
SYM-AM-18-090

Acquisition Research:
Creating Synergy for Informed Change

May 9–10, 2018

March 30, 2018

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

- 266 -

Applying Cause-Effect Mapping to Assess Cybersecurity
Vulnerabilities in Model-Centric Acquisition Program

Environments

Jack Reid—is a graduate student with the Systems Engineering Advancement Research Initiative
(SEAri) at the Massachusetts Institute of Technology. Reid is earning master’s degrees in both
Aeronautics & Astronautics and Technology & Policy. His research interests concern the design and
management of complex sociotechnical systems, particularly with regard to the anticipation of
emergent and cascading behavior. He received a BS in Mechanical Engineering and a BA in
Philosophy from Texas A&M University and has experience with RAND Corporation and Sandia
National Laboratories. [jackreid@mit.edu]

Donna H. Rhodes—is a principal research scientist at the Massachusetts Institute of Technology,
and director of the Systems Engineering Advancement Research Initiative (SEAri). Dr. Rhodes
conducts research on innovative approaches and methods for architecting complex systems and
enterprises, designing for uncertain futures, and human-model interaction. Previously, she held senior
management positions at IBM, Lockheed Martin, and Lucent. Dr. Rhodes is a Past President and
Fellow of the International Council on Systems Engineering (INCOSE), and INCOSE Founders Award
recipient. She received her PhD in Systems Science from T. J. Watson School of Engineering at
Binghamton University. [rhodes@mit.edu]

Abstract
Digital engineering approaches are increasingly used in acquisition of systems,

changing the current paradigm from documentation-centric to model-centric. Not only are
these systems highly vulnerable to cyber threats, so too are their enabling environment and
digital assets. While good practices have emerged to support the shift to model-centric
program acquisition, such programs experience perturbations over their life cycles that
introduce new vulnerabilities that may lead to cascading failures. Cybersecurity
vulnerabilities are of particular concern given digital transformation and increasing threat
actors, making vulnerability assessment essential throughout acquisition program life cycles.
This paper discusses ongoing research that seeks to provide program managers with the
means to identify cybersecurity vulnerabilities within model-centric programs (along with
other model-related vulnerabilities) and determine where interventions can most effectively
be taken. The research builds on recent work in developing a reference model for model-
centric program vulnerability assessment that uses the Cause-Effect Mapping (CEM)
analytic technique. This research investigates cybersecurity specifically, using CEM and
other dynamic analysis approaches, including a prototype for proactive assessment of
cybersecurity and evaluation of potential interventions.

Introduction
Digital transformation changes how systems are acquired and developed through the

use of model-centric engineering practices and toolsets. While offering great benefit, new
challenges arise from both technological and socio-cultural dimensions. This drives the need
to examine and address vulnerabilities not only for products and systems, but also for the
model-centric environments necessary for their acquisition and development. Recent
research has investigated the use of Cause-Effect Mapping (CEM) as a mechanism for
better enabling program managers and system engineers to anticipate and respond to
programmatic vulnerabilities as related to model-centric environments. A Reference CEM for
model-centric enterprises resulting from the work shows promise for considering the
cascading vulnerabilities and potential intervention options. In ongoing research, additional

- 267 -

investigation aims to refine the Reference CEM and analytic approach for cybersecurity-
focused program vulnerability assessment.

Motivation

Modern society has many needs and problems that can only be addressed through
large-scale socio-technical engineering programs (e.g., defense systems, multi-modal
transportation systems, energy delivery system of systems, health-care management
systems). The use of model-centric approaches, modeling and simulation, and “digital twins”
is increasingly used in acquisition of such systems, changing the current paradigm from
documentation-centric to model-centric. Not only are these systems highly vulnerable to
cyber threats, so too are their enabling environment and digital assets. While good practices
have emerged to support the shift to model-centric program acquisition, such programs
experience perturbations over their life cycles that introduce new vulnerabilities that may
lead to cascading failures. For instance, perturbations may be caused by policy change
(leading to IP disagreements), economic factors (leading to training cuts), or disruptive
technology (leading to outdated infrastructure). Early detection and intervention of
vulnerabilities can mitigate disruptions and failures. The research seeks to contribute to the
vulnerability assessment state of practice for acquisition programs, both public and private,
that increasingly depend on digital assets and model-centric environments.

