

An MBSE Methodology to Support Early Stage Australian Naval Vessel Acquisition Projects

Brett A. Morris^{1,2} Stephen C. Cook² <u>Stuart M. Cannon¹</u> Dylan M. Dwyer¹

1 – Maritime Division, Defence Science and Technology Group 2 – The University of Adelaide

- Background
- Research Issue
- Focus of Presentation
- Proposed MBSE methodology
- Hydrographic Survey Capability Example Implementation
- Conclusions

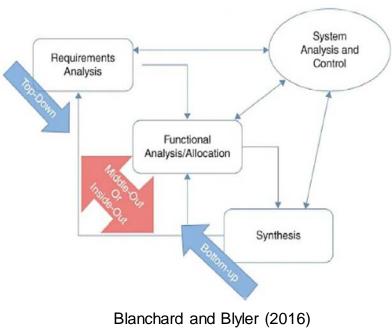
Background – Australian Naval Vessel Acquisition

First Principles Review

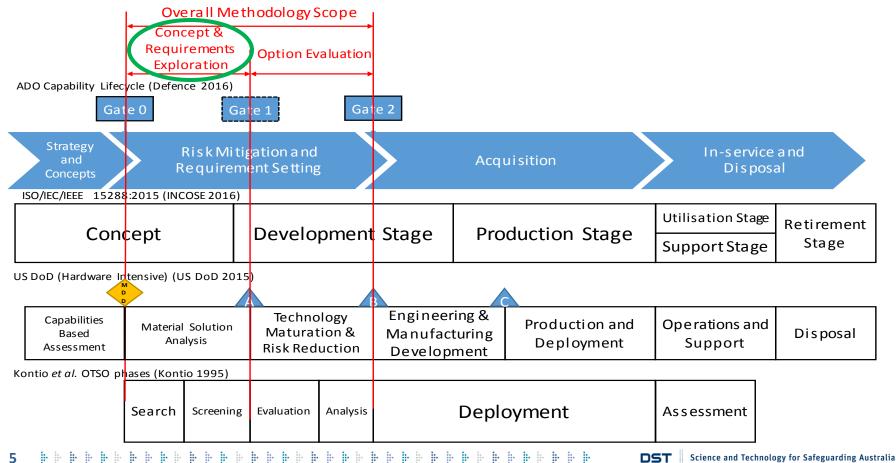
The ADOD '...must deliver a significant capability modernisation program against a backdrop of strategic uncertainty including, but not limited to: rapid technological change; budget uncertainty; substantial economic growth in our region; and increasing demand for military responses...'

Naval Shipbuilding Plan

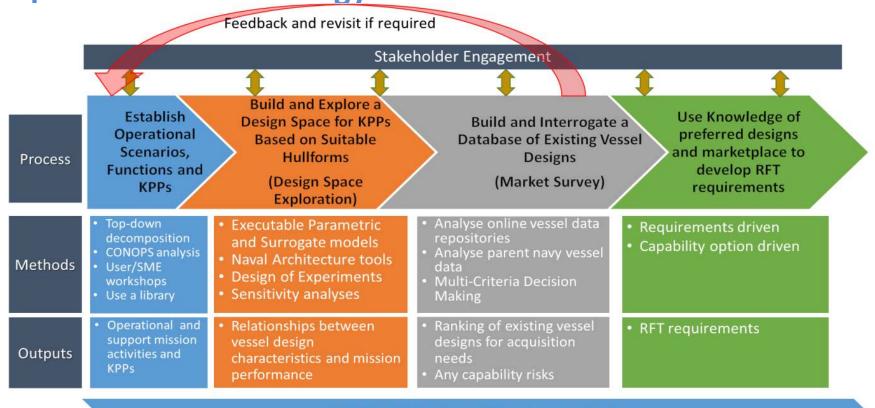
'Selecting a mature design at the start of the build and limiting the amount of changes once production starts; Limiting the amount of unique Australian design changes.'


