

NAVAL Postgraduate School

Operational Seakeeping Considerations in LCU Deployment

Fotis Papoulias, NPS, Systems Engineering Dept. Jarema M. Didoszak, NPS Mechanical & Aerospace Engineering Dept. 09 May 2018

Excellence Through Knowledge

- Background
- Objective
- Analysis Methods
- Findings
- Future Work

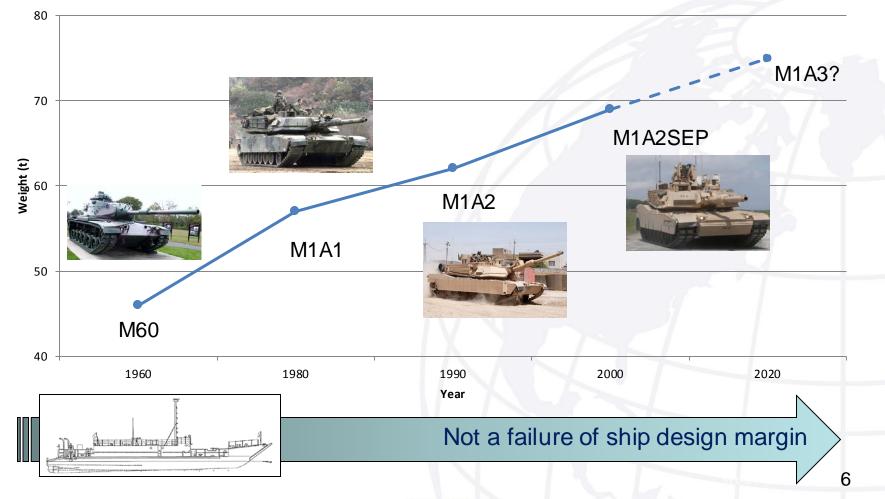
LCU 1610 Class http://cs.finescale.com/fsm/general_discussion/f/50/t/152216.aspx?page=67

LCU Operational Concerns

- Primary payload has experienced significant weight creep since the LCU was initially designed
 - LCU mission potentially impacted by payload weight
 - Maximum load at design limit for stability
- Current stability criteria may be overly conservative for typical LCU coastal missions
 - Ferrying from ship to shore
 - Transiting parallel to shore

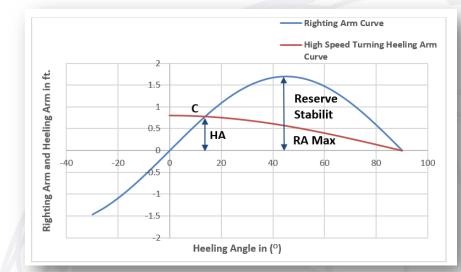
• Objective

- Provide revised operational recommendations for LCU operating in coastal mission areas
- Approach
 - Categorize current LCU stability criteria
 - Model expected coastal seas
 - Determine static and dynamic stability ranges
 - Evaluate desired payload/cargo loading cases
 - Explore safe operating envelopes


- Amphibious Operations Craft
 - Launched by amphibious assault ships
 - Transports troops, military equipment and vehicles ashore
- General Characteristics (LCU1627)
 - Length (LOA): 41.1 m (134.8 ft)
 - Beam: 8.8 m (28.9 ft)
 - Depth: 2.44 m (7.8 ft)
 - Draft: 1.1 2.1 m (3.5 6.8 ft)
 - Displacement: 392 t (386 LT)
 - Speed_{Max}: 11 knots (5.66 m/sec)
 - Range_{Max}: 1200 nautical miles
 - Load_{Max}: 127 metric tones (125 LT)
 - Design/Built: 1950s/1960-70s

Payload Weight

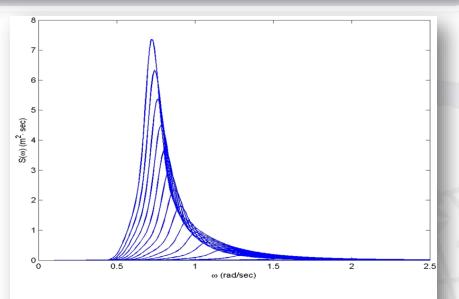
MBT Weight Creep over LCU Lifespan



WWW.NPS.EDU

Static Stability Criteria

- Stability Criteria are based on GZ Curves
 - Righting arm (GZ)
 - Applied forces' heeling arms
 - Heeling angles
 - Areas under GZ curves
- General Stability Criteria
 - Wind Action and Rolling
 - Lifting Weights over the Side
 - Crowding Passengers to One Side
 - High Speed Turning
 - Topside Icing


Righting Arm and Heeling Arm

Source: G. Koelbel. "Procedures manual, dynamic stability analysis for U.S. Navy small craft," 1977.