Background
The following subsections describe model-centric engineering, cyber-security

vulnerability assessment, and cause-effect mapping. A companion paper (Reid & Rhodes,
2018) provides additional background information.

Model-Centric Engineering

Acquisition program management is grounded in management science and a sound
set of practices evolved over decades; however, new challenges arise as acquisition
becomes increasingly model-centric. Baldwin and Lucero (2016) state, “The DoD sees value
in adopting digital engineering design and model-centric practices, enabling a shift from the
linear, document centric acquisition and engineering process toward a dynamic digital,
model-centric ecosystem.”

Model-Centric Engineering (MCE) has been defined as “an overarching digital
engineering approach that integrates different model types with simulations, surrogates,
systems and components at different levels of abstraction and fidelity across disciplines
throughout the lifecycle” (Blackburn et al., 2017). MCE involves using integrated models
across disciplines, subsystems, life-cycle stages, and analyst groups. It uses models as the
“source of truth” to reduce document handoff and allow for more continuous evaluation. This
reduces communication time and rework in response to requirement changes. Most
discussions of MCE focus on engineering practices and methods to overcome
implementation difficulties. In any system, however, engineering is only a piece of the
problem. Numerous human factors, business, and organizational issues exist. Current
program managers have significant experience with modern engineering processes and use
this experience to identify and mitigate vulnerabilities. No such experience exists with MCE,
however. This fact, coupled with the increased integration of models, means that emergent
uncertainties (policy change, budget cuts, disruptive technologies, threats, changing
demographics, etc.) and related programmatic decisions (e.g., staff cuts, reduced training
hours) may lead to cascading vulnerabilities within MCE programs, potentially jeopardizing
program success. New tools are needed to enable program managers to identify model-
centric program vulnerabilities and determine where interventions can most effectively be
taken.

- 268 -

Cybersecurity Vulnerability Assessment

MCE, with its focus on digitization, integration, and collaboration, has the potential to
increase the cybersecurity vulnerability of an enterprise. A vulnerability is the means by
which the hazard might disrupt the system, thus it is through the vulnerability that the system
is susceptible to the hazard. Vulnerabilities are best expressed as the causal series of
events connecting a hazard to system failure. This is a generalization of common, field-
specific usages of the term. MITRE’s Common Vulnerabilities and Exposures (CVE)
database defines a vulnerability as “a weakness in the computational logic (e.g., code)
found in software and some hardware components (e.g., firmware) that, when exploited,
results in a negative impact to confidentiality, integrity, OR availability” (The MITRE
Corporation, 2015). In this definition, the same components can be seen: some structural
means or “weakness” that can result in system disruption or “negative impact” if a hazard is
present or the vulnerability is “exploited.” For example, the infamous Spectre security
vulnerability is described by CVE as “systems with microprocessors utilizing speculative
execution and branch prediction may allow unauthorized disclosure of information to an
attacker with local user access via a side-channel analysis” (The MITRE Corporation, 2017).
This is a neat summary of the hazard (an attacker), the means (side-channel analysis using
speculative execution and branch prediction), and the disruption (unauthorized disclosure of
information).

Risk and vulnerability assessment methods have not failed to adapt to novel
cybersecurity concerns. The aforementioned CVE database has been public since 1999.
Quality assurance testing (essentially the verification and validation of software) has been
around since the beginning of commercial software. Software penetration testing (where
security experts intentionally seek to break a software product) has been the industry norm
for more than a decade (Arkin, Stender, & McGraw, 2005). Black-box mutational fuzzing and
concolic execution are being used to automatically test for certain types of software
vulnerabilities (Schwarz, 2018). Formal verification tools, initially limited to pure software
domains such as cryptography (Meadows, 1994), has been rapidly advancing and finding
applications in hardware (Kern & Greenstreet, 1999) and business processes (Morimoto,
2008), as well as fields that straddle the software-hardware-environment boundaries (Kamali
et al., 2016). The methods listed here just scratch the surface of approaches security
researchers and engineers are taking to identify and resolve such technical cybersecurity
vulnerabilities.

