

Acquisition Research program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

Approved for public release, distribution unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-07-017

Software Architecture: Managing Design for Achieving Warfighter
Capability

Published: 30 April 2007

by

Brad Naegle, Naval Postgraduate School

4th Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Acquisition Research:
Creating Synergy for Informed Change

EXCERPT FROM THE

PROCEEDINGS
OF THE

FOURTH ANNUAL ACQUISITION

RESEARCH SYMPOSIUM

WEDNESDAY SESSIONS

Acquisition Research program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - i -

Proceedings of the Annual Acquisition Research Program
The following article is taken as an excerpt from the proceedings of the

annual Acquisition Research Program. This annual event showcases the research

projects funded through the Acquisition Research Program at the Graduate School

of Business and Public Policy at the Naval Postgraduate School. Featuring keynote

speakers, plenary panels, multiple panel sessions, a student research poster show

and social events, the Annual Acquisition Research Symposium offers a candid

environment where high-ranking Department of Defense (DoD) officials, industry

officials, accomplished faculty and military students are encouraged to collaborate

on finding applicable solutions to the challenges facing acquisition policies and

processes within the DoD today. By jointly and publicly questioning the norms of

industry and academia, the resulting research benefits from myriad perspectives and

collaborations which can identify better solutions and practices in acquisition,

contract, financial, logistics and program management.

For further information regarding the Acquisition Research Program,

electronic copies of additional research, or to learn more about becoming a sponsor,

please visit our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - ii -

THIS PAGE INTENTIONALLY LEFT BLANK

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 267 -

Software Architecture: Managing Design for Achieving
Warfighter Capability

Presenter: Brad Naegle, Lieutenant Colonel, US Army (Ret), is a Lecturer and Academic Associate
at the Naval Postgraduate School, Monterey, California. While on active duty, LTC (ret.) Naegle was
assigned as the Product Manager for the US Army 2½-Ton Extended Service Program (ESP) and the
USMC Medium Tactical Vehicle Replacement (MTVR) from 1994 to 1996, and the Deputy Project
Manager for Light Tactical Vehicles from 1996 to 1997. He was the 7th Infantry Division (Light)
Division Materiel Officer from 1990 to 1993 and the 34th Support Group Director of Security, Plans
and Operations from 1987 to 1988. Prior to that, Naegle held positions in Test and Evaluations and
Logistics fields. He earned a Master’s Degree in Systems Acquisition Management (with Distinction)
from the Naval Postgraduate School and a Bachelor of Science degree from Weber State University
in Economics. He is a graduate of the Command and General Staff College, Combined Arms and
Services Staff School, and Ordnance Corps Advanced and Basic Courses.

Brad Naegle
Lecturer, Naval Postgraduate School
(831) 656-3620
bnaegle@nps.edu

“Software architecture forms the backbone for any successful software-intensive
system. An architecture is the primary carrier of a software system’s quality
attributes such as performance or reliability. The right architecture—correctly
designed to meet its quality requirements, clearly documented, and conscientiously
evaluated—is the linchpin for software project success. The wrong one is a recipe
for guaranteed disaster” (Software Engineering Institute/Carnegie Mellon, 2007).

Introduction

Software engineers will typically spend 50% or more of the total software
development time designing software architecture, and that architecture may provide up to
80% of a modern weapon system’s functionality. Increasingly, these systems will operate
within a network or other system-of-systems architecture. Obviously, the requirements
driving that architectural design effort and the process for tracing requirement to functions,
insight into the process, and control of the effort are critical for the successful development
of the capability needed by the warfighter.

The DoD typically monitors and controls system technical development through
implementation of the Baselines, Audits and Technical Reviews within an overarching
Systems Engineering Process (SEP) (Defense Acquisition University, 2004, December,
chap. 4). Because of the relatively immature software engineering environment, significantly
more analysis and development of the requirements is required. In addition, the software
architectural design effort is dependent on in-depth requirements analysis, is resource
intensive, and must occur very early in the process. Effective management and
implementation of design metrics is essential in developing software that meets the
warfighters’ needs. This management and metrics effort supplements and supports the
system technical development through the Baselines, Audits and Technical Reviews.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 268 -

There are numerous variations and models of the Systems Engineering Process
(SEP). This research uses the model depicted in Figure 1 (below), which illustrates the
systems engineering functions described throughout this paper. The concepts are
transferable to the SEP “V” model currently used by the DoD.

Figure 1. Systems Engineering Process

Software Requirements Impact

The importance of system software requirements development to the potential
success of software-intensive systems development cannot be overstated.
Underdeveloped, vaguely articulated, ill-defined software requirements elicitation has been
linked to poor cost and schedule estimations—resulting in disastrous cost and schedule
overruns. In addition, the resulting products have been lacking important functionality, are
unreliable, and have been costly and difficult to effectively sustain (Naegle, 2006,
September).

