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Abstract 
Cyber security of mission-critical software is a relatively new concern that is difficult 

to measure and hence difficult to incorporate effectively in software development contracts. 
The DoD has typically relied on black-box approaches to software testing. However, cyber 
vulnerabilities, particularly those deliberately injected into systems, are often statistically 
invisible with respect to affordable levels of black-box testing, which implies that they cannot 
be effectively detected using conventional testing techniques. This motivates augmenting 
traditional testing approaches with additional types of test and analysis procedures. This 
paper explores application of automated testing and other automated analysis methods to 
reduce cyber risks. We analyze several types of undesirable software behaviors and identify 
automated methods that could detect them within practical limits on time and computational 
resources. 

Overview: Cyber Testing Challenges 

Failures Are Not Random 

The quality objectives for cyber concerns are seemingly similar to those for software 
meant to operate in uncontested environments, but on closer examination, there is a 
fundamental difference with far-reaching consequences for testing and evaluation. In both 
cases, we wish to minimize the risk of improper software behavior, consistent with the policy 
set in ICD 503 (Office of the Director of National Intelligence, 2008). However, “risk” has 
very different meanings in the two contexts.  

For uncontested environments, failures act like random processes, and an 
appropriate risk concept is a statistical combination of severity of consequences from each 
type of potential mishap weighted by their frequency of occurrence, consistent with the 
formulation in DoD (2012). The ideas of “safety” and “reliability” are based on this point of 
view, which equates risk to the expected loss, damage, or injury when averaged over time. 
The unstated assumption of most work in this camp is that the probability distribution for 
mishaps is stationary, which means that the frequency of occurrence is stable over long 
periods. This approach is reasonably consistent with the properties of failures that are due 
to unintentional events with unpredictable variations, such as equipment wearing out, 
human errors, electronic noise, background radiation, and so on. 

                                            
 

 

1 The views presented in this paper are those of the author and do not necessarily represent the 
views of DoD or its components. 
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In contested environments, failures are not random, and frequency of occurrence 
can vary dramatically depending on external circumstances, driven by the existence of an 
adversary whose deliberate behavior depends on variable conditions, such as the following: 

 Are we at war? 

 How much profit/military advantage/political value would a successful attack 
provide? 

 Are sufficient resources available for successful attack? 

 How much risk of prosecution or counterattack is there? 

In this case, which matches cyber-attacks, game theory provides a better model of 
risk than statistics. The associated underlying assumption is that there is a capable 
adversary who will choose courses of action that maximize damage. Consequences of this 
paradigm shift include the following: 

 Focus of risk management shifts from minimizing expected loss to minimizing 
worst-case loss. 

 Scope of risk management expands from mitigations concerned solely with 
the software to those that address both the software and the adversary. 

 Risk assessment becomes sensitive to surprises due to new adversary 
tactics. 

 Unlikely conditions and rarely traversed paths through the code can no longer 
be ignored. 

Causes and Effects Will Be Hidden 

A consequence of Rice’s theorem is that perfect cyber certification is impossible. 
This theorem is a well-known result in computability theory that says any non-constant 
property of program behavior is undecidable. Non-constant means the property is true for at 
least one program and false for at least one other program, which holds for all software 
security properties of interest. “Undecidable” means there is no systematic method 
(algorithm) that will always produce a correct decision and will always terminate in a finite 
amount of time. This theorem applies to both testing and static analysis of the source code. 

Since any workable certification procedure must fit into a definite schedule, it must 
operate within some reasonably short bounded time, say less than a year. The theorem 
therefore implies that all practical certification procedures produce imperfect decisions: Any 
such procedure must produce some false positives and some false negatives, or fail to 
reach a conclusion for some inputs. 
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Capable adversaries expect defenders to search for vulnerabilities, know that 
detection will be imperfect, and design their attacks to make them difficult to find. Some 
ways to hide are as follows: 

 Small footprint: Design malicious behavior so that it will be triggered in only 
one of a huge number of possible execution conditions. The triggering 
condition can be made statistically invisible very easily because the search 
space has exponential size2 (see examples in Berzins et al., 2015). 

