings and take offs. The Navy plans to replace the F/A-18 with the JSF to serve as 
its primary air superiority and attack aircraft (JSF Program Office, 2017).  

Methodology 
This section presents the methodology that the authors adopted in the formulation of 

new spectral structural complexity metrics, and the data collection strategy for the 
characterization of the complex tactical aircraft system of systems. 

Development of Complexity Metrics 

The metrics presented in this paper are all spectral complexity metrics, meaning that 
they are based on the eigenvalues of a certain graph representation of the system. To 
represent the graphs, three different matrices are used: the adjacency matrix, the Laplacian 
matrix, and the normalized Laplacian matrix. The adjacency matrix is the most frequently 
used representation of an architecture within the systems engineering domain. Also known 
as Design Structure Matrix (DSM; Yassine & Braha, 2003), or 𝑁  matrix, it is used to 
represent the interfaces and their arrangement, and allows one to make considerations on 
architectural modularity and clustering of components. The Laplacian matrix includes 
additional information with respect to the adjacency one, specifically regarding the degree of 
each component. The normalized Laplacian matrix has an interesting spectrum that is 
related to other graph invariants more than the spectra of the other two matrices (Chung, 
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1997). These three matrices are considered in their weighted variations, where edges and 
vertices of the graph carry different weights. The metrics are based on two similar concepts, 
graph energy and natural connectivity, which as seen in the previous section are both 
functions of the eigenvalues of the matrix representation of the system. A corrective 
coefficient 𝛾 = 1/𝑛 to compare graphs with different number of nodes is included in the 
definition of natural connectivity (Wu et al., 2010) and in Sinha’s (2014) structural complexity 
metric. 

The metrics are applied to two sets of random graphs, generated through Erdõs-
Rényi (ER) and Barabási Albert (BA) algorithms. The values of each metric are plotted 
against graph density, which is defined as 

𝑑 =
( )

                                                                                       (6)  

for undirected graphs, and as 

𝑑 =
𝑚

𝑛(𝑛 − 1)
                                                                                  (7) 

for directed graphs, where 𝑛 is the number of nodes and 𝑚 is the number of edges in the 
graph G. 

Another graph indicator used in this research is graph diameter, defined as the 
maximum shortest path between all pairs of nodes in the graph. In absence of accurate 
information regarding the internal structure of nodes, which is usually the case in system of 
systems applications, where one organization cannot access data belonging to external 
actors, the complexity of the nodes can be approximated with the degree of the node 
𝛼 = deg 𝑣 , and 𝛽 = 𝛼 𝛼 . 

Metrics such as graph energy and natural connectivity, which have been introduced 
in the previous section, can be represented through the following formula 

𝐶(𝑆) = 𝑓 𝛾 𝑔 𝜆 (𝑀) −
𝑡𝑟(𝑀)

𝑛
                                                    (8) 

where 𝑓 (𝑥) = 𝑥, 𝑔 (𝑦) = |𝑦|, 𝑓 (𝑥) = ln 𝑥 , 𝑔 (𝑦) = 𝑒  are the possible values for the 
functions 𝑓 and 𝑔, the coefficient 𝛾 can be 𝛾 = 1, 𝛾 = 𝑛 , and the matrix representation of 
the graph can be either 𝑀 = 𝐴, 𝑀 = 𝐿, 𝑀 = ℒ, which have been defined in our previous 
publication (Nilchiani & Pugliese, 2016). 

Table 1 shows the metrics that can be derived from this formula through 
combinations of these parameters. Two sets of functions, two values for the coefficient 𝛾, 
and three matrices, give 12 possible metrics. Throughout this paper, the metrics are referred 
to using acronyms: graph energy (GE), Laplacian graph energy (LGE), normalized 
Laplacian graph energy (NLGE), natural connectivity (NC), Laplacian natural connectivity 
(LNC), normalized Laplacian natural connectivity (NLNC), and where 𝛾 = 1/𝑛, the acronym 
has a trailing n, such as in (GEn). These metrics will be applied in the next section to sets of 
random graphs, and to the TACAIR system of systems. 
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Table 1. Twelve Examples of Spectral Structural Complexity Metrics 

 

TACAIR System of Systems 

This section presents an overview of the methodology to develop three individual 
networks of systems that capture the “as-is,” “transitional,” and “to-be” networks. A variety of 
publicly available sources provide the necessary data to develop the network of systems 
and identify connections between the systems (Church, 2015; JSF Program Office, 2017). 
The network captures interoperability connections between the systems that include 
information flows, shared resources, and physical connections (Enos & Nilchiani, 2017). 
Table 2 presents an excerpt from the entire adjacency matrix for the tactical aircraft network 
of systems. A complete matrix for each of the networks captures the data required to 
analyze the complexity of the network. 

