
SYM-AM-18-097

Acquisition Research:
Creating Synergy for Informed Change

May 9–10, 2018

March 30, 2018

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

- 382 -

Further Causal Search Analyses With UCC’s Effort
Estimation Data

Anandi Hira—is currently a PhD student under Dr. Barry Boehm at the University of Southern
California’s (USC’s) Computer Science Department. Her research interests lie in cost estimation and
models, software metrics in relation to project management, and process improvement. Hira has
been a part of the Unified Code Count (UCC) development effort at USC's Center for Systems and
Software Engineering (CSSE) for the past six years and has been collecting and analyzing the data to
compare the effectiveness of functional size metrics. [a.hira@usc.edu]

Barry Boehm—is the TRW Professor in USC’s Computer Sciences, Industrial and Systems
Engineering, and Astronautics Departments. He is also the Director of Research of the DoD-Stevens-
USC Systems Engineering Research Center and the founding Director of the USC Center for
Systems and Software Engineering. He was a Director at DARPA-ISTO, TRW, Rand Corporation,
and General Dynamics. His contributions include the COCOMO family of cost models and the Spiral
family of process models. He is a Fellow of the primary professional societies in computing (ACM),
aerospace (AIAA), electronics (IEEE), and systems engineering (INCOSE), and a member of the U.S.
National Academy of Engineering. [boehm@usc.edu

Robert Stoddard—is a Software Engineering Institute Principal Researcher at Carnegie Mellon
University. His research includes machine/causal learning, applied statistics, Bayesian probabilistic
modeling, Six Sigma, and quality/reliability engineering. Stoddard achieved an MS in Systems
Management and significant doctoral progress in reliability and quality management. He is a Fellow of
the American Society for Quality and a senior member of the IEEE. Stoddard holds five ASQ
certifications and is a Motorola-certified Six Sigma Master Black Belt. [rws@sei.cmu.edu]

Michael Konrad—is a Principal Researcher at the SEI, providing analytic support to various projects
using statistics, machine learning, and most recently, causal learning. Since 2013, Konrad has
contributed to research in requirements engineering, software architecture, and system complexity
measurement. From 1998 to 2013, he contributed to CMMI in many technical leadership roles. Prior
to 1998, Konrad was a member of the teams that developed the original Software CMM and ISO
15504. He is coauthor of the main Capability Maturity Model Integration for Development (CMMI-
DEV) books. Konrad received his PhD in mathematics from Ohio University in 1978.
[mdk@sei.cmu.edu]

Abstract
Correlation does not imply causation. Though this is a well-known fact, most

analyses depend on correlation as proof of relationships that are often treated as causal.
Causal search, also referred to as causal discovery, involves the application of statistical
methods to identify causal relationships using conditional independences (and/or other
statistical relationships) within data. Though software cost estimation models use both
domain knowledge and statistics, to date, there has yet to be a published report describing
the evaluation of a software dataset using causal search. In a previous paper, the authors
ran a PC causal search algorithm on Unified Code Count’s (UCC’s)1 dataset of maintenance
tasks and compared them to correlation test results. This paper builds on the previous paper
to introduce causal discovery to software engineering research by exploring additional
causal search algorithms (PC-Stable, fast greedy equivalent search [FGES], and fast

1 http://ucc.usc.edu

- 383 -

adjacency skewness [FASK]) and comparing their results to the traditional multi-step
regression analysis.

Introduction
Though analysts seek causation, “data, on their own, only communicate

associations” (Elwert, 2013). Two variables with high correlations, or associations, may have
causal or non-causal relationships (Elwert, 2013). Correlations, by themselves, cannot
generally determine which relationships are causal (Cook, Campbell, & Shadish, 2002).
Hence, statisticians emphasize correlation does not imply causation. Judea Pearl (2001)
stated, “Behind every causal conclusion there must lie some causal assumption that is not
testable in observational studies,” suggesting that one cannot gain complete causal
knowledge through only observational studies or data alone. Experiments that manipulate
causal variables can help identify causal relationships (Cook et al., 2002). However, there
are “practical and ethical considerations that limit the application of controlled experiments in
many cases” (Spirtes, 2010).