Beyond these specific testing methods, assessment frameworks have progressed as
well. System-Theoretic Process Analysis (STPA) has adjusted, adapted, and been applied
to handle cybersecurity vulnerabilities associated with additive manufacturing (Pope &
Yampolskiy, 2016), Internet of Things (Pope, 2017), Air Operations (Young, 2013), and
Mission Operations (Young & Porada, 2017). More recently, there have also been efforts to
combine compiler technology with STPA to automatically detect vulnerabilities in software-
controlled systems (Pope, 2018).

While cybersecurity vulnerabilities in operational systems remain alarmingly
common, from the trivial (Hanselman, 2012) to the critical (Gressin, 2017), there is some
evidence that software is becoming more secure, at least in terms of defects per line of
equivalent source code (Pope, 2017). In many cases, however, the acquisition or
development process itself needs to be protected from outside threats and endogenous
failures. Be it military information or technology-related trade secrets, there is real value in
attempting to penetrate much earlier in the life cycle in order to either steal secrets (Hanna,
Smythe, & Martin, 2018; Raymond, 2017) or to disrupt production (Statt, 2018).

- 269 -

Defense acquisition programs have already instituted a variety of means of ensuring
the security of their work. Some of these means were originally instituted to address other
forms of threats but have turned out to be effective in addressing cybersecurity as well.
These methods include relying on the security clearance process, the use of Sensitive
Compartmented Information Facilities (SCIFs), restrictions on the use of media storage
devices, separate networks such as SIPRNet and NIPRNet that are isolated or semi-isolated
from the internet, and general compartmentalization of critical information. Some (non-U.S.)
defense agencies have gone so far as to revert to using typewriters where able in order to
avoid security breaches and leaks (Irvine & Parfitt, 2013).

Unfortunately, many of these historically successful methods are in conflict with the
more straightforward implementations of many components of an MCE environment. For
example, the use of SCIFs has been quite successful in preventing unauthorized access to
data. The typical use of a SCIF in the design process, where a small number of engineers
work on a task isolated from the outside world, is not directly compatible with an MCE
environment structured around model integration and collaboration across teams and
locations. While this problem has been previously considered and ways to mitigate this
conflict have been proposed (e.g., Reid & Rhodes, 2016), no silver bullet to resolving these
tensions exists and it is likely that the increased use of MCE will result in both the
exacerbation of current vulnerabilities and the creation of new ones. Furthermore, most
means of assessing such vulnerabilities are aimed at assisting software and systems
engineers to identify and remove cybersecurity vulnerabilities from the end system. New
methods for enabling project and program managers to perform cybersecurity assessments
of their enterprise and engineering environment are needed.

Cause-Effect Mapping

Cause-Effect Mapping is a vulnerability assessment tool that consists of a mapping
of causal chains that connect an exogenous hazard to a system degradation or failure,
termed a terminal event. Each chain represents a specific vulnerability, sometimes called a
vulnerability chain in order to emphasize that vulnerabilities are not discrete events.
Terminal events are broadly defined and include any form of value loss. Interventions are
actions that eliminate or mitigate a vulnerability, and are represented on the map as points
that break the causal chain. An example CEM (that lacks interventions) can be seen in
Figure 1.

The hazards are external to the perspective of the defined user, and are thus
sometimes called external triggers. An intermediary event is any unintended state change of
a system’s form or operations that could jeopardize value delivery of the program.

A CEM is not created for a system, but for a specific class of decision-maker. The
hazards (referred to as “spontaneous events” in Figure 1) are exogenous from the point of
view of the decision-maker that the CEM was made for. In this way, CEM avoids the
“blaming someone else” problem by making all hazards exogenous. The decision-maker
only has control over the intermediary events. While she may not be at fault for any of the
vulnerabilities, it is still her responsibility to address them.