Table 2. Excerpt From Adjacency Matrix 

 

The “as-is” network captures the systems that comprise the DoD’s tactical aircraft 
system and consists of aircraft, munitions, sensors, and communication systems prior to the 
fielding of the F-35. The “transitional” includes all the legacy aircraft as well as the JSF and 
its connections that represents the DoD network as the Air Force, Navy, and Marine Corps 
transition to the F-35 from their legacy aircraft. Finally, the “to-be” network depicts the DoD’s 
network of tactical aircraft and systems after the three services retire the systems the F-35 is 
scheduled to replace.  
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Figure 1 presents the graphical depiction of the “as-is” network of DoD tactical 
aircraft systems and represents the past version of the network prior to the deployment of 
the F-35 JSF variants. This network captures various types of systems that operate together 
to provide the DoD with tactical aircraft capability to include the aircraft, munitions, sensors, 
satellites, weapons, and command, control, communications, computer, and intelligence 
(C4I) systems. In the graph, the colors represent the various services, the shapes of the 
nodes represent the type of system, and the size of the node represents its degree. This 
network represents the DoD’s tactical aircraft systems prior to the development of the JSF 
and provides the baseline for analyzing the complexity of the network. 

 

Figure 1. As-Is Network of DoD Tactical Aircraft Systems 

Figure 2 presents the graphical depiction of the network and the connections that will 
be present during the transition from the legacy aircraft to the JSF variants. In this case, 
both the JSF and the aircraft the services plan to replace with the F-35 variants are included 
in the network along with any of their connections to other systems in the network. This 
version of the network provides a means to evaluate the complexity of the network during 
the transition period to the JSF which could impact resource expenditures, maintenance, 
supply operations, and tactical operations of the DoD. 

Figure 3 presents the final version of the network and represents the “to-be” tactical 
aircraft network after the services retire the legacy systems that they are replacing with the 
F-35. In this case, the network does not include the retired A-10, F-16, F/A-18, and AV-8B 
systems from the Air Force, Navy, and Marine Corps. In addition to the four retired systems, 
the network removes systems that may not be retired but no longer connect to the network 
to include the Hydra Rockets, AN/APG-79 AESA Radar, and Mk 63 Sea Mine. This does not 
indicate that these systems could also be retired as they may be used by other systems; 
however, it does affect the complexity of the tactical aircraft network. This version of the 
network provides the means to calculate the complexity of the network after a complete 
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transition to the JSF and can determine if the DoD increased or decreased the complexity of 
its tactical aircraft network. 

 

Figure 2. “Transitional” Network of DoD Tactical Aircraft Systems 

 

Figure 3. “To-Be” Network of Tactical Aircraft Systems 



- 146 - 

Analysis and Results 
The metrics have been applied to two sets of random graphs, generated with ER and 

BA models respectively. The sets of graphs contain approximately 23,000 and 38,000 
unique labeled graphs. 

Figure 4 represents the values that the 12 spectral structural metrics assume when 
applied to the ER set of random graphs. Most of the metrics have a positive correlation with 
the number of nodes in the graph, meaning that the metric value is higher when the number 
of nodes is higher. This is the expected behavior for a complexity metric, and the two 
metrics that do not follow it, NLGEn and NLNCn, are not suitable as complexity metrics. 

 

Figure 4. Metric vs. Density Plots With Color Scale According to Number of 
Nodes, for Each Metric, for Graphs Generated Using the Erdõs-Rényi 

Algorithm 
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From Figure 5 it is possible to see that for ER random graphs the diameter is high 
with low density graphs, and low when the density is high. This relationship is expected 
since the complete graph has diameter one and removing edges creates an increase of the 
shortest path between pairs of nodes. Although valid for ER graphs, the relationship 
between density and diameter is not general, since star graphs and path graphs with the 
same number of nodes have the same density, but the former have diameter 2 while the 
latter have diameter 𝑛 − 1. This means that for high 𝑛, the diameter of these two types of 
graphs is very different. This is one limitation of the ER algorithm, which will not generate 
star graphs, or graphs with highly skewed degree distributions, given its uniform probability 
of edge creation. 

