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Abstract 
Digital engineering approaches are increasingly used in acquisition of systems, 

changing the current paradigm from documentation-centric to model-centric. Not only are 
these systems highly vulnerable to cyber threats, so too are their enabling environment and 
digital assets. While good practices have emerged to support the shift to model-centric 
program acquisition, such programs experience perturbations over their life cycles that 
introduce new vulnerabilities that may lead to cascading failures. Cybersecurity 
vulnerabilities are of particular concern given digital transformation and increasing threat 
actors, making vulnerability assessment essential throughout acquisition program life cycles. 
This paper discusses ongoing research that seeks to provide program managers with the 
means to identify cybersecurity vulnerabilities within model-centric programs (along with 
other model-related vulnerabilities) and determine where interventions can most effectively 
be taken. The research builds on recent work in developing a reference model for model-
centric program vulnerability assessment that uses the Cause-Effect Mapping (CEM) 
analytic technique. This research investigates cybersecurity specifically, using CEM and 
other dynamic analysis approaches, including a prototype for proactive assessment of 
cybersecurity and evaluation of potential interventions. 

Introduction 
Digital transformation changes how systems are acquired and developed through the 

use of model-centric engineering practices and toolsets. While offering great benefit, new 
challenges arise from both technological and socio-cultural dimensions. This drives the need 
to examine and address vulnerabilities not only for products and systems, but also for the 
model-centric environments necessary for their acquisition and development. Recent 
research has investigated the use of Cause-Effect Mapping (CEM) as a mechanism for 
better enabling program managers and system engineers to anticipate and respond to 
programmatic vulnerabilities as related to model-centric environments. A Reference CEM for 
model-centric enterprises resulting from the work shows promise for considering the 
cascading vulnerabilities and potential intervention options. In ongoing research, additional 
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investigation aims to refine the Reference CEM and analytic approach for cybersecurity-
focused program vulnerability assessment. 

Motivation 

Modern society has many needs and problems that can only be addressed through 
large-scale socio-technical engineering programs (e.g., defense systems, multi-modal 
transportation systems, energy delivery system of systems, health-care management 
systems). The use of model-centric approaches, modeling and simulation, and “digital twins” 
is increasingly used in acquisition of such systems, changing the current paradigm from 
documentation-centric to model-centric. Not only are these systems highly vulnerable to 
cyber threats, so too are their enabling environment and digital assets. While good practices 
have emerged to support the shift to model-centric program acquisition, such programs 
experience perturbations over their life cycles that introduce new vulnerabilities that may 
lead to cascading failures. For instance, perturbations may be caused by policy change 
(leading to IP disagreements), economic factors (leading to training cuts), or disruptive 
technology (leading to outdated infrastructure). Early detection and intervention of 
vulnerabilities can mitigate disruptions and failures. The research seeks to contribute to the 
vulnerability assessment state of practice for acquisition programs, both public and private, 
that increasingly depend on digital assets and model-centric environments.  

Background 
The following subsections describe model-centric engineering, cyber-security 

vulnerability assessment, and cause-effect mapping. A companion paper (Reid & Rhodes, 
2018) provides additional background information. 

Model-Centric Engineering 

Acquisition program management is grounded in management science and a sound 
set of practices evolved over decades; however, new challenges arise as acquisition 
becomes increasingly model-centric. Baldwin and Lucero (2016) state, “The DoD sees value 
in adopting digital engineering design and model-centric practices, enabling a shift from the 
linear, document centric acquisition and engineering process toward a dynamic digital, 
model-centric ecosystem.”  