In software engineering, it is impractical to run software development effort
experiments. Developing the same software with various personnel attributes or
manipulating the project's size and product attributes with the same team would become
very expensive for software development teams. Hence, most data in software engineering
are observational versus from controlled experiments. Though causal inference (which
includes causal search) is characterized as “finding answers to questions about the
mechanisms by which variables come to take on values, or predicting the value of a variable
after some other variable has been manipulated” (Spirtes, 2010), estimation model
developers have not used such statistical methods to confirm or reject causal assumptions.
Until recently, estimation model developers lacked the tools to systematically evaluate
whether the size and effort drivers identified by software project experts do, in fact, have
significant (both in the statistical and effect size sense) causal effects on effort and,
therefore, should be preferred for selection over other candidate drivers for effort estimation.

Using the theory of causal inference, one can now perform a causal search “based
on unmanipulated data” (Spirtes, 2010). According to Spirtes, causal inference consists of
two parts: “search for a causal graph, and estimation of the free parameters from sample
data and the causal graph.” In this paper, the authors run causal search algorithms that
return causal graphs (the first part defined by Spirtes) with the intent to use the causal
discovery results to estimate the parameters (the second part defined by Spirtes).

Previously, the authors reported the differences between correlation test results and
commonly-used causal search algorithm results on UCC’s dataset of maintenance tasks
(Hira et al., 2018). This paper builds upon the first paper in several ways. First, the authors
take the opportunity to discuss the differences between constraint-based versus score-
based search algorithms as both are used in this paper. Second, the authors run additional
causal search algorithms (of both types) in order to better illustrate some of the other search
algorithms and their capabilities given a relatively small dataset, and to further confirm or
modify findings of the first paper in terms of factors having direct or indirect causal effects on
software development efforts. Third and last, the authors more clearly contrast the traditional
approach of correlation and multiple regression with that of the causal search approach.
Interestingly, not all causal search algorithms will necessarily result in the same set of
causal relationships.

- 384 -

Unified Code Count

Development Environment and Dataset Summary

The University of Southern California (USC) maintains Unified Code Count (UCC), a
small- to medium-sized tool that provides source lines of code (SLOC) counting metrics for
about 30 programming languages, such as logical SLOC (Park, 1992) and cyclomatic
complexity (McCabe, 1976). UCC is an object-oriented project written in C++, and each
year, development teams work on enhancements or extensions that range in size from 45 to
1,425 equivalent source lines of code (ESLOC, defined in the subsection titled Dataset
Attributes). USC releases an updated UCC annually with new language parsers, additional
features, and/or additional metrics. UCC's current dataset covers recent projects consisting
of six new language parser projects, five new features projects (such as GUI interface or
additional input options), and 19 projects researching and adding cyclomatic complexity
metrics to UCC's outputs. Data for analysis came from the developed code, weekly
timesheets, test case documentation with corresponding test data, and explanatory reports
summarizing the steps taken and the results of projects that began and completed between
2010 and 2014.

Dataset Attributes

Along with size and effort, UCC's dataset contains project and personnel
characteristics as defined by Constructive Cost Model® (COCOMO®) II. COCOMO® II is a
parametric software cost estimation model that requires size, product, and personnel
attributes as input, and outputs the estimated effort in Person-Months (PM). A summary of
the attributes included in UCC's dataset of maintenance tasks are as follows, where items
numbered 6 to 13 are effort factors defined by COCOMO® II:

1. Equivalent Logical Source Lines of Code (ESLOC): Logical SLOC was
developed and defined by the Software Engineering Institute (SEI) to
standardize SLOC measurement (Park, 1992). Equivalent logical SLOC
(ESLOC) makes modifications to reused code equivalent to new code, which
has been calculated using Nguyen's modification to COCOMO® II's reuse
model (Nguyen, 2010; Boehm, Madachy, & Steece, 2000).

2. IFPUG Function Points (FPs): Each project in the dataset has been sized
using version 4.3.1 of IFPUG's FPs method.

3. IFPUG Software Non-Functional Assessment Process (SNAP) Points: Each
project in the dataset has been sized using version 2.3 of IFPUG's SNAP
method.