CEM is fundamentally a qualitative analysis method, though it can be readily adapted
into a quantitative form by adding probabilities of transition to each intermediary. CEM
provides immediate insight into which parts of the system warrant more detailed modeling
using other methods.

- 270 -

The basic steps to create a new CEM are not application specific and are as follows:

1. The stakeholder herself lists potential hazards posed to the program.

2. She then traces the consequences of each of these hazards through the
intermediary events to the final terminal events.

3. The process is then done in reverse: She looks at the terminal events, adds
in any that are still missing, and works backwards on how they might come
about.

4. She then examines the causal connections between each intermediary event
to see if there are any additional connections not previously noticed.

5. Finally, she consults lessons learned databases, case studies, and other
experts to generate additional hazards, intermediary events, causal
connections, and interventions, as well as to verify existing ones.

Any of these steps can take place either formally, using automated tools to
enumerate possible vulnerabilities, or informally, relying upon the stakeholder’s own
experience.

Figure 1. Example CEM of a supply chain
(Rovito & Rhodes, 2016)

CEM has previously been applied in a case study of a Maritime Security System of
Systems (Mekdeci et al., 2012) and to a supply chain case (Rovito & Rhodes, 2016). More
recently, an earlier phase of this research developed a Reference CEM for use by program
managers to assess enterprise-level vulnerabilities in the MCE environment (Reid &

- 271 -

Rhodes, 2018). This work, which was based upon literature reviews, interviews with experts,
and other sources, sought to provide program managers with an entry point for considering
such vulnerabilities. Additionally, the steps to create a CEM for one’s own program were
outlined and some potential use cases discussed. These use cases are as follows:

(A) By a Program Manager: Assessing potential future vulnerabilities and plan
possible interventions

(B) By a Program Manager: Determining specific vulnerabilities to address in
response to the presence of a specific hazard

(C) By the Program Organization: Changing program processes to mitigate or
eliminate vulnerabilities

(D) By Researchers: Organizing and classifying vulnerabilities into various
categories or types

Most users of CEM tend to find it most useful in identifying high priority intervention
points and new vulnerabilities. Other benefits of note include increased understanding of the
causal path and the interrelationships between vulnerabilities. While the resultant reference
CEM was quite detailed in some respects, such as both vulnerabilities and interventions
involving model curation, it was less well developed in others, notably cybersecurity, as can
be seen in Figure 2.

Use (A) is most relevant for novice program managers or program managers using
MCE for the first time. A senior program manager or team of program managers creates a
CEM for their organization’s program process. This CEM can then be provided to the novice
for study and reference. The program manager can then learn what can go wrong and how
to intervene. In this case, the CEM could be tied to a Lesson’s Learned database, such as
NASA’s Lessons Learned Information System (NASA Office of the Chief Engineer, 1994).
This enables concrete examples and consequences to be linked to each vulnerability. One
of the important factors here is that the CEM does not just present potential interventions,
but it also places them in the appropriate part of the causal sequence. This enables the
program manager to not only know how to intervene, but at what point.

In Use (D), CEM is used to organize and classify vulnerability chains. Two obvious
classifiers are terminal events and hazards. Which is used to organize a CEM depends on
whether the user wants to examine the causal chains forward or backwards. Beyond this,
however, more complicated classifiers are possible. As can be seen in Figure 2, external
triggers that result in similar vulnerability chains are grouped together. By “similar,” we mean
that these vulnerability chains either involve many of the same intermediary events or that
they involve the same part of the program. For instance, most of the intermediary events
involving model curation and trust are located close to one another in the center-top of the
figure. Once these groupings have been identified, they can be considered together, such
as the “Belt-tightening” grouping, and common means of intervention considered.

- 272 -

Figure 2. Preliminary Reference CEM for Model-Centric Vulnerabilities With
Example Intervention Points

- 273 -

Strengthening Cybersecurity Aspects of a CEM for Model-Centric Programs
As was discussed in the previous section, the MCE Reference CEM shown in Figure

2 was generated using literature reviews and interviews with experts, among other sources.
The cybersecurity portion of it was adapted, mostly unchanged, from previous work on
supply chains (Rovito & Rhodes, 2016). Cybersecurity is a rising international concern and
is of particular relevance with the increasing digitization associated with MCE environments.
As a result, further development of that portion of the Reference CEM was desired.