Model-Centric Engineering (MCE) has been defined as “an overarching digital 
engineering approach that integrates different model types with simulations, surrogates, 
systems and components at different levels of abstraction and fidelity across disciplines 
throughout the lifecycle” (Blackburn et al., 2017). MCE involves using integrated models 
across disciplines, subsystems, life-cycle stages, and analyst groups. It uses models as the 
“source of truth” to reduce document handoff and allow for more continuous evaluation. This 
reduces communication time and rework in response to requirement changes. Most 
discussions of MCE focus on engineering practices and methods to overcome 
implementation difficulties. In any system, however, engineering is only a piece of the 
problem. Numerous human factors, business, and organizational issues exist. Current 
program managers have significant experience with modern engineering processes and use 
this experience to identify and mitigate vulnerabilities. No such experience exists with MCE, 
however. This fact, coupled with the increased integration of models, means that emergent 
uncertainties (policy change, budget cuts, disruptive technologies, threats, changing 
demographics, etc.) and related programmatic decisions (e.g., staff cuts, reduced training 
hours) may lead to cascading vulnerabilities within MCE programs, potentially jeopardizing 
program success. New tools are needed to enable program managers to identify model-
centric program vulnerabilities and determine where interventions can most effectively be 
taken. 
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Cybersecurity Vulnerability Assessment 

MCE, with its focus on digitization, integration, and collaboration, has the potential to 
increase the cybersecurity vulnerability of an enterprise. A vulnerability is the means by 
which the hazard might disrupt the system, thus it is through the vulnerability that the system 
is susceptible to the hazard. Vulnerabilities are best expressed as the causal series of 
events connecting a hazard to system failure. This is a generalization of common, field-
specific usages of the term. MITRE’s Common Vulnerabilities and Exposures (CVE) 
database defines a vulnerability as “a weakness in the computational logic (e.g., code) 
found in software and some hardware components (e.g., firmware) that, when exploited, 
results in a negative impact to confidentiality, integrity, OR availability” (The MITRE 
Corporation, 2015). In this definition, the same components can be seen: some structural 
means or “weakness” that can result in system disruption or “negative impact” if a hazard is 
present or the vulnerability is “exploited.” For example, the infamous Spectre security 
vulnerability is described by CVE as “systems with microprocessors utilizing speculative 
execution and branch prediction may allow unauthorized disclosure of information to an 
attacker with local user access via a side-channel analysis” (The MITRE Corporation, 2017). 
This is a neat summary of the hazard (an attacker), the means (side-channel analysis using 
speculative execution and branch prediction), and the disruption (unauthorized disclosure of 
information). 

Risk and vulnerability assessment methods have not failed to adapt to novel 
cybersecurity concerns. The aforementioned CVE database has been public since 1999. 
Quality assurance testing (essentially the verification and validation of software) has been 
around since the beginning of commercial software. Software penetration testing (where 
security experts intentionally seek to break a software product) has been the industry norm 
for more than a decade (Arkin, Stender, & McGraw, 2005). Black-box mutational fuzzing and 
concolic execution are being used to automatically test for certain types of software 
vulnerabilities (Schwarz, 2018). Formal verification tools, initially limited to pure software 
domains such as cryptography (Meadows, 1994), has been rapidly advancing and finding 
applications in hardware (Kern & Greenstreet, 1999) and business processes (Morimoto, 
2008), as well as fields that straddle the software-hardware-environment boundaries (Kamali 
et al., 2016). The methods listed here just scratch the surface of approaches security 
researchers and engineers are taking to identify and resolve such technical cybersecurity 
vulnerabilities. 

Beyond these specific testing methods, assessment frameworks have progressed as 
well. System-Theoretic Process Analysis (STPA) has adjusted, adapted, and been applied 
to handle cybersecurity vulnerabilities associated with additive manufacturing (Pope & 
Yampolskiy, 2016), Internet of Things (Pope, 2017), Air Operations (Young, 2013), and 
Mission Operations (Young & Porada, 2017). More recently, there have also been efforts to 
combine compiler technology with STPA to automatically detect vulnerabilities in software-
controlled systems (Pope, 2018).  