Wave Spectra

- Commonly Used Wave Spectra
 - Pierson-Moskowitz
 - JONSWAP
 - Bretschneider
 - Ochi-Hubble

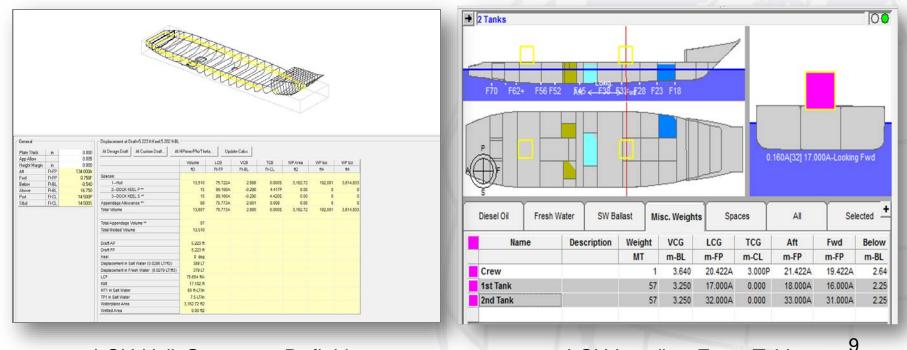
• LCU Stability Research

JONSWAP Wave Spectrum (V_k=1 to 30 m/s)

- Focused on Bretschneider and Ochi-Hubble spectra
- Identified as most appropriate for the typical operational environment (coastal waters)
- <u>Wave significant Height</u> Average value of the 30% highest waves

 $H_{1/3} \equiv \zeta = 4(m_o)^{1/2}$

- <u>Modal frequency</u> The frequency at which the spectrum reaches maximum value ω_m - Modal period


 T_m

WWW.NPS.EDU

8

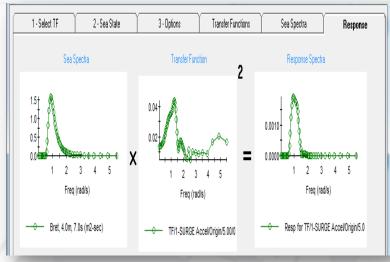
- POSSE Capabilities
 - Prediction of intact stability based on selectable criteria
 - Flooding, Stranding, Dry-dock, Heavy lift & other analyses
 - Evaluation of ship's strength, damage, corrosion properties

LCU Hull Geometry Definition

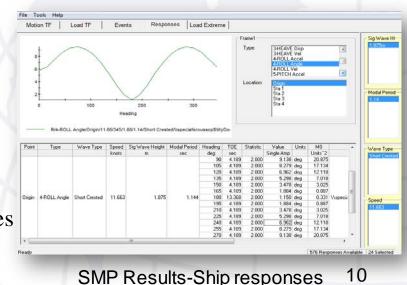
WWW.NPS.EDU

LCU Loading Entry Table

Standard Ship Motion Program (SMP)


• SMP Capabilities

POSTGRADUATE


NAVAL

SCHOOL

- Predicts ship motions (a, v, d)
- Computes Structural loads (bending)
- Probability of slamming and submerging
- Basic Assumptions
 - Customary sea headings
 - Weights treated as lumped mass
- Methods
 - Utilizes various wave Spectra inputs
 - Generates transfer function
 - Derives ship response spectra
- Results
 - Outputs ship body responses in six degrees of freedom against relative sea headings

SMP Structure-Ship's Responses Calculator

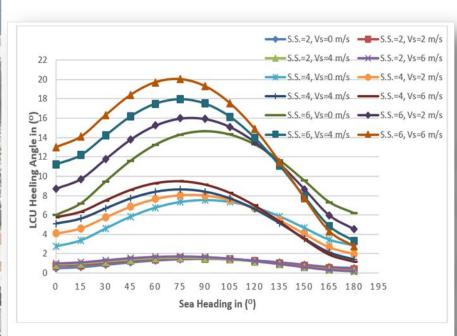


.....