4. COSMIC Function Points (CFPs): Each project in the dataset has been sized
using version 4.0 of COSMIC's FPs (CFPs) method.

5. Total Effort: Effort in terms of hours, including time spent on training,
requirements gathering, coding, testing, and documenting.

6. Applications Experience (APEX): Most of the personnel that join UCC's
development team do not have prior industry experience in similar application
types, though they have sufficient computer science education. Therefore,
the Low rating is used for APEX on all data points (as opposed to Very Low
or Nominal, etc.).

7. Platform Experience (PLEX): The development personnel have little
experience in the graphical interface platform and building cross-platform
applications. Hence, a Low rating for PLEX best describes the development
teams for all data points.

- 385 -

8. Use of Software Tools (TOOL): Currently, the UCC development environment
only uses tools corresponding to the Very Low rating.

9. Personnel Continuity (PCON): COCOMO® II's highest personnel turnover
rating is 48% per year. On average, UCC faces a 90% turnover over four
months. Two of the authors had to adjust the rating value for this parameter
in a previous study (Hira, Sharma, & Boehm, 2016).

10. Documentation Match to Life-Cycle Needs (DOCU): All teams are required to
document the requirements of the project and summarize the work completed
and decisions made. However, a couple of projects had substantially more
documentation with respect to the requirements and earned a High rating for
DOCU, and one project had less than the required documentation and
earned a Low rating.

11. Analyst Capability (ACAP): “Analysts are personnel who work on
requirements, high-level design, and detailed design” (Boehm et al., 2000).
Some teams showed high and very high analyst capability, whereas very few
teams showed low capability in analysis and design.

12. Programmer Capability (PCAP): Though most of the programming personnel
were sufficiently capable, some developers had especially proficient
programming skills.

13. Product Complexity (CPLX): Although most of the UCC maintenance tasks
fall within the Nominal or Average rating for CPLX, some were rated Low
based on the types of control operations and computation operations
implemented.

The applicable COCOMO® II effort factors and their corresponding values for each of
the projects were evaluated by reviewing the source code, deliverables, and Hira's weekly
notes on teams' progress at the time of data collection. Since items 6–9 are rated the same
across all data points, they are not included in the causal search algorithm runs.

Causal Search Algorithms Further Explained
Causal search algorithms typically take a dataset and hyper-parameters governing

the search and output a set of graphs whose nodes are the variables appearing in the
dataset (and depending on the algorithm, may include latent variables) and whose edges
indicate some kind of direct causal connection between the pair of nodes they join.
(Optionally, the algorithms also take sets of required and prohibited direct causal
relationships between pairs of variables, which the user can use to encode the results of
experiments or elicited domain knowledge.) There are many variations on this simple theme
among the dozens of search algorithms, but in terms of understanding how they function,
and thus something of their relative strengths and limitations, it will help to organize them
into two broad categories: constraint-based and score-based search algorithms (Spirtes,
2010).

For both categories of searches, pointwise-consistent convergence has been proven.
In other words, with increasing datasets drawn from the same population, the algorithm will
eventually find the correct causal graph(s). Unfortunately, uniformly-consistent convergence
has not been proven, which could provide the rate of convergence and level of confidence
for particular causal relationships (Spirtes, 2010).

- 386 -

Constraint-Based Search Algorithms

The first practical constraint-based search algorithm developed was the PC search
algorithm, the algorithm used in the previous paper by the authors (Hira et al., 2018). In its
simplest form, constraint-based search involves two stages: Adjacency Search and Edge
Orientation. Starting with a complete undirected graph, edges are iteratively removed by
testing for the conditional independence of joined nodes given a subset of neighboring
nodes. If conditional independence is found, the edge is removed and the conditioning set
employed is noted for later use in the Edge Orientation stage. This process is continued until
all edges have been evaluated in this way. The result of this first stage, Adjacency Search,
is thus an undirected graph. Edge Orientation starts with an undirected graph and iteratively
orients edges according to a few rules that make use of the conditioning sets noted during
the Adjacency Search stage. The result is an equivalence class of graphs, called a Markov
Equivalence Class (MEC), rather than a single graph, because it is often impossible to
determine the orientation of all the edges in the undirected graph that is output from the
Adjacency Search stage (Spirtes, 2010).