 Fragmentation: Malicious behavior resulting from interaction between widely 
separated parts of the code, such as exception handlers and multiple threads 
with no logical connection. Such non-local interactions are difficult to detect in 
large systems. 

 Delayed manifestation: Corrupt the code or data in ways that will not affect 
behavior until much later, possibly waiting for a statistically invisible external 
trigger. 

 Timing: Information content of behavior is correct, but is delayed sufficiently 
to cause failures. Software that controls physical components is susceptible 
to this hazard. 

 Parasitic effects: Breaking the model of computation so that logically correct 
source code can produce damaging behavior.  

Consequences Are Physical 

Much work on cyber security focuses on information—how to keep it confidential, 
free from corruption, authentic, and so forth. However, risk-based approaches are guided by 
severity of consequences, and relevant consequences are physical. Thus, system context 
must be considered as part of risk management, and if context is expanded far enough, all 
critical software is part of some cyber-physical system and either controls or influences its 
behavior. The following are examples of possible consequences of software faults: 

 Dangerous physical events involving controlled equipment, such as collisions 
between moving vehicles or discharge of weapons 

 Disrupting defensive capabilities of a military platform in a conflict, increasing 
vulnerability to kinetic attack 

 Revealing the location of a military unit or identity of a covert operative, 
exposing them to attack 

 Revealing military plans, enabling adversaries to target weak points and 
increase damage 

 Economic and political analogs of the above 

                                            
 

 

2 2b cases to test, where b is the number of bits in all input and state variables combined. 
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Threats Can Morph 

The most serious cyber risks are due to corruption of software at runtime. Runtime 
corruption of the executable code can result in unlimited damage at the discretion of the 
adversary. Not only is severity of consequence potentially the worst possible, but also, 
detection of this type of threat is especially challenging because the potentially damaging 
behavior is inserted after certification processes are completed. The destructive payload is 
not present either in the source or in the executable that is analyzed, so there are no 
adverse consequences to detect in the initial uncompromised configuration of the system 
under test.  

Recovering From Mishaps 

The above lines of reasoning imply that software defenses will never be perfect, 
especially for systems of practical size, for which exhaustive analysis is impractically 
expensive both in terms of money and in terms of available time (billions of years may not 
be enough). 

Strategies involving defense in depth can be useful for extending the time that 
systems under cyber-attack can remain operational, but they cannot provide complete 
immunity to attack by a capable adversary. This well-known approach to cyber-defense 
needs to be augmented with self-healing capabilities—so that systems can recover from 
partially damaged states and continue operating despite partially successful cyber-attacks. 
Even better are adaptive immune responses that reconfigure a system damaged by attack 
so that it is no longer vulnerable to a replay of the previously successful attack. The 
objective should be to increase the time and cost of successful attacks to the point where 
they are not affordable by adversaries. 

Some self-healing capabilities are practical at the current state of the art, and 
continued research to improve this approach is recommended. 

You Don’t Know What You Don’t Know 

Adversaries are constantly finding new ways to attack systems. This makes it difficult 
to write development contracts for secure software, because contracts inherently define 
fixed responsibilities for the contractors, but the set of actual threats is incompletely known 
and open-ended. Supporting a rapid repair capability requires agility both in the software 
and in the contracting approach. 

This seemingly unsolvable problem can be addressed by suitable application of 
Open Systems Architecture and Technical Reference Frameworks. Rapid reconfiguration 
can be supported by an architecture that accommodates all needed configurations without 
changing the architecture. In this context, architecture can be considered to consist of the 
aspects of a dynamic system that do not change. Architecture for cyber-resilient systems 
should include standardized structures and requirements for supporting functions related to 
resilience, such as runtime monitoring and self-healing functions. 