Static Stability Results

- Static Stability
 - Based on standard U.S. Navy criteria
 - Focused on wind-rolling and found GZ to be much greater than WHA
 - Both Reserve Area and Max Wind Heel Angle requirements are satisfied for all loading cases and sea states
 - Adequate in all loading cases

Sea State	2	4	6
Wind Velocity (m/s)	4.37	9.77	19.29
	(8.49 Knots)	(18.99 Knots)	(37.49 Knots)


Wind Velocity for Sea States 2, 4, and 6 K. McCreight, "A Note on Selection of Wave Spectra for Design Evaluation," 1998.

<u>Sea State 6</u> Loading Case: Full Payload Criterion: "Passed"

- Heeling angle: 0.52 deg.
- Max righting arm: 0.096m

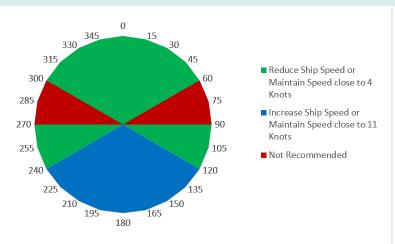
- Dynamic Stability
 - Based on ship responses to random wave exciting forces
 - Ship responses are derived by SMP simulations
 - Ship rolling angles plotted against relative sea heading

Heeling Angle vs Sea Heading in Ochi-Hubble Short-Crested Waves for LCU Carrying Two M1A1 Tanks

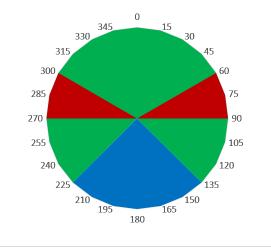
Sea State	Ship Speed (m/s)		-	Wave Spectrum	Bretschneider Spectrum Modal Period Tm (sec)
2	0	Short- Crested		Ochi-Hubble	7
4	2				11
6	4 6			Bretschneider	15
		3.0		T.	
e	2			4	6
(m/s)	4.37			9.77	19.29
	(8.49 Kn	ots)	(1	8.99 Knots)	(37.49 Knots)
/ave					· · · · · · · · · · · · · · · · · · ·
(m)	0.3		1.875		5
	2 4 6 (m/s) /ave	Sea State Speed (m/s) 2 0 4 2 4 4 6 6 e 2 (m/s) 4.37 (8.49 Know) /ave	Sea (m/s) Speed (m/s) Way Typ 2 0 7 4 2 Shoi Crest 4 4 6 6 6 Crest (m/s) 4.37 (8.49 Knots) 7	Sea State Speed (m/s) Wave Type 2 0	Sea StateSpeed (m/s)Wave TypeWave Spectrum20

K. McCreight, "A Note on Selection of Wave Spectra for Design Evaluation,"

LCU Dynamic Stability Parameter Values WWW.NPS.EDU



- Findings
 - Increasing displacement results in greater heeling angle for all headings
 - Greater displacement and/or high sea state amplify the speed effects
- Recommendations
 - Sea State 2
 - All loading conditions and speeds
 - Use experience to transit in a seakindly manner
 - Sea States 4 and 6
 - Prefer following seas rather than head seas
 - Reduces heeling angles
 - Avoid sea headings within $+30^{\circ}$ (fwd) of beam
 - LCU undergoes higher heeling angles
 - Adjust speed as recommended by operational envelopes



Operational Recommendations for the LCU

Lightship and One M1A1 Tank

Sea Headings Based Operational Polar Diagram for LCU Lightship and Carrying One M1A1 Tank in Sea States 4 and 6 Two M1A1 Tanks

 Reduce Ship Speed or Maintain Speed close to 4 Knots

 Increase Ship Speed or Maintain Speed close to 11 Knots

Not Recommended

Sea Headings Based Operational Polar Diagram for LCU Carrying Two M1A1 Tanks in Sea States 4 and 6

- Investigation of hull appendages effects on stability
- Examination of damaged craft stability
- In situ testing using current LCU and progressive loading cases to validate simulation results
- Refine operational guidance as a function of:
 - Chosen loading condition
 - Given sea state (wind speed and wave height)
 - Observed wave heading
 - Desired transit heading

FILE US NAVY 060604-N-8547M-011 LANDING CRAFT UTILITY LCU 1658 15

• Questions

WWW.NPS.EDU