For example, suppose we have a dataset featuring three variables, X1, X2, and X3,
and the only independence discovered among them is X1 is independent of X3 conditioned
on X2. We also suppose we have no additional knowledge to encode about X1, X2, and X3,
only the dataset. Then the Adjacency Search stage will output the undirected graph X1 – X2
– X3 (as well as some kind of note that the conditioning set that made X1 and X3
independent is {X2}). Then, given that particular independence, it necessarily follows that
during the Edge Orientation stage, the direction of orientations for the edges of this
undirected graph will not be able to be determined uniquely. Indeed, any of the following
three pairs of orientations are valid, constituting the MEC: { X1 → X2 → X3, X1 ← X2 ← X3,
X1 ← X2 → X3 }. Note that the following sequence of orientations is not part of the MEC: X1
→ X2 ← X3. This type of relationship among variables is referred to as a collider. In a
collider, the independence conditioning set is the empty set, because X1 is independent of
X3 unconditionally. Hence, if the only independence found among X1, X2, and X3 is that X1
and X3 are unconditionally independent, then the MEC would consist of exactly one graph:
X1 → X2 ← X3. Thus, colliders provide important clues for orienting edges during the Edge
Orientation Stage (Spirtes, 2010).

While the idea of a set of graphs being the output of a causal search may disappoint,
it is important to note that all graphs in an MEC have the same set of colliders and are built
on top of the same undirected graph. Thus, all graphs in an MEC manifest the same set of
correlations present in the dataset but may vary as to the causal orientations for some
edges.

The hyper-parameters of a constraint-based search algorithm typically include but
are not limited to

1. type of independence test used (e.g., Fisher Z Test, Conditional Correlation
Test)

2. confidence level for conditional independence testing (cutoff for p values)

3. maximum size of condition set

Constraint-based search makes very significant use of independence tests, and what
type of independence test to use for what purpose is an ongoing area of research to help
achieve both accuracy and speed across a range of different assumptions (e.g., non-
Gaussian univariate distributions). Another area of research is how to achieve both accuracy
and speed in determining edge orientations. The need to conduct search on enormous

- 387 -

datasets and a very large number of variables (e.g., one million cases and tens of
thousands of variables) motivates research for better algorithms.

Score-Based Search Algorithms

To those readers more familiar with machine learning, score-based search
algorithms employ a familiar mechanism: a maximum likelihood-based score (such as
Bayesian information criterion [BIC]). Like constraint-based search, there are two stages,
both are iterative, and in each iteration of each stage there is both a currently-considered
MEC (see the previous section for an explanation of this term, but it is important to note that
all graphs in an MEC share the same underlying undirected graph and the same colliders)
and a set of neighboring MECs and that each either possesses an additional edge (first
stage of search) or has one edge removed (second stage of search; Spirtes, 2010).

In each iteration of the first stage, from the currently-considered MEC, the algorithm
scores all neighboring MECs that have one additional edge. The best-scoring neighboring
MEC then becomes the currently-considered MEC in the next iteration. The algorithm
continues to iterate, building graphs one edge at a time, until a better score cannot be
attained. In the second stage, the algorithm proceeds similarly but in reverse, considering
only those MECs having one edge removed. Again, the algorithm halts when no better score
can be attained, and the resulting MEC is returned as the output (Spirtes, 2010).

The advantages of score-based search algorithms over constraint-based search
algorithms are as follows:

 They can obtain more accurate adjacencies.

 They will typically output only directed or undirected edges. There are no bi-
directed edges because equivalence class scoring will almost always favor
one orientation over the other (or make the rarely-required arbitrary
selection). A bi-directed edge signifies that there may be an unmeasured
variable affecting the two variables.

A limitation of score-based search algorithms is that they can be slow and might not
scale as well as constraint-based searches.

