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Abstract 
Correlation does not imply causation. Though this is a well-known fact, most 

analyses depend on correlation as proof of relationships that are often treated as causal. 
Causal search, also referred to as causal discovery, involves the application of statistical 
methods to identify causal relationships using conditional independences (and/or other 
statistical relationships) within data. Though software cost estimation models use both 
domain knowledge and statistics, to date, there has yet to be a published report describing 
the evaluation of a software dataset using causal search. In a previous paper, the authors 
ran a PC causal search algorithm on Unified Code Count’s (UCC’s)1 dataset of maintenance 
tasks and compared them to correlation test results. This paper builds on the previous paper 
to introduce causal discovery to software engineering research by exploring additional 
causal search algorithms (PC-Stable, fast greedy equivalent search [FGES], and fast 
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adjacency skewness [FASK]) and comparing their results to the traditional multi-step 
regression analysis. 

Introduction 
Though analysts seek causation, “data, on their own, only communicate 

associations” (Elwert, 2013). Two variables with high correlations, or associations, may have 
causal or non-causal relationships (Elwert, 2013). Correlations, by themselves, cannot 
generally determine which relationships are causal (Cook, Campbell, & Shadish, 2002). 
Hence, statisticians emphasize correlation does not imply causation. Judea Pearl (2001) 
stated, “Behind every causal conclusion there must lie some causal assumption that is not 
testable in observational studies,” suggesting that one cannot gain complete causal 
knowledge through only observational studies or data alone. Experiments that manipulate 
causal variables can help identify causal relationships (Cook et al., 2002). However, there 
are “practical and ethical considerations that limit the application of controlled experiments in 
many cases” (Spirtes, 2010).  

In software engineering, it is impractical to run software development effort 
experiments. Developing the same software with various personnel attributes or 
manipulating the project's size and product attributes with the same team would become 
very expensive for software development teams. Hence, most data in software engineering 
are observational versus from controlled experiments. Though causal inference (which 
includes causal search) is characterized as “finding answers to questions about the 
mechanisms by which variables come to take on values, or predicting the value of a variable 
after some other variable has been manipulated” (Spirtes, 2010), estimation model 
developers have not used such statistical methods to confirm or reject causal assumptions. 
Until recently, estimation model developers lacked the tools to systematically evaluate 
whether the size and effort drivers identified by software project experts do, in fact, have 
significant (both in the statistical and effect size sense) causal effects on effort and, 
therefore, should be preferred for selection over other candidate drivers for effort estimation.  

Using the theory of causal inference, one can now perform a causal search “based 
on unmanipulated data” (Spirtes, 2010). According to Spirtes, causal inference consists of 
two parts: “search for a causal graph, and estimation of the free parameters from sample 
data and the causal graph.” In this paper, the authors run causal search algorithms that 
return causal graphs (the first part defined by Spirtes) with the intent to use the causal 
discovery results to estimate the parameters (the second part defined by Spirtes).  

Previously, the authors reported the differences between correlation test results and 
commonly-used causal search algorithm results on UCC’s dataset of maintenance tasks 
(Hira et al., 2018). This paper builds upon the first paper in several ways. First, the authors 
take the opportunity to discuss the differences between constraint-based versus score-
based search algorithms as both are used in this paper. Second, the authors run additional 
causal search algorithms (of both types) in order to better illustrate some of the other search 
algorithms and their capabilities given a relatively small dataset, and to further confirm or 
modify findings of the first paper in terms of factors having direct or indirect causal effects on 
software development efforts. Third and last, the authors more clearly contrast the traditional 
approach of correlation and multiple regression with that of the causal search approach. 
Interestingly, not all causal search algorithms will necessarily result in the same set of 
causal relationships.  