To accomplish this, an ongoing series of interviews with systems engineers and
program managers from a variety of fields, including defense, aerospace, manufacturing,
and semiconductors, is being conducted. These interviews have sought to provide insight
into the following questions, in the context of a model-centric enterprise:

1. To what extent are program managers aware of programmatic
vulnerabilities?

2. How do program managers conceptualize these vulnerabilities?

3. How do program managers respond to these vulnerabilities?

4. What vulnerabilities are present in MCE programs?

5. What cybersecurity vulnerabilities does MCE pose?

The first four questions were the primary focus of that previous phase of research. In
this phase of the research, the focus is on the fifth question as a means of expanding the
cybersecurity component of the Reference CEM shown in Figure 2. When it came to the
topic of cybersecurity vulnerabilities in general, the interviewees commonly raised the
following issues:

 Cybersecurity needs to be thoroughly considered much earlier than it
commonly is, preferably in the proposal generation stage.

 Program managers and systems engineers are sometimes intimidated by
cybersecurity issues and thus seek to pass them onto specialists later in the
acquisition process.

 MBSE and MCE toolset developers and proponents have not done a
thorough enough job of considering programmatic cybersecurity
vulnerabilities, though the tools are typically quite effective at designing for
cybersecurity in end systems.

 Despite all of the above, according to the interviewees, traditional
programmatic cybersecurity defensive practices tends to quite effective. This
is due primarily to the conservative approaches most defense-related
engineering groups use, as discussed in the Cybersecurity Vulnerability
Assessment section. The increased use of MCE, particularly for multi-site
collaboration, could change this.

The above points, many of which were commonly stated by the same expert, are
clearly nuanced and complicated, with both points of success and failure. These points,
along with more specific comments from the interviewees, resulted in an expanded
cybersecurity CEM that can be seen in Figure 3. Note that in its full form, this would still be a
part of the general Reference CEM shown in Figure 2. Here it is shown isolated for clarity.

- 274 -

Figure 3. Reference Cybersecurity CEM (Preliminary)

Discussion
Some of the vulnerabilities and interventions shown in Figure 3 are not unique to

MCE environments. Some of the vulnerabilities will simply be exacerbated by the increased
use of MCE environments and processes. Some of the interventions will require new,
creative means of implementing. For instance, Intervention Point #1 in Figure 3 is
“Compartmentalize sensitive information.” Clearly this is already done with the use of SCIFs
and the Need-To-Know (NTK) information framework. However, such methods may not be
feasible if the benefits of model integration and collaboration offered by MCE are desired.
Instead, new methods must be developed. An example of one such possibility is the Federal
Drug Administration’s (FDA’s) Sentinel Initiative, which involves querying a distributed
system and receiving anonymized, aggregate data back (Office of Surveillance and
Epidemiology, 2010). Such a system may allow modeling software to communicate across
domains and locations, while still ensuring that even if one location is breached, only some
information is exposed.

- 275 -

This Reference CEM does omit vulnerabilities and interventions that are entirely
unchanged, however. For example, practices like the security clearance system and
restricting the usual of digital storage media will remain effective interventions that are not
significantly impacted by MCE environments.

One set of vulnerabilities that came up repeatedly in both the interviews and was
observed in the class activity dataset were those that passed through the reputation harm
intermediate event, as shown in Figure 4. Despite the frequency that the potential for this
vulnerability was raised, few interventions were proposed for post-breach. This suggests
that program managers and systems engineers could use more training in how to respond
to breaches, particularly prominent ones, instead of just how to prevent them. While in the
private sector there is evidence suggesting that the reputation harm incurred by a prominent
breach does not significantly impact the firm (Lange & Burger, 2017), contractors to the
government are known to suffer significant financial penalties due to breaches, even when
such a breach is unrelated to their government duties (Braun, 2014; Overly, 2017). In a
defense acquisition environment, there is thus significant incentive to having program
managers (and the enterprise as a whole) well prepared to respond to major breaches.