Applying Three Additional Search Algorithms (Beyond the First Paper)

As mentioned earlier, the authors ran the PC search algorithms earlier (Hira et al.,
2018). PC is often cited by data analysts experienced with performing causal search as the
“go to” causal search algorithm, given its generally high accuracy (generally better at getting
adjacencies right) and high scalability. In this paper, the authors run three additional search
algorithms on the same dataset: PC-Stable (constraint-based), FGES, and FASK (both
score-based), in order to better illustrate some of the other search algorithms and their
capabilities given a relatively small dataset.

Here is a short description of the particular niche where each algorithm has some
relative strengths over the others:

1. PC-Stable is a variant of PC that addresses the problem that the causal
graphs output by many search algorithms depend on the order of the
variables within the dataset (Colombo & Maathuis, 2014).

2. FGES is a score-based search algorithm and perhaps best qualifies as the
causal-search data analysts’ favorite “go to” search algorithm after PC
(particularly if they do not like to deal with bi-directed edges; Center for
Causal Discovery, 2017).

- 388 -

3. FASK, a score-based search algorithm, addresses the problem that
oftentimes variables have asymmetric distributions. The previously listed
algorithms assume that direct causal relationships are linear up to an error
term that is Gaussian, whereas FASK actually exploits skew in error terms’
distributions to determine how best to orient edges (Sanchez-Romero et al.,
2018).

Tetrad

As part of a National Institutes of Health (NIH) Big Data initiative, the University of
Pittsburgh, Carnegie Mellon University (CMU), and Pittsburgh Supercomputing Center serve
as founding members of the Center for Causal Discovery (CCD). The CCD develops and
maintains causal algorithms, software, and tools, including the Tetrad2 program with its GUI,
API, and command-line interfaces (referred to as Tetrad in this paper). Tetrad allows users
to run causal search algorithms on a dataset as well as estimate and evaluate parametric
models. The authors loaded the data from the UCC's dataset (described in the section titled
Unified Code Count) and ran causal search algorithms, which returned causal graphs
representing the cause-effect relationships discovered in the dataset.

PC-Stable Causal Search Results
The PC-Stable causal search is run on UCC’s dataset first with all size-related

variables (ESLOC, CFPs, FPs, and SNAP), and second, individually with only one size-
related variable at a time. The authors run the algorithm with the simultaneous inclusion of
all size-related variables to determine whether the size metrics might work together to
characterize total effort, as represented by the variable TotalEffort.

The graphical search results from PC-Stable are displayed in Figures 1–5, which
conclude that product complexity (CPLX) is consistently identified as the single causal factor
of TotalEffort except for the search with all size metrics included. When all size metrics are
included, the size metric COSMIC Function Points (CFPs) is identified as the sole causal
factor on TotalEffort. Interestingly, ESLOC, FPs, and SNAP have an undirected edge with
CPLX, which thus has a potential causal effect on TotalEffort through CPLX (Figures 2–4),
while CFPs’ role with CPLX is flipped (see Figure 5). Lastly, each of the figures shows an
undirected edge between analyst capability (ACAP) and programmer capability (PCAP).

Figure 1. PC-Stable Result When All Size Metrics Are Included

2 https://github.com/cmu-phil/tetrad

- 389 -

Figure 2. PC-Stable Result When Only ESLOC Is Included as a Size Metric

Figure 3. PC-Stable Result When Only IFPUG FPs Is Included as a Size Metric

Figure 4. PC-Stable Result When Only IFPUG SNAP Is Included as a Size Metric

Figure 5. PC-Stable Result When Only CFPs Is Included as a Size Metric

- 390 -

FGES Causal Search Results
The graphical search results from running FGES may be seen in Figures 6–10. The

causal graphs returned by FGES have some different conclusions than those returned by
PC-Stable. The PCAP factor shows up in all cases as having a causal effect on TotalEffort
(and an undirected edge with ACAP), while CFPs also have a causal factor on TotalEffort
(consistent with PC-Stable results). Only with ESLOC is there an undirected edge between
the size metric and CPLX (see Figure 7; consistent with PC-stable result).