- 384 - 

Unified Code Count 

Development Environment and Dataset Summary 

The University of Southern California (USC) maintains Unified Code Count (UCC), a 
small- to medium-sized tool that provides source lines of code (SLOC) counting metrics for 
about 30 programming languages, such as logical SLOC (Park, 1992) and cyclomatic 
complexity (McCabe, 1976). UCC is an object-oriented project written in C++, and each 
year, development teams work on enhancements or extensions that range in size from 45 to 
1,425 equivalent source lines of code (ESLOC, defined in the subsection titled Dataset 
Attributes). USC releases an updated UCC annually with new language parsers, additional 
features, and/or additional metrics. UCC's current dataset covers recent projects consisting 
of six new language parser projects, five new features projects (such as GUI interface or 
additional input options), and 19 projects researching and adding cyclomatic complexity 
metrics to UCC's outputs. Data for analysis came from the developed code, weekly 
timesheets, test case documentation with corresponding test data, and explanatory reports 
summarizing the steps taken and the results of projects that began and completed between 
2010 and 2014.  

Dataset Attributes 

Along with size and effort, UCC's dataset contains project and personnel 
characteristics as defined by Constructive Cost Model® (COCOMO®) II. COCOMO® II is a 
parametric software cost estimation model that requires size, product, and personnel 
attributes as input, and outputs the estimated effort in Person-Months (PM). A summary of 
the attributes included in UCC's dataset of maintenance tasks are as follows, where items 
numbered 6 to 13 are effort factors defined by COCOMO® II: 

1. Equivalent Logical Source Lines of Code (ESLOC): Logical SLOC was 
developed and defined by the Software Engineering Institute (SEI) to 
standardize SLOC measurement (Park, 1992). Equivalent logical SLOC 
(ESLOC) makes modifications to reused code equivalent to new code, which 
has been calculated using Nguyen's modification to COCOMO® II's reuse 
model (Nguyen, 2010; Boehm, Madachy, & Steece, 2000). 

2.  IFPUG Function Points (FPs): Each project in the dataset has been sized 
using version 4.3.1 of IFPUG's FPs method.  

3. IFPUG Software Non-Functional Assessment Process (SNAP) Points: Each 
project in the dataset has been sized using version 2.3 of IFPUG's SNAP 
method.  

4. COSMIC Function Points (CFPs): Each project in the dataset has been sized 
using version 4.0 of COSMIC's FPs (CFPs) method.  

5. Total Effort: Effort in terms of hours, including time spent on training, 
requirements gathering, coding, testing, and documenting.  

6. Applications Experience (APEX): Most of the personnel that join UCC's 
development team do not have prior industry experience in similar application 
types, though they have sufficient computer science education. Therefore, 
the Low rating is used for APEX on all data points (as opposed to Very Low 
or Nominal, etc.).  

7. Platform Experience (PLEX): The development personnel have little 
experience in the graphical interface platform and building cross-platform 
applications. Hence, a Low rating for PLEX best describes the development 
teams for all data points.  
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8. Use of Software Tools (TOOL): Currently, the UCC development environment 
only uses tools corresponding to the Very Low rating.  

9. Personnel Continuity (PCON): COCOMO® II's highest personnel turnover 
rating is 48% per year. On average, UCC faces a 90% turnover over four 
months. Two of the authors had to adjust the rating value for this parameter 
in a previous study (Hira, Sharma, & Boehm, 2016). 

10. Documentation Match to Life-Cycle Needs (DOCU): All teams are required to 
document the requirements of the project and summarize the work completed 
and decisions made. However, a couple of projects had substantially more 
documentation with respect to the requirements and earned a High rating for 
DOCU, and one project had less than the required documentation and 
earned a Low rating. 

11. Analyst Capability (ACAP): “Analysts are personnel who work on 
requirements, high-level design, and detailed design” (Boehm et al., 2000). 
Some teams showed high and very high analyst capability, whereas very few 
teams showed low capability in analysis and design.  

12. Programmer Capability (PCAP): Though most of the programming personnel 
were sufficiently capable, some developers had especially proficient 
programming skills.  

13. Product Complexity (CPLX): Although most of the UCC maintenance tasks 
fall within the Nominal or Average rating for CPLX, some were rated Low 
based on the types of control operations and computation operations 
implemented.  