Figure 4. Reputation Harm Vulnerabilities, Section of Figure 3

CEM is intended to supplement, rather than replace, existing vulnerability
assessment methods, particularly when it comes to cybersecurity. In this way, it can help
fulfill the requirements set by NIST’s Risk Management Framework (RMF; Ross et al., 2016)
and the DoD’s Defense Federal Acquisition Regulation Supplement (DFARS; Manufacturing
Extension Partnership, 2017b). These regulations have shifted how government contractors
handle cybersecurity. Previously, one-time assessments were completed and defensive
practices instituted. Now the process is more dynamic. Contractors have to continuously
assess threats and develop countermeasures as they arise, both with regards to the end-
system and to the enterprise. CEM can potentially assist in this by serving as a reference
that can be revisited as new threats arise.

- 276 -

Future Directions
As the research progresses, three directions of future research are being pursued.

The first is to conduct a second round of interviews with other stakeholders in the acquisition
process. The second is to evolve an interactive version of the Reference CEM. The third is
to compare vulnerabilities present in MCE environments with those present in other,
comparable fields.

Future Interviews

The interviews thus far have been with program managers and system engineers
(the people who “live in” in the MCE environment). As this research proceeds, a future round
of interviews with MBSE and MCE toolmakers and leaders of enterprise model-centric
environments is planned. Several of the interviewees expressed an interest in increased
enterprise-level ownership of MCE environments. Additionally, a few expressed concern
about the degree of security in MCE toolsets. Thus it is worth talking to such individuals
about their perspectives on vulnerabilities in MCE environments.

Interactive Tool

An interactive version of the CEM, which enables easy sorting and adding
vulnerabilities, is desired. This would make the method more accessible, similar to how
NIST’s Cybersecurity Assessment Tool (Manufacturing Extension Partnership, 2017a)
makes the RMF (Ross et al., 2016) more approachable to small manufacturers. Additionally,
it could serve as a platform for future usability testing of CEM in MCE programs. In future
research, an interactive demonstration prototype will be generated to synthesize the
research outcomes and show how these can be used in practice.

Healthcare Industry Comparison

There is some indication that program managers may be well served by observing
fields that are somewhat analogous to defense acquisition in order to derive helpful
metaphors (Karas, Moore, & Parrott, 2008) or lessons learned (German & Rhodes, 2016).

The healthcare industry shows promise for such an analogy to cybersecurity in MCE
environments. The healthcare industry deals with sensitive information, computer
equipment, and high pressure environments. All of these are present at numerous stages of
operation. Patient records have to be transferred from one system to another and be
available to medical practitioners. Researchers need to be able to query systems in order to
provide improved medical treatment but cannot violate individuals’ privacy. They must do all
this and more while under constant threat of cyberattack, as recent events have shown
(Ryckaert, 2018; Woollaston, 2017; Zetter, 2016).

Engineers and researchers have made significant headway in making medical
devices more interoperable with one another, particularly when it comes to sharing data
securely (Goldman, 2014). Increasingly, model-based methods are being used to assess
and design medical systems (Pajic et al., 2014). As was related in the Discussion section,
the FDA’s Sentinel Initiative seeks to enable active querying of medical data while
preserving individual privacy.

All of these endeavors are strikingly similar to the challenges currently faced in
defense acquisition. This suggests that there may be benefit in conducting a systematic
comparison of the two fields. The healthcare industry, along with other fields, will be
examined for potential metaphors and lessons learned that are applicable to understanding
vulnerabilities in MCE environments.

- 277 -

Conclusions
Acquisition programs increasingly use model-centric approaches, generating and

using digital assets throughout the life cycle. Recent advancements support new model-
centric practices, yet uncertainties can lead to model-related vulnerabilities jeopardizing
program success. Extending recent research (Reid & Rhodes, 2018) on vulnerability
assessment of model-centric programs to cybersecurity, anticipated results are empirically-
grounded cybersecurity vulnerabilities related to model-centric acquisition programs, and a
prototype using a CEM reference model with dynamic analytic tools.