As an example, consider the high-risk threat of runtime code compromise. Services 
called out in associated parts of a Technical Reference Framework should include facilities 
for the following: 

 Secure, authenticated distribution of software updates 

 Runtime monitoring of executable code to detect unauthorized changes 

 Restoring corrupted code to an authorized configuration 

 Restoring the execution state to a valid configuration and resuming execution 
with the restored code configuration 



- 284 - 

These services and modules should all conform to a stable standardized interface 
specified in the architecture, so that best-in-class components providing these services can 
be shared across different systems and future technology improvements related to these 
critical issues can be readily incorporated by software module swapping, ideally without 
stopping operation of the system. The example illustrates a vision of how rapid 
reconfiguration capabilities could be specified in a fixed architecture fragment that could be 
called out in fixed and definite development contracts. 

Insider Threats 

Turn-Key Malware 

Malicious insiders may build some types of malware into software before delivery. 
These people are part of the development team and have full access rights to the code. 
Examples of this type of malware include “Easter Eggs,” which are extraneous bits of 
functionality that are typically triggered by some single special input value, often one that is 
extremely unlikely to be encountered as part of a normal workload. Although many known 
instances of Easter Eggs have done little harm, the ability to detect the pattern is a cyber-
testing concern because Easter Eggs can also hide extremely damaging extra capabilities, 
such as enabling unauthorized access or unauthorized modifications to a system.  

Testing Difficulties 

Common testing practices in the DoD rely heavily on black-box testing, in which test 
cases are designed based on the requirements, without knowledge of the structure of 
content of the source code. The method is widely used because it is reasonably good for 
checking that the delivered software has the behavior specified in the requirements, which is 
a primary concern in acceptance testing. It may also be the only viable testing approach if 
the development contract does not include rights to access the source code for the 
developed software. 

Unfortunately, black-box testing is not effective for checking the absence of 
undesired extra functionality, such as deliberately planted cyber vulnerabilities. Since there 
is often only a single test case that could demonstrate the existence of an embedded Easter 
Egg and the number of possible test cases is usually astronomical, the odds of detection by 
black-box testing are practically none (see Berzins et al., 2015, for quanititative details). 

Solutions 

Clear-box testing with respect to the statement coverage criterion can detect Easter 
Eggs in a practical manner that can be readily specified as a development requirement in a 
contract. The statement coverage criterion requires that every statement in the source code 
must have been executed by at least one test case. Relatively low-tech tools that count the 
number of times each statement in the code has been executed can check compliance with 
this requirement; the requirement is met if all of these numbers are greater than zero, which 
can also be checked by a simple piece of software. Many compilers include options for 
measuring statement coverage, for example, the gcov facility in the gcc tool set, which 
directly reports the percentage of source statements that have been covered by a test 
(“Monitoring Statement Coverage,” n.d.). 

Difficulties with this approach include finding test cases that can exercise rare paths 
and handling unreachable sections of the code. Although the general problem of finding test 
cases that trigger particular paths in the code does not have an effectively computable 
solution, experience with fuzz testing shows that constraint solver tools can handle a 
majority of the cases that arise in practice (Cadar et al., 2008). Additional tactics that can be 
useful for exercising rare paths are to seek module-level test cases that reach the 
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statements in question, as opposed to system-level test cases. This provides more direct 
control over the execution state of the module and simplifies the constraints that need to be 
solved to generate the needed test cases, enabling a larger fraction of the cases to be 
solved automatically.  

In some cases, unreachable code as well as extraneous code that does not affect 
the outputs of software services can be identified by using a form of dependency analysis 
known as software slicing (Berzins, 2014). These automated methods can help diagnose 
parts of the code that could not be exercised by test cases. The remaining cases are a small 
fraction of the code and may be few enough to be affordably examined by human analysts. 