The applicable COCOMO® II effort factors and their corresponding values for each of 
the projects were evaluated by reviewing the source code, deliverables, and Hira's weekly 
notes on teams' progress at the time of data collection. Since items 6–9 are rated the same 
across all data points, they are not included in the causal search algorithm runs. 

Causal Search Algorithms Further Explained 
Causal search algorithms typically take a dataset and hyper-parameters governing 

the search and output a set of graphs whose nodes are the variables appearing in the 
dataset (and depending on the algorithm, may include latent variables) and whose edges 
indicate some kind of direct causal connection between the pair of nodes they join. 
(Optionally, the algorithms also take sets of required and prohibited direct causal 
relationships between pairs of variables, which the user can use to encode the results of 
experiments or elicited domain knowledge.) There are many variations on this simple theme 
among the dozens of search algorithms, but in terms of understanding how they function, 
and thus something of their relative strengths and limitations, it will help to organize them 
into two broad categories: constraint-based and score-based search algorithms (Spirtes, 
2010).  

For both categories of searches, pointwise-consistent convergence has been proven. 
In other words, with increasing datasets drawn from the same population, the algorithm will 
eventually find the correct causal graph(s). Unfortunately, uniformly-consistent convergence 
has not been proven, which could provide the rate of convergence and level of confidence 
for particular causal relationships (Spirtes, 2010).  
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Constraint-Based Search Algorithms 

The first practical constraint-based search algorithm developed was the PC search 
algorithm, the algorithm used in the previous paper by the authors (Hira et al., 2018). In its 
simplest form, constraint-based search involves two stages: Adjacency Search and Edge 
Orientation. Starting with a complete undirected graph, edges are iteratively removed by 
testing for the conditional independence of joined nodes given a subset of neighboring 
nodes. If conditional independence is found, the edge is removed and the conditioning set 
employed is noted for later use in the Edge Orientation stage. This process is continued until 
all edges have been evaluated in this way. The result of this first stage, Adjacency Search, 
is thus an undirected graph. Edge Orientation starts with an undirected graph and iteratively 
orients edges according to a few rules that make use of the conditioning sets noted during 
the Adjacency Search stage. The result is an equivalence class of graphs, called a Markov 
Equivalence Class (MEC), rather than a single graph, because it is often impossible to 
determine the orientation of all the edges in the undirected graph that is output from the 
Adjacency Search stage (Spirtes, 2010).  

For example, suppose we have a dataset featuring three variables, X1, X2, and X3, 
and the only independence discovered among them is X1 is independent of X3 conditioned 
on X2. We also suppose we have no additional knowledge to encode about X1, X2, and X3, 
only the dataset. Then the Adjacency Search stage will output the undirected graph X1 – X2 
– X3 (as well as some kind of note that the conditioning set that made X1 and X3 
independent is {X2}). Then, given that particular independence, it necessarily follows that 
during the Edge Orientation stage, the direction of orientations for the edges of this 
undirected graph will not be able to be determined uniquely. Indeed, any of the following 
three pairs of orientations are valid, constituting the MEC: { X1 → X2 → X3, X1 ← X2 ← X3, 
X1 ← X2 → X3 }. Note that the following sequence of orientations is not part of the MEC: X1 
→ X2 ← X3. This type of relationship among variables is referred to as a collider. In a 
collider, the independence conditioning set is the empty set, because X1 is independent of 
X3 unconditionally. Hence, if the only independence found among X1, X2, and X3 is that X1 
and X3 are unconditionally independent, then the MEC would consist of exactly one graph: 
X1 → X2 ← X3. Thus, colliders provide important clues for orienting edges during the Edge 
Orientation Stage (Spirtes, 2010).  

While the idea of a set of graphs being the output of a causal search may disappoint, 
it is important to note that all graphs in an MEC have the same set of colliders and are built 
on top of the same undirected graph. Thus, all graphs in an MEC manifest the same set of 
correlations present in the dataset but may vary as to the causal orientations for some 
edges. 