Figure 6. FGES Result When All Size Metrics Are Included

Figure 7. FGES Result When Only ESLOC Is Included as a Size Metric

Figure 8. FGES Result When Only IFPUG FPs Is Included as a Size Metric

- 391 -

Figure 9. FGES Result When Only IFPUG SNAP Is Included as a Size Metric

Figure 10. FGES Result When Only CFPs Is Included as a Size Metric

FASK Causal Search Results
Before conducting the FASK causal search, the authors revisited the distribution of

each factor as FASK achieves improved edge orientation when distributions are skewed.
Table 1 summarizes the results of checking for skewness. Since most variables are skewed,
the authors proceeded to run FASK, aware that the lack of full skewness might render some
edge orientations incorrectly.

- 392 -

Table 1. Summary of Variables’ Skewness

Variable Skewed
CPLX YES
CFP YES
FP NO

SNAP YES
ESLOC YES
ACAP NO
PCAP NO
DOCU YES

Total Effort YES
The graphical search results from FASK, Figures 11–15, show that the algorithm

returned some similar and some very different results compared to both PC-Stable and
FGES. Most interestingly, the algorithm returns the factor Documentation Match to Lifecycle
Needs (DOCU) as having a causal effect on TotalEffort, along with some of the size metrics.
Except when all size metrics are included in the analysis, DOCU is identified as having a
causal effect on ACAP, and there is an undirected edge between DOCU and PCAP.
Additionally, SNAP is identified as having causal effects on ACAP and DOCU, and FPs as
having a causal effect on DOCU.

Figure 11. FASK Result When All Size Metrics Are Included

- 393 -

Figure 12. FASK Result When All Size Metrics Are Included

Figure 13. FASK Result When All Size Metrics Are Included

Figure 14. FASK Result When All Size Metrics Are Included

- 394 -

Figure 15. FASK Result When All Size Metrics Are Included

Traditional Stepwise Multiple Regression
In order to determine the most influential factors and an acceptable prediction model,

data analysts typically use the stepwise multiple regression approach. As displayed in Table
2, stepwise regression produces results indicating that PCAP and CFPs remain significant in
predicting TotalEffort. Although models with three or more factors achieve a reasonably high
Adjusted R-Squared, the simplified, two-factor model with PCAP and CFPs produces similar
Adjusted R-Squared results. The details of the resulting prediction model are detailed in
Table 3, and Figure 16 displays that the residuals of the model are normally distributed and
do not have multi-collinearity.

- 395 -

Table 2. Stepwise Regression Results Summary With Variables Considered
During Each Run

Vars R-Sq R-Sq
(adj)

R-Sq
(pred)

Mallows
Cp

S C
F
P
s

E
S
L
O
C

F
P
s

S
N
A
P

A
C
A
P

P
C
A
P

D
O
C
U

C
P
L
X

1 57.6 56.1 51.0 35.0 231.50 X

1 54.6 53.0 47.9 39.3 239.65 X

2 84.9 83.8 78.3 -2.3 140.54 X X

2 78.5 76.9 67.4 6.9 167.87 X X

3 85.3 83.6 76.1 -0.9 141.35 X X X

3 85.1 83.4 77.2 -0.6 142.30 X X X

4 85.4 83.0 73.0 1.1 143.98 X X X X

4 85.3 83.0 68.6 1.1 144.13 X X X X

5 85.4 82.3 61.9 3.0 146.83 X X X X X

5 85.4 82.3 67.0 3.0 146.89 X X X X X

6 85.4 81.6 55.2 5.0 149.92 X X X X X X

6 85.4 81.6 59.9 5.0 149.99 X X X X X X

7 85.4 80.8 53.0 7.0 153.29 X X X X X X X

7 85.4 80.8 52.0 7.0 153.29 X X X X X X X

8 85.4 79.8 49.5 9.0 156.90 X X X X X X X X

Table 3. Coefficients and Corresponding P-Values for the Regression Model
Predicting TotalEffort

Term Coef SE Coef T-Value P-Value VIF

Constant -1791 244 -7.33 0.000

PCAP 1948 264 7.38 0.000 1.12

CFPs 76.3 10.9 7.00 0.000 1.12

- 396 -

Figure 16. Residual Plots for the Regression Model Predicting TotalEffort
Displaying the Fulfillment of Linear Regression Assumptions