While cybersecurity vulnerabilities in operational systems remain alarmingly 
common, from the trivial (Hanselman, 2012) to the critical (Gressin, 2017), there is some 
evidence that software is becoming more secure, at least in terms of defects per line of 
equivalent source code (Pope, 2017). In many cases, however, the acquisition or 
development process itself needs to be protected from outside threats and endogenous 
failures. Be it military information or technology-related trade secrets, there is real value in 
attempting to penetrate much earlier in the life cycle in order to either steal secrets (Hanna, 
Smythe, & Martin, 2018; Raymond, 2017) or to disrupt production (Statt, 2018). 
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Defense acquisition programs have already instituted a variety of means of ensuring 
the security of their work. Some of these means were originally instituted to address other 
forms of threats but have turned out to be effective in addressing cybersecurity as well. 
These methods include relying on the security clearance process, the use of Sensitive 
Compartmented Information Facilities (SCIFs), restrictions on the use of media storage 
devices, separate networks such as SIPRNet and NIPRNet that are isolated or semi-isolated 
from the internet, and general compartmentalization of critical information. Some (non-U.S.) 
defense agencies have gone so far as to revert to using typewriters where able in order to 
avoid security breaches and leaks (Irvine & Parfitt, 2013). 

Unfortunately, many of these historically successful methods are in conflict with the 
more straightforward implementations of many components of an MCE environment. For 
example, the use of SCIFs has been quite successful in preventing unauthorized access to 
data. The typical use of a SCIF in the design process, where a small number of engineers 
work on a task isolated from the outside world, is not directly compatible with an MCE 
environment structured around model integration and collaboration across teams and 
locations. While this problem has been previously considered and ways to mitigate this 
conflict have been proposed (e.g., Reid & Rhodes, 2016), no silver bullet to resolving these 
tensions exists and it is likely that the increased use of MCE will result in both the 
exacerbation of current vulnerabilities and the creation of new ones. Furthermore, most 
means of assessing such vulnerabilities are aimed at assisting software and systems 
engineers to identify and remove cybersecurity vulnerabilities from the end system. New 
methods for enabling project and program managers to perform cybersecurity assessments 
of their enterprise and engineering environment are needed. 

Cause-Effect Mapping 

Cause-Effect Mapping is a vulnerability assessment tool that consists of a mapping 
of causal chains that connect an exogenous hazard to a system degradation or failure, 
termed a terminal event. Each chain represents a specific vulnerability, sometimes called a 
vulnerability chain in order to emphasize that vulnerabilities are not discrete events. 
Terminal events are broadly defined and include any form of value loss. Interventions are 
actions that eliminate or mitigate a vulnerability, and are represented on the map as points 
that break the causal chain. An example CEM (that lacks interventions) can be seen in 
Figure 1.  

The hazards are external to the perspective of the defined user, and are thus 
sometimes called external triggers. An intermediary event is any unintended state change of 
a system’s form or operations that could jeopardize value delivery of the program.  

A CEM is not created for a system, but for a specific class of decision-maker. The 
hazards (referred to as “spontaneous events” in Figure 1) are exogenous from the point of 
view of the decision-maker that the CEM was made for. In this way, CEM avoids the 
“blaming someone else” problem by making all hazards exogenous. The decision-maker 
only has control over the intermediary events. While she may not be at fault for any of the 
vulnerabilities, it is still her responsibility to address them. 

CEM is fundamentally a qualitative analysis method, though it can be readily adapted 
into a quantitative form by adding probabilities of transition to each intermediary. CEM 
provides immediate insight into which parts of the system warrant more detailed modeling 
using other methods.  
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The basic steps to create a new CEM are not application specific and are as follows: 

1. The stakeholder herself lists potential hazards posed to the program. 

2. She then traces the consequences of each of these hazards through the 
intermediary events to the final terminal events. 

3. The process is then done in reverse: She looks at the terminal events, adds 
in any that are still missing, and works backwards on how they might come 
about. 

4. She then examines the causal connections between each intermediary event 
to see if there are any additional connections not previously noticed. 

5. Finally, she consults lessons learned databases, case studies, and other 
experts to generate additional hazards, intermediary events, causal 
connections, and interventions, as well as to verify existing ones. 