The hyper-parameters of a constraint-based search algorithm typically include but 
are not limited to 

1. type of independence test used (e.g., Fisher Z Test, Conditional Correlation 
Test) 

2. confidence level for conditional independence testing (cutoff for p values) 

3. maximum size of condition set 

Constraint-based search makes very significant use of independence tests, and what 
type of independence test to use for what purpose is an ongoing area of research to help 
achieve both accuracy and speed across a range of different assumptions (e.g., non-
Gaussian univariate distributions). Another area of research is how to achieve both accuracy 
and speed in determining edge orientations. The need to conduct search on enormous 



- 387 - 

datasets and a very large number of variables (e.g., one million cases and tens of 
thousands of variables) motivates research for better algorithms. 

Score-Based Search Algorithms 

To those readers more familiar with machine learning, score-based search 
algorithms employ a familiar mechanism: a maximum likelihood-based score (such as 
Bayesian information criterion [BIC]). Like constraint-based search, there are two stages, 
both are iterative, and in each iteration of each stage there is both a currently-considered 
MEC (see the previous section for an explanation of this term, but it is important to note that 
all graphs in an MEC share the same underlying undirected graph and the same colliders) 
and a set of neighboring MECs and that each either possesses an additional edge (first 
stage of search) or has one edge removed (second stage of search; Spirtes, 2010).  

In each iteration of the first stage, from the currently-considered MEC, the algorithm 
scores all neighboring MECs that have one additional edge. The best-scoring neighboring 
MEC then becomes the currently-considered MEC in the next iteration. The algorithm 
continues to iterate, building graphs one edge at a time, until a better score cannot be 
attained. In the second stage, the algorithm proceeds similarly but in reverse, considering 
only those MECs having one edge removed. Again, the algorithm halts when no better score 
can be attained, and the resulting MEC is returned as the output (Spirtes, 2010).  

The advantages of score-based search algorithms over constraint-based search 
algorithms are as follows:  

 They can obtain more accurate adjacencies.  

 They will typically output only directed or undirected edges. There are no bi-
directed edges because equivalence class scoring will almost always favor 
one orientation over the other (or make the rarely-required arbitrary 
selection). A bi-directed edge signifies that there may be an unmeasured 
variable affecting the two variables.  

A limitation of score-based search algorithms is that they can be slow and might not 
scale as well as constraint-based searches. 

Applying Three Additional Search Algorithms (Beyond the First Paper) 

As mentioned earlier, the authors ran the PC search algorithms earlier (Hira et al., 
2018). PC is often cited by data analysts experienced with performing causal search as the 
“go to” causal search algorithm, given its generally high accuracy (generally better at getting 
adjacencies right) and high scalability. In this paper, the authors run three additional search 
algorithms on the same dataset: PC-Stable (constraint-based), FGES, and FASK (both 
score-based), in order to better illustrate some of the other search algorithms and their 
capabilities given a relatively small dataset. 

Here is a short description of the particular niche where each algorithm has some 
relative strengths over the others: 

1. PC-Stable is a variant of PC that addresses the problem that the causal 
graphs output by many search algorithms depend on the order of the 
variables within the dataset (Colombo & Maathuis, 2014).  

2. FGES is a score-based search algorithm and perhaps best qualifies as the 
causal-search data analysts’ favorite “go to” search algorithm after PC 
(particularly if they do not like to deal with bi-directed edges; Center for 
Causal Discovery, 2017).  



- 388 - 

3. FASK, a score-based search algorithm, addresses the problem that 
oftentimes variables have asymmetric distributions. The previously listed 
algorithms assume that direct causal relationships are linear up to an error 
term that is Gaussian, whereas FASK actually exploits skew in error terms’ 
distributions to determine how best to orient edges (Sanchez-Romero et al., 
2018). 