→ Reduced guidance with increased oversight

 \rightarrow Off-the-Shelf (OTS) approach changes nature of acquisitions to 'middle-out'

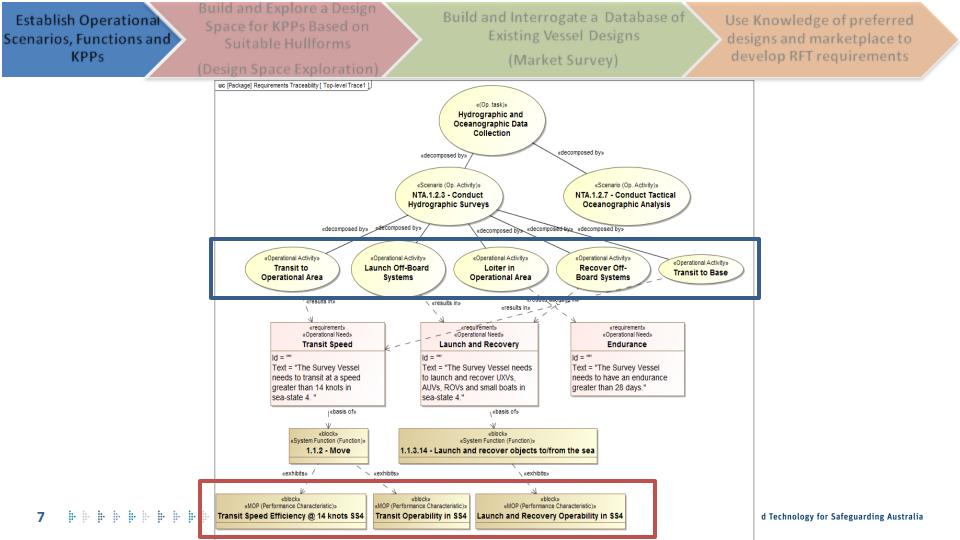

Research Issue

In the early stages of Australian Defence Organisation Off-the-Shelf naval vessel capability acquisition projects, support for traceable, defensible requirement development activities is currently lacking.


The OTS constraint also changes the nature of the acquisition's Systems Engineering approach.

Research Focus for this Presentation

Proposed MBSE Off-the-Shelf Concept and Requirements Exploration Methodology



ADO Risk Mitigation and Requirement Setting

Concept and Requirements Exploration

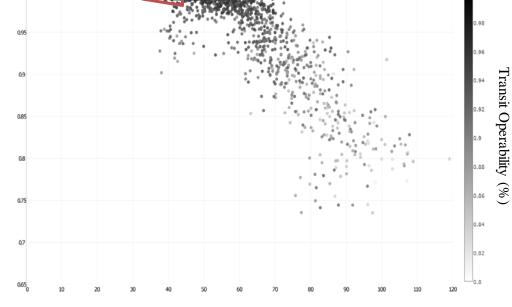
Gate 0

Establish Operational Scenarios, Functions and **KPPs**

Build and Explore a Design Space for KPPs Based on **Existing Hullforms**

(Design Space Exploration)

Build and Interrogate a Database of **Existing Vessel Designs**


(Market Survey)

Use Knowledge of preferred designs and marketplace to develop RFT requirements

ŀ

8

Generat Design	ted	Length Overall (m)	L/B	B/T	Displacement (tonnes)
775		95	4.12	3.34	9135
337		94.2	4.26	3.47	7871
786		95	4.09	3.97	7850
796		95	4.48	3.50	7301
334		94.2	4.36	3.59	7018
785		95	4.26	3.86	7055
135		93.4	4.12	3.95	7252
482		87.7	4.05	3.56	6443
317		90.2	4.16	3.70	7155

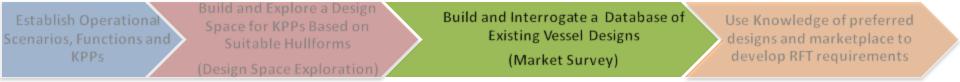
Total Resistance/Displacement @ 14 knots (kN/tonne)