Outsider Threats 

Runtime Code Modification 

As noted above, runtime code modification is the most serious cyber risk in any 
system, because its severity of consequences includes the consequences of all other cyber 
risks. From a game-theoretic viewpoint, which focuses on worst-case risk, we expect an 
adversary to inject the most damaging exploit available to them if they chose a runtime code 
modification attack. 

The signature of a runtime code modification vulnerability is not presence of 
inappropriate software behavior, but rather the existence of a possible path for executable 
code (or data that affects code behavior) to be eventually modified without authorization. 
The triggering condition as well as the inappropriate actions in such a path may involve 
interactions that bypass the official interfaces of the system to be certified, and may not be 
present in the high-level models programmers use to design and check their code. For 
example, the triggering event may involve corruption of system memory from a logically 
unrelated function or process. This implies that this type of malicious behavior may be 
completely invisible to black-box testing in the initial uncorrupted state of the software, not 
just statistically invisible. 

Another consequence of this cyber risk is that the critical parts of the code cannot be 
localized within current development approaches, especially in the context of programming 
languages without garbage collection and provisions for memory protection. Any part of the 
software that manipulates pointers can be a potential avenue for attacks that modify code at 
runtime, and these parts are spread throughout most systems. This makes it very difficult to 
focus the most intensive testing and analysis efforts on just the “security critical” parts of the 
system, and greatly increases testing cost for high confidence systems. 

Detection 

Following the principle of defense in depth, we suggest a layered approach to 
detection, coupled with mitigations that combine preventive and remedial measures. This 
section focuses on detection. The following are possible measures: 

 Software update service analysis 

 Architecture conformance checking  

 Memory allocation checking 

 Memory reference checking 

 Runtime monitoring of executable code 

Many current systems include explicit interfaces for upgrading the software to new 
versions or distributing patches. This part of the system is cyber-critical, expected to be a 
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focal point for attack, and should be subjected to the most intense degree of testing and 
analysis possible, at multiple levels.  

 At the requirements and architecture level, check whether the service is 
required to authenticate authority to update the software and check integrity 
of the transmitted code, and whether the methods for doing so are the 
strongest available at the time. The latter review has to be repeated regularly 
to account for future development of improved methods for providing these 
capabilities.  

 At the source code level, do static analysis of the implementations of these 
methods, up to and including constructing/checking mathematical proofs of 
the security properties of the protocols and algorithms used for transmitting 
and installing the software updates. Also check that the source code matches 
the algorithms and protocols that were proved, if the proofs are done based 
on some representation other than the actual source code for the service.  

 At the executable code level, do penetration testing by highly competent red 
teams aimed at these services, and check that the executable code matches 
the source code and is free from extra functions. This last step is needed to 
guard against possible compromise of the compilers, linkers, and loaders 
used to build the software, which could be corrupted to add back doors into 
the executable code they produce, which could be specifically targeted at just 
the implementation of the software update service. Such back doors could 
bypass the authentication and integrity checks that exist in the source code 
and provide unauthorized access to the software update service when 
activated by adversaries. 

Checking conformance to architecture includes checking that interfaces and 
executables do not contain any extra services or interaction paths, beyond those specified in 
the system interfaces. Such extra services could be avenues for execution of malware, and 
extra interactions could be paths for triggering malware or exfiltrating its results. Architecture 
conformance has two levels: checking actual source code interfaces for extra services, and 
checking source code of services that are specified in the architecture for extra interactions, 
such as reading or writing from files, network locations or global variables that are not 
included in the interface specification for the service. This latter check can be done via 
dependency analysis algorithms such as data flow analysis and software slicing (Berzins & 
Dailey, 2009). 

Memory allocation checking consists of checks for references to pointers that have 
not yet been initialized or that point to memory areas that have already been deallocated 
(“dangling pointers”). This is a common problem in programming languages without 
automatic garbage collection, and there exist commercial tools for doing such checking, 
including Insure++ and Valgrind (“Parasoft Insure++,” n.d.; “Valgrind’s Tool Suite,” n.d.). 