Any of these steps can take place either formally, using automated tools to 
enumerate possible vulnerabilities, or informally, relying upon the stakeholder’s own 
experience.  

 

Figure 1. Example CEM of a supply chain 
(Rovito & Rhodes, 2016) 

CEM has previously been applied in a case study of a Maritime Security System of 
Systems (Mekdeci et al., 2012) and to a supply chain case (Rovito & Rhodes, 2016). More 
recently, an earlier phase of this research developed a Reference CEM for use by program 
managers to assess enterprise-level vulnerabilities in the MCE environment (Reid & 
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Rhodes, 2018). This work, which was based upon literature reviews, interviews with experts, 
and other sources, sought to provide program managers with an entry point for considering 
such vulnerabilities. Additionally, the steps to create a CEM for one’s own program were 
outlined and some potential use cases discussed. These use cases are as follows: 

(A) By a Program Manager: Assessing potential future vulnerabilities and plan 
possible interventions 

(B) By a Program Manager: Determining specific vulnerabilities to address in 
response to the presence of a specific hazard 

(C) By the Program Organization: Changing program processes to mitigate or 
eliminate vulnerabilities 

(D) By Researchers: Organizing and classifying vulnerabilities into various 
categories or types  

Most users of CEM tend to find it most useful in identifying high priority intervention 
points and new vulnerabilities. Other benefits of note include increased understanding of the 
causal path and the interrelationships between vulnerabilities. While the resultant reference 
CEM was quite detailed in some respects, such as both vulnerabilities and interventions 
involving model curation, it was less well developed in others, notably cybersecurity, as can 
be seen in Figure 2. 

Use (A) is most relevant for novice program managers or program managers using 
MCE for the first time. A senior program manager or team of program managers creates a 
CEM for their organization’s program process. This CEM can then be provided to the novice 
for study and reference. The program manager can then learn what can go wrong and how 
to intervene. In this case, the CEM could be tied to a Lesson’s Learned database, such as 
NASA’s Lessons Learned Information System (NASA Office of the Chief Engineer, 1994). 
This enables concrete examples and consequences to be linked to each vulnerability. One 
of the important factors here is that the CEM does not just present potential interventions, 
but it also places them in the appropriate part of the causal sequence. This enables the 
program manager to not only know how to intervene, but at what point. 

In Use (D), CEM is used to organize and classify vulnerability chains. Two obvious 
classifiers are terminal events and hazards. Which is used to organize a CEM depends on 
whether the user wants to examine the causal chains forward or backwards. Beyond this, 
however, more complicated classifiers are possible. As can be seen in Figure 2, external 
triggers that result in similar vulnerability chains are grouped together. By “similar,” we mean 
that these vulnerability chains either involve many of the same intermediary events or that 
they involve the same part of the program. For instance, most of the intermediary events 
involving model curation and trust are located close to one another in the center-top of the 
figure. Once these groupings have been identified, they can be considered together, such 
as the “Belt-tightening” grouping, and common means of intervention considered. 
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Figure 2. Preliminary Reference CEM for Model-Centric Vulnerabilities With 
Example Intervention Points 
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Strengthening Cybersecurity Aspects of a CEM for Model-Centric Programs 
As was discussed in the previous section, the MCE Reference CEM shown in Figure 

2 was generated using literature reviews and interviews with experts, among other sources. 
The cybersecurity portion of it was adapted, mostly unchanged, from previous work on 
supply chains (Rovito & Rhodes, 2016). Cybersecurity is a rising international concern and 
is of particular relevance with the increasing digitization associated with MCE environments. 
As a result, further development of that portion of the Reference CEM was desired. 