To overcome the limitations of the ER model, and to better mimic the topology of 
engineered systems with heterogeneous components, a set of graphs has been generated 
using the BA model. These graphs have a more skewed degree distribution, given by the 
preferential attachment strategy. 
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Figure 5. Metric vs. Density Plots With Color Scale According to Diameter, for 
Each Metric, for Graphs Generated Using the Erdõs-Rényi Algorithm 

Figure 6 shows the metrics evaluated for the set of BA random graphs. Given the 
way the algorithm works, these graphs do not span the whole density range, but stop at 
𝑑 = 0.57. The main feature of these point clouds is a folding, a bifurcation, so that graphs 
with the same density will belong to two distinct sets with a high and low value of each 
metric respectively. This bifurcation gives meaning to the metrics, highlighting the fact that 
they are responsive to topological changes. 
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Figure 6. Metric vs. Density Plots With Color Scale According to Number of 
Nodes, for Each Metric, for Graphs Generated Using the Barabási-Albert 

Algorithm 

Figure 7 shows that this bifurcation in BA random graphs is related to the diameter of 
the graphs. The diameter does not have the same trend as in ER graphs. Graphs with low 
density which have high diameter and low diameter exist. These two sets are represented 
by trees with high depth and stars, respectively. While a star topology is not common in 
engineered systems, since it is subject to bottlenecks and the complexity of the central node 
would tend to be too high, trees are common structures for engineered systems, where a 
certain level of decentralization is in order. Even in the presence of cycles, when the graph 
is not a tree anymore, a diameter value of 10 in a graph of 25 nodes is representative of 
engineered systems. 
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Figure 7. Metric vs. Density Plots With Color Scale According to Diameter, for 
Each Metric, for Graphs Generated Using the Barabási-Albert Algorithm 

Analysis of the TACAIR System of Systems 

The TACAIR system of system, in its three versions presented earlier, is undergoing 
radical changes. The introduction of the F-35 in the operational scenario and the 
subsequent retirement of legacy systems is causing modifications to the network topology. 
The number of nodes went from 82 to 85 and will go down to 77, and the number of 
interfaces went from 384 to 466 and will be 347 once the transition is complete. This leads 
to a density value going from 0.115 to 0.130, and to 0.118 in future. This density variation is 
not accompanied by a change in diameter which remains constant to 5, due to the centrality 
of the nodes that are being added and removed from the network. In this case, the metrics 
are beneficial to the network analysis, since they can tell more than the diameter about the 
topology of the network. 
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Figure 8 shows the metrics applied to the TACAIR system of systems. Other than 
NLGEn and NLNCn, which we have already ruled out as reliable complexity metrics, and 
NLGE, the other metrics agree that the introduction of the F-35 represents an increase in 
the complexity of the network. Most of the metrics, other than NC and NCn, also agree that 
the retirement of the legacy systems is beneficial for the network and will lead to a 
simplification of the overall network. 

 

Figure 8. Evaluation of Spectral Structural Complexity Metrics With the Evolving 
Versions of the TACAIR System of Systems 
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Conclusion and Future Work 
This paper presented an approach to the measurement of structural complexity that 

involves the measurement of the eigenvalues of a matrix representation of the system. 
Twelve spectral metrics have been created, based on features of existing metrics. The 
metrics have been applied to two sets of graphs, generated using the Erdõs-Rényi (ER) and 
Barabási Albert (BA) algorithms respectively. It is argued how the application of these 
algorithms to the generation of graphs representing engineered systems should be carried 
out together with considerations about the heterogeneity of the components of the system 
and the expected distribution of node degree. ER models having a close to uniform 
distribution of node degree are applicable to the representation of homogeneous graphs, 
such as networks of routers, in which all the components have the same tasks and 
functionalities. When specialization arises, and the components of a system are wildly 
heterogeneous, the degree distribution is highly skewed, and BA models are more 
appropriate. 

The application to the TACAIR system of systems is an example of how the 
operational scenario can become complex thanks to the relationships between different 
types of systems, and how the introduction of new systems and the retirement of legacy 
ones can be beneficial to the management of the network, by streamlining the supplying of 
common resources and reducing the diversity of systems that achieve the same 
functionalities. Of course, this type of analysis can be improved when details about the 
architecture of each system are available, and the interfaces can be modeled with high 
fidelity regarding the timing and range of connections. 

Limiting the approach to publicly available data allowed us to assume the point of 
view of an external actor who is interested in introducing a new system in an already 
existing environment. Examples of such systems can be the introduction of a new type of 
transportation system, such as the hyperloop concept, within the already existing network of 
air, sea, and land transportation systems, or the introduction of a new surgical tool to be 
used in conjunction with the existing set of operation room equipment. 

In the future, if detailed data is available regarding one of the existing systems in the 
network, it would be possible to analyze the network and yield more insightful considerations 
about the retirement of such systems and the effect on the overall network. 
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