Using the SEP approach, the explicit user capabilities requirements specified in the
Joint Capabilities Integration and Development System (JCIDS) provides the Input for
system Requirements Analyses. These analyses are intended to illuminate all system-
stated, derived and implied requirements and quality attributes necessary to achieve the
capabilities needed by the warfighter. The Work Breakdown Structure (WBS) is a
methodology for defining ever-increasing levels of performance specificity—using the SEP

Requirements
Analysis

Functional
Analysis/Allocation

Synthesis

System Analysis and
Control (Balance)

Requirements

Design
Loop

Verification

Process
Inputs

Process
Outputs

Systems Engineering Process

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 269 -

to guide the development of each successive layer (Department of Defense, 2005, July, pp.
1-5).

Software Engineering Environment

The software engineering environment is not mature, especially when compared to
hardware-centric engineering environments. Dr. Philippe Kruchten of the University of
British Columbia remarks, “we haven’t found the fundamental laws of software that would
play the role that the fundamental laws of physics play for other engineering disciplines”
(Kruchten, 2005, p. 17). Software engineering is significantly unbounded as there are no
physical laws that help define environments; and to date, no industry-wide dominant
language, set of engineering tools, techniques, reusable assets, or processes have
emerged.

This lack of engineering maturity impacts both requirements development and the
subject for this research, design of the architecture, which will be discussed later. To
compensate for the relative immaturity of the software engineering environment, the DoD
must conduct significantly more in-depth requirements analysis and provide potential
software developers detailed performance specifications in all areas of software
performance and sustainability.

Performance Specifications and the Work Breakdown Structure
(WBS)

Since the implementation of Acquisition Reform in the nineties, detailed
specifications have been replaced with performance specifications in order to leverage the
considerable experience and expertise available in the defense contractor base. In most
hardware-centric engineering disciplines, the expertise the DoD seeks to leverage includes
a mature engineering environment in which materials, standards, tools, techniques and
processes are widely accepted and implemented by industry leaders. This engineering
maturity helps to account for derived and implied requirements not explicitly stated in the
performance specification. Three levels of the WBS may provide sufficient detail for a
desired system to be developed in a mature engineering environment, such as the
automotive field. For example, an automotive design that provides for easy replacement of
wear-out items such as tires, filters, belts, and batteries obviously provides sustainability
performance that is absolutely required. Most performance specifications do not explicitly
address this capability as they would be automatically considered by any competent
provider within the mature automotive engineering environment.

In stark comparison, the software engineering environment offers little assistance in
compensating for derived and implied requirements, and developers are limited to respond,
almost exclusively, to the explicit requirements provided. The DoD Handbook 881A, “Work
Breakdown Structures for Defense Materiel Items,” recommends a minimum of three levels
be developed before handoff to a contractor. If a program is expected to be high-cost or
high-risk, it is critical to define the system at a lower level of the WBS (Department of
Defense, 2005, July, p. 3). Complex weapon systems are nearly always high-cost, and the
complex software development needed almost always means that it is high-risk, as well.
The WBS and performance specification must, consequently, be significantly more
developed to provide the software engineer enough information and insight to accurately
estimate the level of effort needed—cost and schedule—and to actually produce the
capabilities needed by the warfighter. Contracts resulting from proposals that are based on

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 270 -

underdeveloped, vague, or missing requirements typically result in catastrophic cost and
schedule growth as the true level of software development effort is discovered only after
contract award.

The WBS provides the basis for the performance specification and is a powerful
communications medium with potential contractors as the upper levels provide a functional
system breakdown structure from the DoD’s perspective. The same WBS continues to be
developed by the contractor, eventually providing the detailed breakdown structure, which is
the basis for the cost and scheduling estimates provided in the proposals and used in the
Earned Value Management (EVM) metrics during execution.

Software Quality Attributes

As the system requirements are developed, software quality attributes are identified
and become the basis for designing the software architecture. One methodology for fully
developing the software attributes is to use the Software Engineering Institute’s Quality
Attribute Workshop (QAW), which is implemented before the software architecture has been
created and is intended to provide stakeholder input about their needs and expectations
from the software (Barbacci, Ellison, Lattanze, Stafford, Weinstock, & Wood, 2003, August,
p. 1).

While the QAW would certainly be useful after contract award, conducting the
workshop between combat developers/users and the program management office before
issuance of the Request for Proposal (RFP) would provide an improved understanding of
the requirements, enhance the performance-specification preparation, and improve the
ability of the prospective contractors to accurately propose the cost and schedule. This
approach would support the goals of the System Requirements Review (SRR), which is
designed to ascertain whether all derived and implied requirements have been defined.

The QAW process provides a vehicle for keeping the combat developer and user
community involved in the DoD acquisition process, which is a key goal of that process. In
addition, the QAW includes scenario-building processes that are essential for the software
developer in designing the software system architecture (Barbacci, Ellison, Lattanze,
Stafford, Weinstock, & Wood, 2003, August, pp. 9-11). These scenarios will continue to be
developed and prioritized after contract award to provide context to the quality attribute.
Specific recommendations for this process will be discussed later.