Tetrad 

As part of a National Institutes of Health (NIH) Big Data initiative, the University of 
Pittsburgh, Carnegie Mellon University (CMU), and Pittsburgh Supercomputing Center serve 
as founding members of the Center for Causal Discovery (CCD). The CCD develops and 
maintains causal algorithms, software, and tools, including the Tetrad2 program with its GUI, 
API, and command-line interfaces (referred to as Tetrad in this paper). Tetrad allows users 
to run causal search algorithms on a dataset as well as estimate and evaluate parametric 
models. The authors loaded the data from the UCC's dataset (described in the section titled 
Unified Code Count) and ran causal search algorithms, which returned causal graphs 
representing the cause-effect relationships discovered in the dataset. 

PC-Stable Causal Search Results 
The PC-Stable causal search is run on UCC’s dataset first with all size-related 

variables (ESLOC, CFPs, FPs, and SNAP), and second, individually with only one size-
related variable at a time. The authors run the algorithm with the simultaneous inclusion of 
all size-related variables to determine whether the size metrics might work together to 
characterize total effort, as represented by the variable TotalEffort. 

The graphical search results from PC-Stable are displayed in Figures 1–5, which 
conclude that product complexity (CPLX) is consistently identified as the single causal factor 
of TotalEffort except for the search with all size metrics included. When all size metrics are 
included, the size metric COSMIC Function Points (CFPs) is identified as the sole causal 
factor on TotalEffort. Interestingly, ESLOC, FPs, and SNAP have an undirected edge with 
CPLX, which thus has a potential causal effect on TotalEffort through CPLX (Figures 2–4), 
while CFPs’ role with CPLX is flipped (see Figure 5). Lastly, each of the figures shows an 
undirected edge between analyst capability (ACAP) and programmer capability (PCAP). 

 

Figure 1. PC-Stable Result When All Size Metrics Are Included 

                                            
 

 

2 https://github.com/cmu-phil/tetrad  
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Figure 2. PC-Stable Result When Only ESLOC Is Included as a Size Metric 

 

Figure 3. PC-Stable Result When Only IFPUG FPs Is Included as a Size Metric 

 

Figure 4. PC-Stable Result When Only IFPUG SNAP Is Included as a Size Metric 

 

Figure 5. PC-Stable Result When Only CFPs Is Included as a Size Metric 
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FGES Causal Search Results 
The graphical search results from running FGES may be seen in Figures 6–10. The 

causal graphs returned by FGES have some different conclusions than those returned by 
PC-Stable. The PCAP factor shows up in all cases as having a causal effect on TotalEffort 
(and an undirected edge with ACAP), while CFPs also have a causal factor on TotalEffort 
(consistent with PC-Stable results). Only with ESLOC is there an undirected edge between 
the size metric and CPLX (see Figure 7; consistent with PC-stable result). 

 

Figure 6. FGES Result When All Size Metrics Are Included 

 

Figure 7. FGES Result When Only ESLOC Is Included as a Size Metric 

 

Figure 8. FGES Result When Only IFPUG FPs Is Included as a Size Metric 
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Figure 9. FGES Result When Only IFPUG SNAP Is Included as a Size Metric 

 

Figure 10. FGES Result When Only CFPs Is Included as a Size Metric 

FASK Causal Search Results 
Before conducting the FASK causal search, the authors revisited the distribution of 

each factor as FASK achieves improved edge orientation when distributions are skewed. 
Table 1 summarizes the results of checking for skewness. Since most variables are skewed, 
the authors proceeded to run FASK, aware that the lack of full skewness might render some 
edge orientations incorrectly. 
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Table 1. Summary of Variables’ Skewness 

Variable Skewed 
CPLX YES 
CFP YES 
FP NO 

SNAP YES 
ESLOC YES 
ACAP NO 
PCAP NO 
DOCU YES 

Total Effort YES 
The graphical search results from FASK, Figures 11–15, show that the algorithm 

returned some similar and some very different results compared to both PC-Stable and 
FGES. Most interestingly, the algorithm returns the factor Documentation Match to Lifecycle 
Needs (DOCU) as having a causal effect on TotalEffort, along with some of the size metrics. 
Except when all size metrics are included in the analysis, DOCU is identified as having a 
causal effect on ACAP, and there is an undirected edge between DOCU and PCAP. 
Additionally, SNAP is identified as having causal effects on ACAP and DOCU, and FPs as 
having a causal effect on DOCU. 