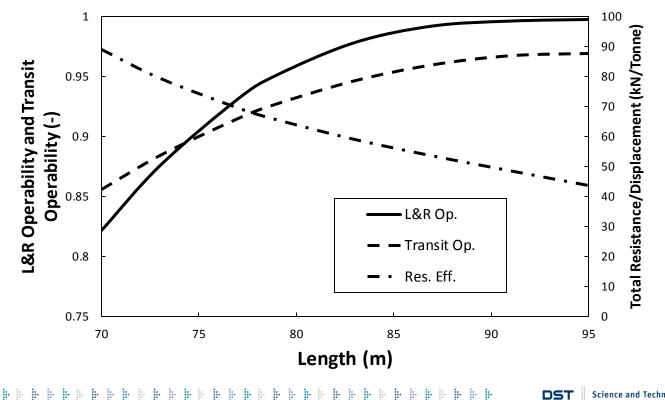
DST

ŀ

ŀ

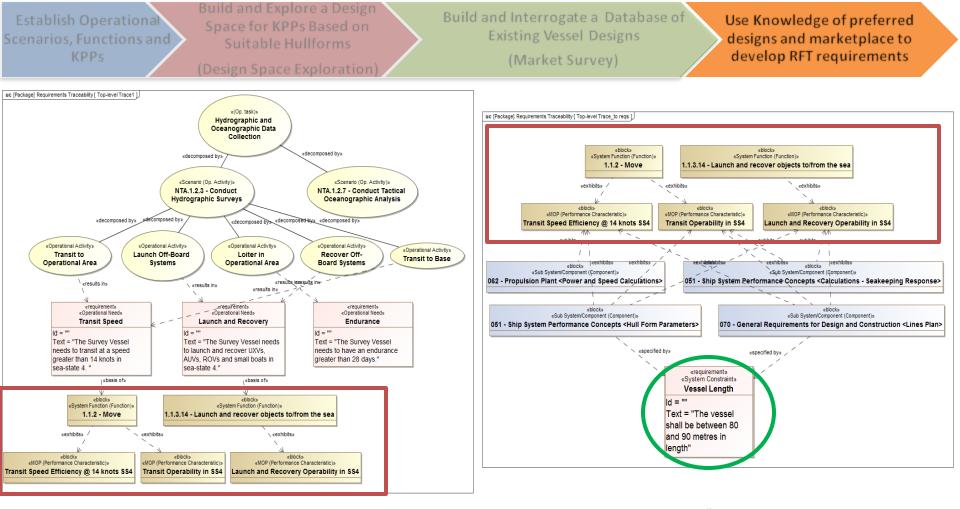
ŀ ŀ Establish Operational Scenarios, Functions and KPPs Build and Explore a Design Space for KPPs Based on Suitable Hullforms


Build and Interrogate a Database of Existing Vessel Designs


(Market Survey)

Use Knowledge of preferred designs and marketplace to develop RFT requirements

	Displacement						
Rank	(tonnes)	Length (m)	Beam (m)	Length/Beam	Speed (knots)	Range (nm)	Crew
1	6421	89.9	19.1	4.71	15	12000	33
2	2889	87	14.6	5.96	15	12000	31
3	3477	85.7	15	5.71	14	11000	58
4	3455	83.5	16	5.21	15	11300	22
5	2991	85	14.1	6.03	14	10060	23
6	3024	72.5	15.24	4.76	12	10500	20
7	2164	76.8	12.8	6.00	14.5	10000	24
8	2205	71.2	15.2	4.68	14	18000	61
9	2382	67.5	15.3	4.41	16.5	22000	22
10	2298	68.3	13.1	5.21	11	19000	49


9 **********************************

10

þ.

DST Science and Technology for Safeguarding Australia

Conclusions

- OTS approach changes the nature of naval vessel acquisitions.
- Proposed an MBSE methodology to support these acquisitions.
- The focus was on the Concept and Requirements Exploration part of the methodology, which includes an explicit market survey.
- The methodology supports defensible decision making through evidence-based analysis and traceability to the strategic capability needs.