To accomplish this, an ongoing series of interviews with systems engineers and 
program managers from a variety of fields, including defense, aerospace, manufacturing, 
and semiconductors, is being conducted. These interviews have sought to provide insight 
into the following questions, in the context of a model-centric enterprise: 

1. To what extent are program managers aware of programmatic 
vulnerabilities? 

2. How do program managers conceptualize these vulnerabilities?  

3. How do program managers respond to these vulnerabilities? 

4. What vulnerabilities are present in MCE programs? 

5. What cybersecurity vulnerabilities does MCE pose? 

The first four questions were the primary focus of that previous phase of research. In 
this phase of the research, the focus is on the fifth question as a means of expanding the 
cybersecurity component of the Reference CEM shown in Figure 2. When it came to the 
topic of cybersecurity vulnerabilities in general, the interviewees commonly raised the 
following issues: 

 Cybersecurity needs to be thoroughly considered much earlier than it 
commonly is, preferably in the proposal generation stage. 

 Program managers and systems engineers are sometimes intimidated by 
cybersecurity issues and thus seek to pass them onto specialists later in the 
acquisition process. 

 MBSE and MCE toolset developers and proponents have not done a 
thorough enough job of considering programmatic cybersecurity 
vulnerabilities, though the tools are typically quite effective at designing for 
cybersecurity in end systems. 

 Despite all of the above, according to the interviewees, traditional 
programmatic cybersecurity defensive practices tends to quite effective. This 
is due primarily to the conservative approaches most defense-related 
engineering groups use, as discussed in the Cybersecurity Vulnerability 
Assessment section. The increased use of MCE, particularly for multi-site 
collaboration, could change this. 

The above points, many of which were commonly stated by the same expert, are 
clearly nuanced and complicated, with both points of success and failure. These points, 
along with more specific comments from the interviewees, resulted in an expanded 
cybersecurity CEM that can be seen in Figure 3. Note that in its full form, this would still be a 
part of the general Reference CEM shown in Figure 2. Here it is shown isolated for clarity.  
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Figure 3. Reference Cybersecurity CEM (Preliminary)  

Discussion 
Some of the vulnerabilities and interventions shown in Figure 3 are not unique to 

MCE environments. Some of the vulnerabilities will simply be exacerbated by the increased 
use of MCE environments and processes. Some of the interventions will require new, 
creative means of implementing. For instance, Intervention Point #1 in Figure 3 is 
“Compartmentalize sensitive information.” Clearly this is already done with the use of SCIFs 
and the Need-To-Know (NTK) information framework. However, such methods may not be 
feasible if the benefits of model integration and collaboration offered by MCE are desired. 
Instead, new methods must be developed. An example of one such possibility is the Federal 
Drug Administration’s (FDA’s) Sentinel Initiative, which involves querying a distributed 
system and receiving anonymized, aggregate data back (Office of Surveillance and 
Epidemiology, 2010). Such a system may allow modeling software to communicate across 
domains and locations, while still ensuring that even if one location is breached, only some 
information is exposed. 
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This Reference CEM does omit vulnerabilities and interventions that are entirely 
unchanged, however. For example, practices like the security clearance system and 
restricting the usual of digital storage media will remain effective interventions that are not 
significantly impacted by MCE environments. 

One set of vulnerabilities that came up repeatedly in both the interviews and was 
observed in the class activity dataset were those that passed through the reputation harm 
intermediate event, as shown in Figure 4. Despite the frequency that the potential for this 
vulnerability was raised, few interventions were proposed for post-breach. This suggests 
that program managers and systems engineers could use more training in how to respond 
to breaches, particularly prominent ones, instead of just how to prevent them. While in the 
private sector there is evidence suggesting that the reputation harm incurred by a prominent 
breach does not significantly impact the firm (Lange & Burger, 2017), contractors to the 
government are known to suffer significant financial penalties due to breaches, even when 
such a breach is unrelated to their government duties (Braun, 2014; Overly, 2017). In a 
defense acquisition environment, there is thus significant incentive to having program 
managers (and the enterprise as a whole) well prepared to respond to major breaches. 