Maintainability, Upgradability, Interoperability/Interfaces, Reliability,
and Safety/Security (MUIRS) Analytic Technique

The QAW provides the “how,” and the performance requirements (with
Maintainability, Upgradability, Interoperability/Interfaces, Reliability, and Safety/Security
(MUIRS) analytic technique) provides the “what”—or at least a significant portion of it. The
MUIRS elements also help capture the need for Open Architecture (OA), especially in the
Maintainability, Upgradability, and Interoperability/Interfaces elements. Much of the
software performance that typically lacks consideration and is not routinely addressed in the
software engineering environment can be captured through development and analysis of the
MUIRS elements. Analyzing the warfighter requirements in a QAW framework for
performance in each MUIRS area will help identify software quality attributes that need to be
communicated to potential software contractors (Naegle, 2006, September, pp. 17-24).
While this technique would be effective within any system, it is especially effective in
compensating for the lack of software engineering maturity and in conveying a more

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 271 -

complete understanding of the potential software-development effort, resulting in more
realistic proposals.

The MUIRS analytical approach provides a framework to capture, develop, and
document derived and implied requirements—which may be vaguely alluded to or missing
from the user/combat developer’s requirements documents. For example, a user
requirement might be simply presented in terms like, “The network must be secure in all
modes within the intended environment.” Without further development, the software
engineer may interpret that requirement in many different ways, planning for authentication
and encryption/decryption routines. Applying the Safety/Security analytic approach in a
QAW format, the derived and implied requirements are likely to elucidate the following
requirements:

 Ability to constantly monitor the network to detect and counteract active or passive
intrusion or attacks

 Ability to provide details of attacks to Intelligence/Counter Intelligence personnel

 Ability to conduct passive measures to ensure that all node operations are conducted
with authorized personnel exclusively

 Ability to quarantine a suspect node without impacting the rest of the network. Ability
to lift the quarantine when properly authenticated.

 Ability to identify information provided to, or requested by the quarantined node for
Intelligence/Counter Intelligence analysis

 Passive ability to authenticate information sources

 Ability to interoperate with other secure devices and networks without the risk of
compromise

 Ability to accommodate network system changes and upgrades

 Ability to accommodate a wide array of users and organizations, formed into the
secure network task force as missions dictate

The difference in the level of requirement development is significant, and the more
complete information provides necessary performance thresholds that must be
accommodated by the software design and development effort. The software architecture
would likely be vastly different the implied and derived security requirements are considered.
The amount of work required to meet the actual software security-performance attributes is
revealed to the contractor prior to proposal preparation—which should vastly improve the
cost and schedule accuracy of the proposal submitted. In addition, the software engineer
gains a much more in-depth understanding of the system being developed, thereby
improving the design effort described later.

Similar analyses of all MUIRS elements provide a much more complete
understanding of requirements and insight into the operational environment envisioned by
the warfighter. This level of understanding is absolutely crucial for effective design of the
software architecture. If the design effort is started without this level of understanding of the
requirement attributes, significant architectural design rework or outright scrapping of early
design attempts is inevitable—resulting in increased costs and lengthened schedules.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 272 -

Software Architecture Characteristics

Software Developer Effort

In past acquisition programs, software development was considered something that
could be fielded and then “fixed” after the weapon systems were deployed. The complexity
of software, interface problems and the cost for rework were grossly underestimated; the
result was costly schedule slips and less-than-desired performance.

When software development was in its infancy in 1968, Alfred M. Peitrasanta at IBM
Systems Research Institute wrote:

Anyone who expects a quick and easy solution to the multi-faced problem of
resource estimation is going to be disappointed. The reason is clear; computer
program system development is a complex process; the process itself is poorly
understood by its practitioners; the phases and functions which comprise the process
are influenced by dozens of ill-defined variables; most of the activities within the
process are still primarily human rather than mechanical, and therefore prone to all
the subjective factors which affect human performance. (Pietrasanta, 1968, pp. 341-
346)

After numerous, costly software disasters, we have learned that software
development must be a parallel effort with system development within the acquisition
framework to ensure that requirements are being met and usable products are being
delivered to the warfighter. As the system requirements are defined, the requirements for
the software should also be developed concurrently. One critical factor in the software
development effort is applying systems engineering discipline to the process and ensuring
that discipline is continuous and rigorous throughout the development. Software
development has the highest degree of program risk and tends to evolve into a state of
turmoil, which is detrimental to the goal of mission-ready software and has a negative impact
on cost, schedule and performance.