Memory reference checking is a runtime check that all pointer references refer to a 
non-null object of the proper type and that all array references are within the range of 
declared array bounds. Compilers of some languages can do this, and for some such as 
Ada, the runtime checks are required except for contexts in which the compiler can prove 
they are unnecessary because violations are impossible. Requiring use of such facilities 
would make it more difficult for adversaries to create exploits that corrupt memory containing 
executable code and critical data. Proof systems such as Spark can check properties such 
as these mostly automatically (“Spark Pro,” n.d.). 
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Runtime monitoring of executable code is an active check at runtime that the 
executable code matches the most recent version that was installed (Berzins, 2014). There 
should be a Technical Reference Framework that specifies a standard service for doing this, 
which can be easily incorporated in the architecture of any mission-critical system. This 
would enable development of standard software implementations of this service that could 
be used in any system conforming to the architecture. These implementations could have 
variants that work with different operating systems and different programming languages. 

Mitigation 

Detection of vulnerabilities and attacks is not sufficient for achieving reliable system 
operation—mitigation and recovery are needed as well. Some mitigations for code 
corruption attacks are as follows: 

 Using pure code segments contained in read-only hardware. This preventive 
measure would make runtime code modification attacks impossible, at the 
expense of specialized hardware and prohibition of automatic installation of 
software updates. This approach is not a new idea—it was used in very early 
systems that had magnetic drums as secondary memory (predating magnetic 
disks). A modern version could use erasable programmable read-only 
memory (EPROMs), which could allow updates but only with human 
intervention via physically exposing the memory chips to UV light to erase 
them and enable them to be reprogrammed. This would make software 
updates less automatic, but could provide two-factor authentication for 
updates and guarantees of absence of change between such updates. This 
mitigation is relatively expensive and cumbersome, but it could provide very 
high levels of runtime code protection to critical applications that really need 
it. 

 Restoration of code from ROM. A lighter-weight version of the above 
mitigation is to require runtime monitoring of the executable code, as 
described in the previous section, together with a facility for restoring the 
code from a backup copy in read-only memory (such as a locked CD ROM), 
restoring a safe execution state, and continuing the operation of the software. 
This solution can be implemented using existing hardware, but would require 
more time to restore operation after a failure. A stronger version of this idea 
would use a backup copy with a different code layout, which would reduce 
the chances that replay of the same attack would succeed again, thereby 
increasing time to next failure.  

 Disabling reflective language capabilities. Some modern programming 
languages, including Java, provide capabilities for runtime inspection and 
modification of interfaces and implementations. Access to such capabilities 
makes an adversary’s job much easier. Development contracts should either 
require the use of a programming language without reflective capabilities, or 
require the developer to demonstrate that those capabilities have been 
removed from the system. 

 Use of programming languages with garbage collection should reduce 
exposure to the threat of code and data corruption. The memory allocation 
and recycling facilities of languages and their supporting systems (compilers, 
runtime libraries, linkers, loaders, etc.) should be intensively checked for 
faults that could lead to memory corruption in applications constructed using 
those languages and systems. 
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Conclusions 
There is no silver bullet when it comes to cyber security, and no such thing as a 

completely secure system. The best practical solutions involve a layered set of defenses 
and mitigations that increase the time and effort it will take an adversary to compromise the 
system and decrease the time to detect a compromise and restore dependable operation. 
An appropriate goal would be to make system compromise prohibitively expensive for most, 
if not all, potential attackers. 

This paper defines a risk concept appropriate for gauging cyber threats, identifies 
cyber risks with greatest risk exposure, and suggests corresponding methods for detection 
and mitigation. In addition to methods that make the systems more difficult to compromise, 
we recommend further investigation of mitigations that address both the system and the 
adversary. This would include stronger methods for authenticating access to systems and 
networks, along with facilities for recording and linking people’s identities to evidence of 
potential wrongdoing that could support deterrence in the forms of legal prosecution of 
individual wrongdoers and determined public action against state-sponsored attacks. 
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