Summary of Results
Table 4 depicts a summary of the results of the PC (Hira, Sharma, & Boehm, 2018),

PC-Stable, FGES, and FASK causal searches in which the direct and indirect causal factors
are noted. Contrary to the traditional stepwise multiple regression approach which identified
PCAP and CFPs as significant factors of TotalEffort, the causal search has uncovered direct
causal evidence, depending on the algorithm, of FP, SNAP, CFP, CPLX, PCAP, and DOCU.
The algorithms also identified ESLOC, FP, SNAP, ACAP, and PCAP as indirect causal
drivers of TotalEffort.

There remains a number of ways in which this summary may be interpreted. One
approach would be to look for the complete absence or presence of causal relationships as
noteworthy new knowledge. Another approach would be to look for direct and indirect causal
factors showing up across a majority of causal algorithms. Lastly, one could choose to be
much more inclusive and look at all direct and indirect factors that show up at least once.

Acknowledging the small size of the data set and the impact of the small sample size
on the causal search results, one can still see that causal search can inform a researcher of
alternative independent factors that may actually be the causal force on the dependent
factor. As such, given the small sample size, there is evidence that CPLX, PCAP, DOCU,
and several size measures (CFP, FP, and SNAP) may be considered as direct causal
factors. It is interesting to also note that PCAP only showed up as a direct causal factor on
TotalEffort using the FGES score-based algorithm, while DOCU showed up as a direct
causal factor using FASK. Among the size measures, the strongest candidate for a direct
causal factor for TotalEffort would seem to be CFP. In conclusion, these causal search

- 397 -

results should motivate the researcher to collect additional data and continue analyzing
beyond what a traditional regression approach might offer toward the ultimate goal of
estimating a quantified actionable model for TotalEffort—an actionable model that is suitable
for use in deciding how to intervene and change a project’s course toward achieving desired
target outcomes. Correlation alone really doesn’t provide sufficient insight.

Table 4. Identified Direct and Indirect Causes of TotalEffort by Algorithm and
Scenario

Note. Black cells are Not Applicable as factor not present in model.

Implications for Acquisition Research
The authors believe the implications of adding causal searches and ultimately,

causal estimations of causal influence, could transform acquisition research in the following
ways:

1. The need to pursue expensive and, more likely, prohibitive experiments of
acquisition factors could be obviated by use of causal methods appropriate
for observational data. (Or at a minimum, causal research findings should be
used to more efficiently focus such experiments.)

2. Revisiting research data affiliated with the acquisition research arena could
quickly help filter likely causal factors from the merely correlated factors,
thereby reducing researcher distraction and accelerating progress in
acquisition research.

3. Different acquisition researchers could more easily begin to unite causal
conclusions into a more holistic causal model of acquisition research
outcomes.

4. The acquisition research community could identify and prioritize constrained
research funding towards causal research outcomes worthy of investment in
repeatability and reproducibility studies.

- 398 -

5. Causal research findings would be more confidently tested by real-world
acquisition program interventions and risk less in wasteful interventions.

6. SEI’s acquisition experts indicate specific acquisition outcomes and
associated factors worthy of causal learning include

a. delivering required warfighter capability at an affordable price and on
schedule, driven by potential factors such as lack of competencies in
the workforce, greater system complexity, and underestimation of cost
and schedule,

b. unrealistic assumptions made by decision-makers very early in the
acquisition lifecycle,

c. program acquisition strategy (and changes in the strategy), the
program structure, and the technical challenges facing the program,

d. leadership incentives to conduct critical thinking and apply evidence-
based knowledge and practice early in a program,

e. people, process, requirements, and incentives in general,

f. the overall contracting process in context of changes that are often
difficult to make and take a lot of time, leading to issues on the
contractor side,

g. the technical strength of the government team,

h. measurement of agile versus more traditional development, and

i. measured effectiveness of the Department of Defense (DoD) 5000
mandated reviews.