References
Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. IEEE Security

and Privacy, 3(1), 84–87. https://doi.org/10.1109/MSP.2005.23

Baldwin, K. J., & Lucero, S. D. (2016). Defense system complexity: Engineering challenges
and opportunities. The ITEA Journal of Test and Evaluation, 37(1), 10–16.

Blackburn, M., Verma, D., Dillon-Merrill, R., Blake, R., Bone, M., Chell, B., … Evangelista, E.
(2017). Transforming systems engineering through model-centric engineering.
Hoboken, NJ: Systems Engineering Research Center. Retrieved from
http://www.sercuarc.org/wp-content/uploads/2014/05/A013_SERC-RT-168_Technical-
Report-SERC-2017-TR-110.pdf

Braun, S. (2014, September 10). OPM plans to terminate contracts with USIS. Federal
News Radio. Retrieved from https://federalnewsradio.com/management/2014/09/opm-
plans-to-terminate-contracts-with-usis/

German, E. S., & Rhodes, D. H. (2016). Human-model interactivity: What can be learned
from the experience of pilots with the glass cockpit? In Conference on Systems
Engineering Research. Huntsville, AL.

Goldman, J. M. (2014, November). Solving the interoperability challenge. IEEE Pulse.
Retrieved from https://pulse.embs.org/november-2014/solving-interoperability-
challenge/

Gressin, S. (2017). The Equifax data breach: What to do. Retrieved March 27, 2018, from
https://www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-do

Hanna, J., Smythe, C., & Martin, C. (2018, January 24). China’s Sinovel convicted in U.S. of
stealing trade secrets. Bloomberg. Retrieved from
https://www.bloomberg.com/news/articles/2018-01-24/chinese-firm-sinovel-convicted-
in-u-s-of-trade-secret-theft

Hanselman, S. (2012). Everything’s broken and nobody’s upset. Retrieved from
https://www.hanselman.com/blog/EverythingsBrokenAndNobodysUpset.aspx

Irvine, C., & Parfitt, T. (2013, July 11). Kremlin returns to typewriters to avoid computer
leaks. The Telegraph. Retrieved from
https://www.telegraph.co.uk/news/worldnews/europe/russia/10173645/Kremlin-returns-
to-typewriters-to-avoid-computer-leaks.html

Kamali, M., Dennis, L. A., McAree, O., Fisher, M., & Veres, S. M. (2016). Formal verification
of autonomous vehicle platooning. Science of Computer Programming, 1, 1–19.
https://doi.org/10.1016/j.scico.2017.05.006

Karas, T. H., Moore, J. H., & Parrott, L. K. (2008). Metaphors for cyber security. Sandia
Report. Albuquerque, NM: Sandia National Laboratories. Retrieved from
http://evolutionofcomputing.org/Multicellular/Cyberfest Report.pdf

- 278 -

Kern, C., & Greenstreet, M. R. (1999). Formal verification in hardware design: A survey.
ACM Transactions on Design Automation of Electronic Systems, 4(2), 123–193.
https://doi.org/10.1145/307988.307989

Lange, R., & Burger, E. W. (2017). Long-term market implications of data breaches, not.
Journal of Information Privacy and Security, 13(4).
https://doi.org/10.1080/15536548.2017.1394070

Manufacturing Extension Partnership. (2017a). Cyber risk management. Retrieved March
29, 2018, from https://www.nist.gov/mep/cyber-risk-management

Manufacturing Extension Partnership. (2017b). DFARS cybersecurity requirements.
Retrieved March 29, 2018, from https://www.nist.gov/mep/cybersecurity-resources-
manufacturers/dfars800-171-compliance

Meadows, C. A. (1994). Formal verification of cryptographic protocols: A survey. In
International Conference on the Theory and Application of Cryptology (pp. 133–150).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000430

The MITRE Corporation. (2015). Terminology. Retrieved February 20, 2018, from
https://cve.mitre.org/about/terminology.html

The MITRE Corporation. (2017). CVE-2017-5753. Retrieved February 20, 2018, from
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753

Morimoto, S. (2008). A survey of formal verification for business process modeling (pp. 514–
522). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69387-1_58

NASA Office of the Chief Engineer. (1994). NASA Public Lessons Learned System.
Retrieved July 13, 2017, from https://llis.nasa.gov/

Office of Surveillance and Epidemiology (Ed.). (2010). The Sentinel Initiative.