 

Figure 11. FASK Result When All Size Metrics Are Included 
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Figure 12. FASK Result When All Size Metrics Are Included 

 

Figure 13. FASK Result When All Size Metrics Are Included 

 

Figure 14. FASK Result When All Size Metrics Are Included 
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Figure 15. FASK Result When All Size Metrics Are Included 

Traditional Stepwise Multiple Regression 
In order to determine the most influential factors and an acceptable prediction model, 

data analysts typically use the stepwise multiple regression approach. As displayed in Table 
2, stepwise regression produces results indicating that PCAP and CFPs remain significant in 
predicting TotalEffort. Although models with three or more factors achieve a reasonably high 
Adjusted R-Squared, the simplified, two-factor model with PCAP and CFPs produces similar 
Adjusted R-Squared results. The details of the resulting prediction model are detailed in 
Table 3, and Figure 16 displays that the residuals of the model are normally distributed and 
do not have multi-collinearity.  
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Table 2. Stepwise Regression Results Summary With Variables Considered 
During Each Run 

Vars R-Sq R-Sq 
(adj) 

R-Sq 
(pred) 

Mallows 
Cp 

S C 
F 
P 
s 

E 
S 
L 
O 
C 

F 
P 
s 

S 
N 
A 
P 

A 
C 
A 
P 

P 
C 
A 
P 

D 
O 
C 
U 

C 
P 
L 
X 

1 57.6 56.1 51.0 35.0 231.50                X       

1 54.6 53.0 47.9 39.3 239.65 X                      

2 84.9 83.8 78.3 -2.3 140.54 X             X       

2 78.5 76.9 67.4 6.9 167.87          X    X       

3 85.3 83.6 76.1 -0.9 141.35 X             X    X 

3 85.1 83.4 77.2 -0.6 142.30 X    X       X       

4 85.4 83.0 73.0 1.1 143.98 X       X    X    X 

4 85.3 83.0 68.6 1.1 144.13 X          X X    X 

5 85.4 82.3 61.9 3.0 146.83 X       X X X    X 

5 85.4 82.3 67.0 3.0 146.89 X X    X    X    X 

6 85.4 81.6 55.2 5.0 149.92 X X    X X X    X 

6 85.4 81.6 59.9 5.0 149.99 X       X X X X X 

7 85.4 80.8 53.0 7.0 153.29 X X    X X X X X 

7 85.4 80.8 52.0 7.0 153.29 X X X X X X    X 

8 85.4 79.8 49.5 9.0 156.90 X X X X X X X X 

Table 3. Coefficients and Corresponding P-Values for the Regression Model 
Predicting TotalEffort 

Term Coef SE Coef T-Value P-Value VIF 

Constant -1791  244 -7.33 0.000  

PCAP 1948  264  7.38 0.000 1.12 

CFPs  76.3 10.9  7.00 0.000 1.12 



- 396 - 

 

Figure 16. Residual Plots for the Regression Model Predicting TotalEffort 
Displaying the Fulfillment of Linear Regression Assumptions 

Summary of Results 
Table 4 depicts a summary of the results of the PC (Hira, Sharma, & Boehm, 2018), 

PC-Stable, FGES, and FASK causal searches in which the direct and indirect causal factors 
are noted. Contrary to the traditional stepwise multiple regression approach which identified 
PCAP and CFPs as significant factors of TotalEffort, the causal search has uncovered direct 
causal evidence, depending on the algorithm, of FP, SNAP, CFP, CPLX, PCAP, and DOCU. 
The algorithms also identified ESLOC, FP, SNAP, ACAP, and PCAP as indirect causal 
drivers of TotalEffort.  

There remains a number of ways in which this summary may be interpreted. One 
approach would be to look for the complete absence or presence of causal relationships as 
noteworthy new knowledge. Another approach would be to look for direct and indirect causal 
factors showing up across a majority of causal algorithms. Lastly, one could choose to be 
much more inclusive and look at all direct and indirect factors that show up at least once. 