Next Steps
The authors welcome research collaboration making use of causal search and

estimation, especially acquisition research focused on impacts to acquisition cost and
schedule. Research collaboration of this nature would complement existing research funded
through the SEI as part of a three-year (FY 2018–2020) DoD research project titled
“Investigating the Feasibility of an Integrated Causal Model for Software Cost Control
(SCOPE).” Many forms of acquisition research collaboration exist, including (1) providing
subjective and objective research data, (2) connecting our research team with acquisition
managers and organizations who might provide research data, (3) helping to identify the
nature of acquisition outcome measures worthy of study along with insights to the potential
causal factors of those outcomes, and (4) learning how to conduct causal search and
estimation and working with our research team as a direct contributing member or as a
reviewer of causal results.

References
Boehm, B. W., Madachy, R., & Steece, B. (2000). Software cost estimation with Cocomo II

with Cdrom. Prentice Hall.

Center for Causal Discovery. (2017). Fast greedy equivalence search (FGES) algorithm for
continuous variables. Retrieved from
http://www.ccd.pitt.edu/wiki/index.php?title=Fast_Greedy_Equivalence_Search_(FGES)
_Algorithm_for_Continuous_Variables

Colombo, D., & Maathuis, M. H. (2014). Order-independent constraint-based causal
structure learning. Journal of Machine Learning Research, 15(1), 3741–3782.

- 399 -

Cook, T. D., Campbell, D. T., & Shadish, W. (2002). Experimental and quasi-experimental
designs for generalized causal inference. Boston, MA: Houghton Mifflin.

Elwert, F. (2013). Graphical causal models. In Handbook of causal analysis for social
research (pp. 245–273). Dordrecht: Springer.

Hira, A., Sharma, S., & Boehm, B. (2016, May). Calibrating COCOMO® II for projects with
high personnel turnover. In Proceedings of the International Conference on Software
and Systems Process (pp. 51–55). ACM.

Hira, A., et al. (2018). Preliminary causal discovery results with software effort estimation
data. In Proceedings of the 11th Innovations in Software Engineering Conference (pp.
1–11). ACM.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering,
4, 308–320.

Nguyen, V. (2010, September). Improved size and effort estimation models for software
maintenance. In Proceedings of the 2010 IEEE International Conference on Software
Maintenance (ICSM; pp. 1–2). IEEE.

Park, R. E. (1992). Software size measurement: A framework for counting source
statements (No. CMU/SEI/92-TR-20). Pittsburgh, PA: Carnegie-Mellon University,
Software Engineering Institute.

Pearl, J. (2001). Causal inference in the health sciences: A conceptual introduction. Health
Services and Outcomes Research Methodology, 2(3–4), 189–220.

Sanchez-Romero, R., Ramsey, J. D., Zhang, K., Glymour M. R. K., Huang, B., & Glymour,
C. (2018). Causal discovery of feedback networks with functional magnetic resonance
imaging. Retrieved from https://www.biorxiv.org/content/early/2018/01/10/245936

Spirtes, P. (2010). Introduction to causal inference. Journal of Machine Learning Research,
11(May), 1643–1662.

Acknowledgments
This material is based upon work supported in part by Cyber Security and

Information Systems Information Analysis Center (CSIAC) and in part upon work funded and
supported by the DoD under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the SEI, a federally-funded research and development center.
The authors would like to thank Michael McClendon and Julie Cohen (both of the SEI) for
their acquisition insight to high value acquisition targets of causal learning described at the
end of the paper. The authors would also like to thank David Zubrow (SEI) for his
encouragement and support and for sharing his insights for the work in this paper.
Additionally, the authors thank David Danks, Kun Zhang, Madelyn Glymour, and Joe
Ramsey for their help in understanding causal search, the search algorithms, and the Tetrad
tool.

The Tetrad program is released under the GNU GPL v. 2 license and may be freely
downloaded and used without permission of copyright holders, who reserve the right to alter
the program at any time without notification. Executable and Source code for all versions of
Tetrad V are copyrighted, 2015, by Clark Glymour, Richard Scheines, Peter Spirtes, and
Joseph Ramsey. The Tetrad codebase is publicly available on GitHub. The programmer's
website can be found at https://www.andrew.cmu.edu/user/jdramsey/

www.acquisitionresearch.net