Overly, S. (2017, October). IRS temporarily suspends contract with Equifax. Politico.
Retrieved from https://www.politico.com/story/2017/10/12/irs-equifax-contract-
suspended-243732

Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., & Goldman, J. (2014). Model-driven
safety analysis of closed-loop medical systems. IEEE Transactions on Industrial
Informatics, 10(1), 3–16. https://doi.org/10.1109/TII.2012.2226594

Pope, G. (2017). A hazard analysis technique for the internet of things (IoT) and mobile. In
STAMP Workshop. Cambridge, MA.

Pope, G. (2018). Combining STPA with compiler technology to identify vulnerabilities and
hazards in software-controlled systems. In STAMP Workshop. Cambridge, MA.

Pope, G., & Yampolskiy, M. (2016). A hazard analysis technique for additive manufacturing.
In Better Software East Conference. Orlando, FL. Retrieved from
https://arxiv.org/ftp/arxiv/papers/1706/1706.00497.pdf

Raymond, N. (2017, August 31). U.S. charges Chinese-Canadian citizen with trade secret
theft. Reuters2. Retrieved from
https://ca.reuters.com/article/topNews/idCAKCN1BB2K8-OCATP

Reid, J. B., & Rhodes, D. H. (2016). Digital system models : An investigation of the non-
technical challenges and research needs. In Conference on Systems Engineering
Research. Huntsville, AL.

Reid, J. B., & Rhodes, D. H. (2018). Assessing vulnerabilities in model-centric acquisition
programs using cause-effect mapping. In 15th Annual Acquisition Research
Symposium. Monterey, CA: Naval Postgraduate School.

- 279 -

Ross, R., Dempsey, K., Pillitteri, V. Y., Jacobs, J., & Goren, N. (2016). Risk management.
Retrieved March 29, 2018, from https://csrc.nist.gov/projects/risk-management/risk-
management-framework-(RMF)-Overview

Rovito, S. M., & Rhodes, D. H. (2016). Enabling better supply chain decisions through a
generic model utilizing cause-effect mapping. In Proceedings of the 2016 Annual IEEE
Sytems Conference. IEEE.

Ryckaert, V. (2018). Hackers held patient data ransom, so Greenfield hospital system paid
$50,000. The Indianapolis Star. Retrieved from
https://www.indystar.com/story/news/crime/2018/01/17/hancock-health-paid-50-000-
hackers-who-encrypted-patient-files/1040079001/

Schwarz, E. (2018). Automating vulnerability discovery in critical applications. Retrieved
from https://www.sei.cmu.edu/research-capabilities/all-
work/display.cfm?customel_datapageid_4050=6487

Statt, N. (2018, March). Boeing production plant hit with WannaCry ransomware attack. The
Verge. Retrieved from https://www.theverge.com/2018/3/28/17174540/boeing-
wannacry-ransomware-attack-production-plant-charleston-south-carolina

Woollaston, V. (2017, May). The NHS trusts and hospitals affected by the Wannacry
cyberattack. Wired. Retrieved from http://www.wired.co.uk/article/nhs-trusts-affected-by-
cyber-attack

Young, W. E. (2013). A system saftey approach to assuring air operations against cyber
disruptions. In STAMP Workshop. Cambridge, MA.

Young, W. E., & Porada, R. (2017). System-theoretic process analysis for security (STPA-
SEC): Cyber security and STPA. In STAMP Workshop. Cambridge, MA.

Zetter, K. (2016, March). Why hospitals are the perfect targets for ransomware. Wired.
Retrieved from https://www.wired.com/2016/03/ransomware-why-hospitals-are-the-
perfect-targets/

Acknowledgment
This material is based upon work by the Naval Postgraduate School Acquisition

Research Programs under Grant No. N00244-17-1-0011.

www.acquisitionresearch.net