Acknowledging the small size of the data set and the impact of the small sample size 
on the causal search results, one can still see that causal search can inform a researcher of 
alternative independent factors that may actually be the causal force on the dependent 
factor. As such, given the small sample size, there is evidence that CPLX, PCAP, DOCU, 
and several size measures (CFP, FP, and SNAP) may be considered as direct causal 
factors. It is interesting to also note that PCAP only showed up as a direct causal factor on 
TotalEffort using the FGES score-based algorithm, while DOCU showed up as a direct 
causal factor using FASK. Among the size measures, the strongest candidate for a direct 
causal factor for TotalEffort would seem to be CFP. In conclusion, these causal search 
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results should motivate the researcher to collect additional data and continue analyzing 
beyond what a traditional regression approach might offer toward the ultimate goal of 
estimating a quantified actionable model for TotalEffort—an actionable model that is suitable 
for use in deciding how to intervene and change a project’s course toward achieving desired 
target outcomes. Correlation alone really doesn’t provide sufficient insight.  

Table 4. Identified Direct and Indirect Causes of TotalEffort by Algorithm and 
Scenario 

 

Note. Black cells are Not Applicable as factor not present in model. 

Implications for Acquisition Research 
The authors believe the implications of adding causal searches and ultimately, 

causal estimations of causal influence, could transform acquisition research in the following 
ways: 

1. The need to pursue expensive and, more likely, prohibitive experiments of 
acquisition factors could be obviated by use of causal methods appropriate 
for observational data. (Or at a minimum, causal research findings should be 
used to more efficiently focus such experiments.) 

2. Revisiting research data affiliated with the acquisition research arena could 
quickly help filter likely causal factors from the merely correlated factors, 
thereby reducing researcher distraction and accelerating progress in 
acquisition research. 

3. Different acquisition researchers could more easily begin to unite causal 
conclusions into a more holistic causal model of acquisition research 
outcomes. 

4. The acquisition research community could identify and prioritize constrained 
research funding towards causal research outcomes worthy of investment in 
repeatability and reproducibility studies. 
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5. Causal research findings would be more confidently tested by real-world 
acquisition program interventions and risk less in wasteful interventions. 

6. SEI’s acquisition experts indicate specific acquisition outcomes and 
associated factors worthy of causal learning include 

a. delivering required warfighter capability at an affordable price and on 
schedule, driven by potential factors such as lack of competencies in 
the workforce, greater system complexity, and underestimation of cost 
and schedule, 

b. unrealistic assumptions made by decision-makers very early in the 
acquisition lifecycle, 

c. program acquisition strategy (and changes in the strategy), the 
program structure, and the technical challenges facing the program, 

d. leadership incentives to conduct critical thinking and apply evidence-
based knowledge and practice early in a program, 

e. people, process, requirements, and incentives in general, 

f. the overall contracting process in context of changes that are often 
difficult to make and take a lot of time, leading to issues on the 
contractor side,  

g. the technical strength of the government team, 

h. measurement of agile versus more traditional development, and 

i. measured effectiveness of the Department of Defense (DoD) 5000 
mandated reviews. 

Next Steps 
The authors welcome research collaboration making use of causal search and 

estimation, especially acquisition research focused on impacts to acquisition cost and 
schedule. Research collaboration of this nature would complement existing research funded 
through the SEI as part of a three-year (FY 2018–2020) DoD research project titled 
“Investigating the Feasibility of an Integrated Causal Model for Software Cost Control 
(SCOPE).” Many forms of acquisition research collaboration exist, including (1) providing 
subjective and objective research data, (2) connecting our research team with acquisition 
managers and organizations who might provide research data, (3) helping to identify the 
nature of acquisition outcome measures worthy of study along with insights to the potential 
causal factors of those outcomes, and (4) learning how to conduct causal search and 
estimation and working with our research team as a direct contributing member or as a 
reviewer of causal results.  
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