Software Functionality and Design Architecture

The design of the architecture begins with the description of the system and
identifies the functions required for the system to provide the capabilities desired. The
required functions will drive the design of the system architecture. System functionality and
performance requirements are documented in the Government’s Request for Proposal
(RFP). The potential contractor must break down those functions and performance
requirements and consider Maintainability, Upgradeability, Interfaces/Interoperability,
Reliability, Safety, and Security (MUIRSS) in the design-decision process. The MUIRSS
analysis will ensure the contractor understands the requirement and will also identify any
limiting factors in the system requirements tradeoffs. The desired functionality and the
analysis will drive the system architecture. For software-intensive acquisition programs, it is
even more critical that the performance requirements be communicated and understood by
the software developer.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 273 -

Work Breakdown Structure

The Government’s requirements and specifications for a new weapon system are
detailed in the RFP; this includes a Government-produced Work Breakdown Structure
(WBS) to at least three levels. This is known as the Program WBS and is handed off to the
contractor to develop a WBS that defines the level of detail required for product
development. This contractor-generated product will ensure the system developer
understands the program objectives and the products to be delivered in performance of the
contract. The WBS details the functionality and performance of the system and provides a
baseline to track performance against cost and schedule. For most hardware-centric
programs, a WBS for the top three levels of the system under development is usually
enough detail to manage the program. Because of the volatile nature of software
development, immature software engineering environment, and the potential impact to cost,
schedule and risk, the WBS for software intensive programs need to be developed down to
Level 5 or lower for a software-intensive program—including system-of-systems (SOS) and
net-centric systems development.

Level 1 of the WBS describes the entire project. If the program is a Systems of
Systems (SOS) project, Level I becomes that overarching system. The Army Future
Combat System (FCS) has a number of platforms that are segments of the total system.
Each platform becomes a major segment of that product (Level 2); the software
development would then be broken down to Level 6, which identifies software-configuration
items.

 Using the FCS as an example, Level 1 describes the overall FCS concept and
environment. Level 2 details the major product segments of the SOS. With our example of
FCS, the Level 2 would be the manned systems, i.e., infantry-carrier vehicles, command-
and-controlled vehicles, mounted combat systems, etc.

Level 3 defines the major components or subsets of Level 2. For software
development, decomposing the software WBS to the lowest component is critical for the
developer to fully comprehend the detailed level of effort required to design and develop
effective systems. Under the FCS scenario, Level 3 would be one of the subsystems on
board the manned systems, e.g., the fire-control systems and environmental-control
systems. It is clear that WBS definition to this level provides only a very top-level insight to
the system being developed; thus, for the software-intensive system, the WBS fails to
convey enough information for the contractor to propose a realistic cost and schedule
estimate. Too much of the software development work is hidden at this level.

Level 4 becomes a breakout of the component parts of the subsystem. Using a
manned vehicle in the FCS program, Level 5 of the WBS would identify the component
functions for the fire-control system: for example, detect the target, aim at the target and fire
the munitions. The software build set would support the functionality of that component
within the subsystem. Again, using FCS as the overarching program, Level 6 is a sum of
software items (SI’s) which satisfy a required function and are designated for configuration
management. If the software requirements or attributes are well defined, the result is a
product that is properly designed to functionally perform to the users’ requirements. Further
development below Level 6 may be necessary to adequately convey the derived and implied
requirements needed by the software developer.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 274 -

Systems Engineering Process

Just as it supports hardware development, the Systems Engineering Process (SEP)
is essential in the development of software design. In software development, good quality
and predictable results are paramount goals in creating the specified warfighter capabilities
within cost and schedule constraints. To accomplish those goals, we examine the methods,
tools and processes that the software developer uses in building the software with the intent
of attaining a product that provides all of the necessary functionality and is supportable,
efficient, reliable and easy to upgrade.

The SEP also helps identify and manage program risk. How mature is the processes
of the software developer? One cause for delays and cost overruns in the C-17
Globemaster program was the contractor’s lack of software experience, which is an element
of the developer’s maturity. To address developer maturity, SEI developed an evaluation
tool in the mid-1980s known as the Capability Maturity Model (CMM) which rates software
developers on key elements of maturity including experience, processes, management and
demonstrated predictability. This gives the DoD insight into the maturity of potential
developers as a means of risk reduction.

The system requirements, stated in the RFP, detail the software’s functions, what it
must do and how well, under what conditions, and identifies interfaces and interoperability
requirements. The performance requirements are also analyzed for required response time,
maintainability and modularity, open-architecture requirements and transportability. This
phase of the SEP also addresses any restricting factors—for example, interface with legacy
systems, any required operating systems—and also identifies issues such as data and
software rights constraints.

The developer then identifies software attributes and decomposes functions to the
lowest level, ensuring that each performance specification in the RFP has, as a minimum,
one function. The functional architecture, the block diagrams and software interfaces are
described during this step.

These functions are then combined into a system that describes the architecture,
defines all interfaces, explains operating parameters, produces the SI’s and develops the
documentation, technical manuals, and any deliverable media (Kazman, Klein & Clements,
2000, August, p. vii).