 

Figure 4. Reputation Harm Vulnerabilities, Section of Figure 3 

CEM is intended to supplement, rather than replace, existing vulnerability 
assessment methods, particularly when it comes to cybersecurity. In this way, it can help 
fulfill the requirements set by NIST’s Risk Management Framework (RMF; Ross et al., 2016) 
and the DoD’s Defense Federal Acquisition Regulation Supplement (DFARS; Manufacturing 
Extension Partnership, 2017b). These regulations have shifted how government contractors 
handle cybersecurity. Previously, one-time assessments were completed and defensive 
practices instituted. Now the process is more dynamic. Contractors have to continuously 
assess threats and develop countermeasures as they arise, both with regards to the end-
system and to the enterprise. CEM can potentially assist in this by serving as a reference 
that can be revisited as new threats arise. 
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Future Directions 
As the research progresses, three directions of future research are being pursued. 

The first is to conduct a second round of interviews with other stakeholders in the acquisition 
process. The second is to evolve an interactive version of the Reference CEM. The third is 
to compare vulnerabilities present in MCE environments with those present in other, 
comparable fields. 

Future Interviews 

The interviews thus far have been with program managers and system engineers 
(the people who “live in” in the MCE environment). As this research proceeds, a future round 
of interviews with MBSE and MCE toolmakers and leaders of enterprise model-centric 
environments is planned. Several of the interviewees expressed an interest in increased 
enterprise-level ownership of MCE environments. Additionally, a few expressed concern 
about the degree of security in MCE toolsets. Thus it is worth talking to such individuals 
about their perspectives on vulnerabilities in MCE environments. 

Interactive Tool 

An interactive version of the CEM, which enables easy sorting and adding 
vulnerabilities, is desired. This would make the method more accessible, similar to how 
NIST’s Cybersecurity Assessment Tool (Manufacturing Extension Partnership, 2017a) 
makes the RMF (Ross et al., 2016) more approachable to small manufacturers. Additionally, 
it could serve as a platform for future usability testing of CEM in MCE programs. In future 
research, an interactive demonstration prototype will be generated to synthesize the 
research outcomes and show how these can be used in practice. 

Healthcare Industry Comparison 

There is some indication that program managers may be well served by observing 
fields that are somewhat analogous to defense acquisition in order to derive helpful 
metaphors (Karas, Moore, & Parrott, 2008) or lessons learned (German & Rhodes, 2016).  

The healthcare industry shows promise for such an analogy to cybersecurity in MCE 
environments. The healthcare industry deals with sensitive information, computer 
equipment, and high pressure environments. All of these are present at numerous stages of 
operation. Patient records have to be transferred from one system to another and be 
available to medical practitioners. Researchers need to be able to query systems in order to 
provide improved medical treatment but cannot violate individuals’ privacy. They must do all 
this and more while under constant threat of cyberattack, as recent events have shown 
(Ryckaert, 2018; Woollaston, 2017; Zetter, 2016). 

Engineers and researchers have made significant headway in making medical 
devices more interoperable with one another, particularly when it comes to sharing data 
securely (Goldman, 2014). Increasingly, model-based methods are being used to assess 
and design medical systems (Pajic et al., 2014). As was related in the Discussion section, 
the FDA’s Sentinel Initiative seeks to enable active querying of medical data while 
preserving individual privacy.  

All of these endeavors are strikingly similar to the challenges currently faced in 
defense acquisition. This suggests that there may be benefit in conducting a systematic 
comparison of the two fields. The healthcare industry, along with other fields, will be 
examined for potential metaphors and lessons learned that are applicable to understanding 
vulnerabilities in MCE environments. 
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Conclusions 
Acquisition programs increasingly use model-centric approaches, generating and 

using digital assets throughout the life cycle. Recent advancements support new model-
centric practices, yet uncertainties can lead to model-related vulnerabilities jeopardizing 
program success. Extending recent research (Reid & Rhodes, 2018) on vulnerability 
assessment of model-centric programs to cybersecurity, anticipated results are empirically-
grounded cybersecurity vulnerabilities related to model-centric acquisition programs, and a 
prototype using a CEM reference model with dynamic analytic tools. 
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