

ACQUISITION Research Program

NAVAL POSTGRADUATE SCHOOL

<u>Panel 1</u>: Exploring New Approaches in Ship Design & Construction

May 9, 2018

DESIGNING OUT COMPLEXITY EARLY:

A PATH TO AFFORDABLE FLEXIBLE WARSHIPS

Presented by:

Glen R. Grogan, P.E.

Lead System Engineer, DDG 1000 Program, PEO Ships

Timothy S. Mierzwicki

Technical Warrant Holder for Surface Ship Concepts, Naval Sea Systems Command

> <u>Co-Authored by:</u> **Robert G. Keane, Jr.** *President, Ship Design USA, Inc.*

The views expressed herein are those of the authors only and may not represent those of any DoD organization or program. Statement A: Approved for Release. Distribution is unlimited.

Flexible Warship Initiative (FWI)

Long-term collaboration between Navy-Industry-Societies

- Navy's Program Executive Office (PEO) Ships
- Global Shipbuilding Executives Summit (GSES)
 - GSES I VI
- America Society of Naval Engineers (ASNE)
 - ASNE Day 2010 2015
- Society of Naval Architects and Marine Engineers (SNAME)
 - Ship Design Committee (SDC)
 - Naval Ships SD-8 Panel
- Navy's Center for Innovation in Ship Design (CISD)

Team A established at GSES VI, ASNE Day 2015

Three Tasks Assigned to Team A

- Identify first order Principles for Design of Flexible Warships
 - analysis of foreign naval ships
 - experience of former US shipyard executive
- Assess design tool needs for Design Space Exploration (DSE) of Flexible Warships
 - software development work of DoD High Performance Computing Modernization Program (HPCMP)
 Computational Research & Engineering Acquisition
 Tools & Environments (CREATE) – Ships Project
- Propose an approach for addressing distributed systems during DSE for Flexible Warships
 - SNAME SDC/SD-8 workshop to identify design tools and process improvements

Analysis of Foreign Flexible Warships: Danish Standard Flexibility (STANFLEX)

- Foundation on which to build future flexible warships:
 - business practices, requirements, and interfaces
- Danish Navy collaborated closely with shipyard in a public/private partnership
- Requirements stabilized early, faster & cheaper production
- Modules only half of a successful Flexible Warship
- Key is sizing ship infrastructure to support future upgrades
 - significant service-life allowances for power, cooling, structure, weigh, networks (cableways) and space
 - design margins begin with twice as much as usual

Danes Embraced Flexibility Culture by Focusing on the Sea-Frame

Foreign Flexible Warships: Damen SIGMA (Ship Integrated Geometrical Modularity Approach)

- Dutch SIGMA class based on the following major principles:
 - "Oversized" hulls reduce installation, operation & maintenance costs
 - Systematic structural layout of standard 24-ft compartments with common modular spaces for ops, habitability, facilities, & payload
 - Mix of military and commercial standards
- Damen concluded it is not ship size but complexity due to high compactness of systems that leads to extreme costs
- Cost of a hull larger than initially anticipated is easily recovered by cost effective installation of systems
- Longer, more slender hull reduces fuel consumption, offers space for cost-effective maintenance & modernizations

Flexibility more than pays for itself: "STEEL IS CHEAP, AIR IS FREE!"

Principles for Design of Flexible Warships P. Jaquith, former shipyard executive

- Focus on Design Space Exploration (DSE)
 - transform from focus on point designs & accepting first solution
- Address Cost in Early DSE
 - look at engrg, matls, and production together as all design driven
- Reduce Work Scope & Variation in Basic Design
 - world-class shipbuilders focus on early stage design
- Introduce "Commonality" in Basic Design
 - build designs on off-the-shelf equipt & production interim products
- Define Systems & Arrangements in Basic Design
 - utilize experienced engineers for defining principal systems & arrgts.
- Analyze Alternative Arrangements in Basic Design
 - achieve required performance with reduced work content & variation
- Develop New Cost Estimating Methods & Metrics
 - based on work content & alignment with std. production processes

Design Tool Needs for Design Space Exploration (DSE) of Flexible Warships

- Model "flexibility" in concept design for sizing ship
- Relate "flexibility" to Cost Estimating Relationships (CERs)
- Integrate these with Navy early stage ship design tools:
 - Rapid Ship Design Environment RSDE: Ship Concept DSE & Optimization
 - Advanced Ship & Sub Evaluation Tool ASSET: Ship Synthesis Model
 - Leading Edge Architecture for Prototyping Systems LEAPS: Design Analysis Product Model
 - Integrated Hydrodynamics Design Environment IHDE: Hull Form DSE & Optimization
 - Integrated Structural Design Environment ISDE: Ship Structure
 DSE & Optimization

CREATE-Ships Products Critical to Flexible Warships

Elements of Ship Construction Costs for Flexible Warships

Productivity Ratios by Stage of Construction

Flexible Designs: Can move work to more productive construction stages

Design Space Exploration (DSE) via HPCMP CREATE-Ships RSDE

Explore Levels of Flexibility/Complexity During DSE

Generating The Space **Exploring** The Space The second secon

Evaluating The Space

Visualizing The Space

Ship Design Characteristics for Assessing Complexity - SNAME SDC/SD-8 Workshop

- Design Complexity Characteristics for Ship Concept Design
 - Technical maturity, extent of commonality, number of components and systems
 - Ship densities by ship types and systems (e.g., power)
 - Complexities of design strategy/approach, e.g.,
 - multiple competitive early designs by shipbuilders
 - use of legacy designs
 - Imposed design constraints, e.g.,
 - limit size of ship or dimensions of hull
 - Architectures and ease of routing of Distributed Systems

Ship Density, Systematic Commonality, Distributed Systems Critical to Right Sizing Flexible Warships

Shortcomings In Distributed Systems Design Tools - SNAME Workshop

- ASSET does not allocate space for Distributed Systems
- Design rules limit innovations in Distributed Systems
- Lack of trade-offs between architectures
- Lack of area & volume data of existing Distributed Systems
- Inconsistent as to when M&S of Distributed Systems begins
- Questions about validity of physics-based M&S tools
- Greater trade-off between ship arrangement definition and large number of alternative ship concepts during DSE

Lack of Knowledge about Distributed Systems in Early Stage Ship Design

Distributed Systems Design Tools Recommendations - SNAME Workshop

- Obtain data on Distributed Systems space for existing ships
- Modify ASSET to improve space allocations for Dist. Sys.
- Include a ship arrangement design capability in ASSET
- Integrate more physics-based M&S Tools for Distributed Systems In RSDE/LEAPS
- Develop Dist. Sys. design margins & service-life allowances
- Establish exit design definition criteria for Distributed Systems at each stage of design & production planning
- Obtain labor-hour data for routing Dist. Sys in dedicated space vs practice of routing them in overly dense spaces
- Include a Distributed Systems Engineer in the design team along with Topside Design & Ship Arrangement Design Engrs

Solution: Design Out Complexity Early During Design Space Exploration (DSE)

- Expand education & training of acquisition personnel in the Principles for Design of Flexible Ships during DSE
- Incorporate in DSE tools measures to compare levels of flexibility of alternative warship concepts
 - Ship Densities, Distributed Systems, Ship Arrangements, Design Margins, Service Life Allowances
- Incorporate in work content/cost models ship density, design maturity, systematic commonality, other productivity factors
- Integrate these higher fidelity process-based work content/ cost models with Navy early stage ship design tools

A Path to Flexible Warships easier to build, operate, maintain & modernize throughout their <u>full</u> service-life

Largest proportion of maintenance costs occurs in hull structure, but proportional across work areas*