Attribute-driven Design

“Quality attribute goals, by themselves, are not definitive enough either for design or for
evaluation” (Barbacci, Ellison, Lattanze, Stafford, Weinstock, & Wood, 2003, August, p. 3)

The design of the system architecture will be driven by the quality attributes
requirements. The performance goals of the system must be defined not only in attributes or
qualities, but also in how those attributes interact or interface with the system and
subsystems. If those attributes are poorly communicated, the architectural design will fail to
meet the performance goals and could potentially impact the overall program cost and
schedule. Those critical attributes or qualities must be carefully documented and articulated
to the software designer. To evaluate the architecture, the designer must receive a detailed
description of the desired attributes with the overall proposed design of the system.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 275 -

However, in the evaluation of the design, an analysis of the attributes may not be enough
detail for the developer. The RFP or performance specification needs to address any
operational requirements or constraints. Clearly, understanding the attributes in the context
of how they are used is critical for the software designer.

Software Architecture Analysis

If a software architecture is a key business asset for an organization, the
architectural analysis must also be a key practice for that organization. Why?
Because architectures are complex and involve many design tradeoffs. Without
undertaking a formal analysis process, the organization cannot ensure that the
architectural decisions made—particularly those which affect the achievement of
quality attributes such as performance, availability, security, and modifiability—are
advisable ones that appropriately mitigate risks. (Kazman, Klein & Clements, 2000,
August, p. vii)

This quote from the Software Engineering Institute illustrates the importance of
performing architectural analysis in developing software-intensive systems.

After thorough requirements development and elicitation, architectural analysis is the
next necessary step in managing the software development and serves as the SEP
functional allocation step. Defining the requirements and software quality attributes is a
critical first step to any program development and provides the basis for architectural
analysis. One of the main functions of the architectural analyses is to understand how the
quality attribute is being achieved by the design architecture and, just as importantly, is to
gain insight into how those attributes interact with each other. For example, it is crucial to
understand how security is ensured while the open-system architecture the DoD requires is
maintained.

Understanding Quality Attributes in Context

It is not sufficient to understand a quality attribute without understanding the context
in which it will be used and sustained by the warfighter. One method of gaining the needed
context is to develop operational scenarios that would place all software quality attributes
into system-use cases spanning key effectiveness and suitability issues. The development
and prioritization of the operational scenarios must be accomplished by the user, combat
developer, warfighter, and other stakeholders—keeping them actively engaged in the
developmental process.

The context in which the attributes function provides significant design cues to the
software engineer. For example, the M1A2 Abrams main battle tank uses numerous inputs
for precisely engaging threat targets. Several such inputs are essential for any acceptable
probability of hitting the desired target, including target acquisition (finding the target),
location (azimuth and range), aiming/tracking, and firing the projectile. To increase
accuracy, several other systems are employed that enhance one or more of the essential
functions, including cross-wind sensor, temperature sensor, muzzle-reference system, and
others. The tank main-gun engagement scenario separates the essential functions from the
enhancing functions, allowing the software engineer to design the software to permit an
engagement when all of the essential functions are operational—even when an enhancing
function, like the temperature sensor, is not working. The warfighter can continue to fight
effectively using the system, increasing mission reliability. Without development of these

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 276 -

scenarios, every requirement and quality attribute appear to be in the “essential” category,
which may result in a design that precludes critical operations when a non-essential
enhancing system is not working.

Operational Scenario Development

A scenario is a short statement describing an interaction of one of the stakeholders
with the system (Kazman, Klein & Clements, 2000, August, p. 13). A warfighter would
describe using the system to perform a task or mission in a range of environments (dark,
cold hot, contaminated, etc.). A leader would describe system employment in concert with
other joint and allied systems in a system-of-systems approach. A system maintainer would
describe preventative or restorative maintenance tasks and procedures. A trainer would
describe programs of instruction to task, condition and standard.

Much of the necessary operational scenario development work has been
accomplished through implementation of the Joint Capabilities Integration and Development
System (JCIDS) (Chairman of the Joint Chiefs of Staff, 2005, May). JCIDS is the user’s
capability-based requirements generation process, providing a top-down baseline for
identifying future capabilities. It uses a Concept of Operations (CONOPS) analysis
technique to assess current systems’ and programs’ abilities to provide the warfighter with
capabilities to accomplish missions envisioned in the applicable CONOPS. These CONOPS
provide the basis for operational scenario development.

Two of the JCIDS key documents, the Capabilities Design Document (CDD) and
Capabilities Production Document (CPD):

state the operational and support-related performance attributes of a system that
provide the desired capability required by the warfighter, attributes so significant that they
must be verified by testing and evaluation. The documents shall designate the specific
attributes considered essential to the development of an effective military capability and
those attributes that make significant contribution to the key characteristics as defined in the
[Joint Operations Concepts] JOpsC as [Key Performance Parameters] KPPs. (Chairman of
the Joint Chiefs of Staff, 2005, May, p. A-17)

Key system attributes within the context of the CONOPS are the genesis of scenario
building and will help guide the user in developing a prioritized set of operational scenarios
considered essential in designing the software architecture.

Failure Modes and Effects Criticality Analysis (FMECA)

Failure Modes and Effects Criticality Analysis (FMECA) is a type of exploratory
scenario analysis designed to expose potential failure modes and their impact on the system
functionality and mission accomplishment. Scenarios are developed that explore system
operations in likely or critical subsystem failure modes; then, the criticality of those failures is
analyzed. Operations in degraded modes are also analyzed to gain insight into graceful
degradation capabilities as subsystems fail and the system is reduced to ever-decreasing
levels of basic functionality. With up to 80% of weapon-system functionality in the system
software, it is critical for the design engineer to understand warfighter needs and
expectations in these failure modes.

FMECA scenarios with the software systems and subsystems provide architectural
design cues to software engineers. These scenarios provide analysis for designing

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 277 -

redundant systems for mission-critical elements, “safe mode” operations for survivability-
and safety-related systems, and drive the software engineer to conduct “what if” analyses
with a superior understanding of failure-mode scenarios. For example, nearly all military
aircraft are “fly-by-wire,” with no physical connection between the pilot controls and the
aircraft-control surfaces, so basic software avionic functions must be provided in the event of
damage or power-loss situations to give the pilot the ability to perform basic flight and
navigation functions. Obviously, this would be a major design driver for the software
architect.

Architectural Trade-off Analysis SM

The Software Engineering Institute’s Architectural Trade-off Analysis Methodology SM

(ATAM) is an architectural analysis tool designed to evaluate design decisions based on the
quality attribute requirements of the system being developed. The methodology is a
process for determining whether the quality attributes are achievable by the architecture as
it has been conceived before enormous resources have been committed to that design.
One of the main goals is to gain insight into how the quality attributes trade off against each
other (Kazman, Klein & Clements, 2000, August, p. 1).

Within the Systems Engineering Process (SEP), the ATAM provides the critical
Requirements Loop process, tracing each requirement or quality attribute to corresponding
functions reflected in the software architectural design. Whether ATAM or another analysis
technique is used, this critical SEP process must be performed to ensure that functional- or
object-oriented designs meet all stated, derived, and implied warfighter requirements. In
complex systems development such as weapon systems, half or more than half of the total
software development effort will be expended in the architectural design process. Therefore,
the DoD Program Managers must ensure that the design is addressing requirements in
context and that the resulting architecture has a high probability of producing the
warfighters’ capabilities described in the JCIDS documents.

The ATAM focuses on quality attribute requirements, so it is critical to have precise
characterizations for each. To characterize a quality attribute, the following questions must
be answered:

 What are the stimuli to which the architecture must respond?

 What is the measurable or observable manifestation of the quality attribute by which
its achievement is judged?

 What are the key architectural decisions that impact achieving the attribute
requirement? (2000, p. 5)

The scenarios are a key to providing the necessary information to answer the first
two questions, driving the software engineer to design the architecture to answer the third.

The ATAM uses three types of scenarios: Use-case scenarios involve typical uses
of the system to help understand quality attributes in the operational context; growth
scenarios involve anticipated upgrades, added interfaces supporting system-of-systems
development, and other maturity needs; and exploratory scenarios involve extreme
conditions and system stressors, including FMECA scenarios (2000, pp. 13-15). As
depicted in Figure 2, below, the scenarios build on the basis provided in the JCIDS
documents and requirements developed through the QAW process. These processes lend
themselves to development in an Integrated Product Team (IPT) environment led by the

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 278 -

user/combat developer and including all of the system’s stakeholders. The IPT products will
include a set of scenarios, prioritized by the needs of the warfighter for capability. The
prioritization process provides a basis for architecture tradeoff analyses. When fully
developed and prioritized, the scenarios provide a more complete understanding of
requirements and quality attributes in context with the operation and support of the system
over its lifecycle.

Figure 2. QAW & ATAM Integration into Software Lifecycle Management

Just as the QAW process provides a methodology supporting RFP and Source-
selection activities, the Software Specification and System Requirements Reviews (SSR and
SRR), the ATAM provides a methodology supporting design analyses, test program
activities, the System Functional and Preliminary Design Reviews (SFR and PDR). The
QAW and ATAM methodologies are probably not the only effective methods supporting
software development efforts, but they fit particularly well with the DoD’s goals, models and
SEP emphasis. The user/combat developer (blue arrow block in Figure 2, above) is kept
actively involved throughout the development process—providing key insights the software
developer needs to successfully develop warfighter capabilities in a sustainable design for
long-term effectiveness and suitability. The system development activities are conducted
with superior understanding and clarity, reducing scrap and rework, and saving cost and
schedule. The technical reviews and audits (part of the DoD overarching SEP) are

SSR SRR SFR PDR CDR DRR FCA PCA

JCIDS
Docs

ICD
CDD
CPD

QAW

Requirements
Elicitation

Explicit,
Derived &
Implied
Requirements

RFP
Source
Selection

ATAM

Design Metrics

Scenario
Development &
Prioritization

Design Reviews

Post Design Mgt

Development Metrics

System &
Software
Design &
Analysis

Rapid
Prototyping,
Code, Build,
Integrate, Test

User Testing IOT&E

Accept, Field
& Support

Operations &
Support Mgt

Tech
Reviews/
Audits

Activities

Mgt

Prototype
LUT &
EUTE

Test Case
Development

QAW & ATAM Integration into SW Lifecycle Management

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 279 -

supported with methodologies that enhance the visibility of the development work that is
needed and the progress toward completing it.

One of the main goals in analyzing the scenarios is to find key architectural decision
points that pose risk for meeting quality requirements. Sensitivity points are determined,
such as real-time latency performance shortfalls in target tracking. Tradeoff points are also
examined, such as level of encryption and message-processing time. The Software
Engineering Institute explains, “Tradeoff points are the most critical decisions that one can
make in an architecture, which is why we focus on them so carefully” (Kazman, Klein &
Clements, 2000, August, p. 23).

The ATAM provides an analysis methodology that compliments and enhances many
of the key DoD acquisition processes. It provides the requirements loop analysis in the
SEP, extends the user/stakeholder JCIDS involvement through scenario development,
provides informed architectural tradeoff analyses, and vastly improves the software
developer’s understanding of the quality requirements in context. Architectural risk is
significantly reduced, and the software architecture presented at the Preliminary Design
Review (PDR) is likely to have a much higher probability of meeting the warfighters’ need for
capability.

Test-case Development

A significant product resulting from the ATAM is the development of test cases
correlating to the use case, growth, and exploratory scenarios developed and prioritized.
Figure 3, below, depicts the progression from user-stated capability requirements in the
JCIDS documents to the ATAM scenario development, and finally to the corresponding test
cases developed. The linkage to the user requirements is very strong as the user
documents drive the development of the three types of scenarios, and in turn, the scenarios
drive the development of the use cases. The prioritization of the scenarios from user-stated
Key Performance Parameters (KPPs), Critical Operational Issues (COIs), and FMECA
analysis flows to the test cases, helping to create a system test program designed to focus
on effectiveness and suitability tests—culminating in the system Operational Test and
Evaluation (OT&E).

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 280 -

Figure 3. Capabilities-based ATAM Scenario Development

The software developer’s understanding of the eventual performance required to be
considered successful guides the design of the architecture and every step of the software
development, coding, and testing through to the Full Operational Capability (FOC) delivery
and OT&E. Coding and early testing of software units and configuration items is much more
purposeful due to this level of understanding.

The resulting test program is very comprehensive as each prioritized scenario
requires testing or other verification methodologies to demonstrate how the software
performs in each related scenario and satisfies the quality attributes borne of the user
requirements. The testing supports the SEP design loop by verifying that the software
performs the functions allocated to it and in aggregate, performs the verification loop
process by demonstrating that the final product produces the capability identified in the user
requirements through operational testing.

Architectural Analysis Products
 Architecture Documentation and the Preliminary Design Review
 (PDR)

One of the main purposes of the PDR is to evaluate the system architectural design
before committing significant resources to the construction of the system. It is a key review

JCIDS
Docs

ICD

CDD

CPD

Scenario

Use Cases

-Performance
- MUIRS

Growth Scenarios

-Performance

-MUIRS

Exploratory Scenarios

-Performance

-FMECA

-MUIRS

Test-case

Integrated
into test
program

Capabilities-based ATAMsm Scenario Development

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 281 -

in the SEP as it provides traceability from the requirements to the functional allocation of the
proposed design.

It is critical to have a complete functional- or object-oriented Software Design
Document reviewed at the PDR. Given that, the software developer would likely have spent
50% or more of the effort at the time of the PDR for a software-intensive system.
Discovering that the proposed software design is insufficient at this point in the development
cycle can be disastrous to the budget and schedule for the entire program, especially if the
proposed design must be scrapped or if there is significant redesign required.

 Architecture Documentation

Documenting the process decisions in designing the software architecture provides a
record of design decisions, tradeoffs made, and priorities implemented throughout the
design effort and design reviews. The active involvement of the user and all system
stakeholders throughout this process is one of the keys to achieving a robust design that
provides warfighter capabilities and long-term, cost-effective sustainability. The ATAM
provides methodologies that formalize the stakeholder participation in the architectural
design.

The ATAM would help drive documentation from quality attributes to both the three
types of prioritized scenarios as well as the test cases needed to demonstrate or verify
performance. The quality attributes are understood in the context of the user-prioritized
scenarios, so design decisions have strong linkage to user priorities. The test cases help
guide the design effort as the software engineer has a very clear understanding of what the
software must do, under what conditions, and to what standard. Design reviews each have
a clearly defined focus, with the ATAM products providing a common understanding of what
is to be accomplished.

 Scenario Inventory

One of the main products resulting from the ATAM is the prioritized inventory of use
case, growth, and exploratory scenarios that drive the architectural design. As the user
(along with other stakeholders) is the primary source for scenario development, the resulting
design is user-oriented, not engineer-oriented.

The prioritization of the scenarios provides the basis for tradeoff analyses and design
decisions, placing tradeoff decisions where they should be—with the warfighter. With the
user involved throughout the design process, the resulting system is much more likely to
satisfy warfighter capability requirements.

 Software and System Test Program

The development of test cases from the scenarios, as depicted in Figure 3 above,
provides the Design Loop function of the SEP by ensuring that the software developed
performs the functions defined by the scenarios, which represent the quality attribute
requirements in context. The inventories of test cases are developed from the user-defined
scenarios so that there is one or more test case for every scenario. The test cases will tend
to satisfy both technical issues (as the software developed will be tested against its intended
function) as well as operational issues, as each function is borne of the users’ scenarios.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 282 -

The aggregated test cases are part of the system’s overall test program and
contribute to readiness for the Initial Operational Test and Evaluation (IOT&E). The IOT&E
is the defining event in the SEP Verification Loop, ensuring that the software developed
satisfies user effectiveness and suitability requirements and meets warfighter capability
needs specified in the JCIDS documents.

 Software Design Metrics

From the DoD’s point of view, gaining insight and control of the software design
process is crucial to delivering the warfighter capabilities required. In addition, metrics
provide a means to monitor and control the process. The metrics chosen must provide the
DoD insight into how the software architecture is designed to satisfy quality attributes and
requirements across a broad spectrum of functionality and long-term sustainability
performance. In addition, technically oriented design metrics such as complexity are also
important, but are not the focus of this research.

The system architectural design is very much a shared responsibility between the
DoD and the software developer, so metrics must also reflect developmental measures
spanning both. For instance, designating the completed set of prioritized scenarios as a
design metric involves measuring the build of the scenarios in a collaborative
user/stakeholder/developer environment.

Using the completion of the ATAM products as metrics is logical as they are
measurable, are key processes in the architectural design, and serve as indicators to the
progress towards successfully completing the design process. Useful ATAM-based metrics
would include:

 Business Drivers Developed

 Prioritized Scenario Sets Developed

 Attribute Utility Tree

 Sensitivity Points & Tradeoff Points

 Architecture Approach Document

Summary

The main goal of the DoD acquisition process is to develop identified warfighter
capabilities within predicted and controlled timelines and cost targets; yet, many software-
intensive systems developed have experienced significant cost and schedule growth due, at
least in part, to the software development component. There are many factors that
contribute to the problem—including how and when the DoD conveys the needed quality
attribute requirements.

The DoD acquisition model uses the Systems Engineering Process (SEP) as the
central process for controlling the developmental process of its systems. The SEP is an
integrated process with the DoD and the contractors selected, thereby urging shared
responsibility for effective systems development. The process begins and ends with the
user or combat developer responsible for providing the capabilities-based requirements,
which are further developed and decomposed by the Program Manager and contractors
responsible for building the system. The system components are constructed, integrated
and continually tested, culminating in the User’s acceptance testing, usually the Initial
Operational Test and Evaluation (IOT&E).

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 283 -

A key to the SEP implementation is effective and complete development and
communication of the system requirements. This must happen at some point for any system
to be successfully developed; but when it happens is extremely important to the cost and
schedule estimate accuracy. When the contractor has a good understanding of the work to
be completed from the requirements presented, more accurate estimates are offered in the
contractor’s proposal before the program schedule is locked in with a contract. If a
significant portion of the work is discovered through requirements decomposition after the
contract is in place (typical of software components), the estimates provided in the proposal
are severely understated, and the program schedule and budgets are no longer appropriate.

One reason the software component is more sensitive to the requirements
development is that the software engineering environment is immature when compared to
most hardware-centric environments. Vague or missing requirements for a hardware item
may be compensated by a mature engineering environment that accommodates implied
requirements. For instance, the automotive industry would provide the ability to easily
replace normal wear-out items like filters and tires, whether or not such provisions were
specified. The software engineering environment does not offer that level of maturity.

The MUIRS analytical technique helps capture software performance requirements
that are routinely overlooked in the immature software engineering environment. The
MUIRS analysis helps capture and convey Open Architecture needs, safety and security
considerations, and long-term supportability performance needed by the warfighter.

In addition to simply understanding the breadth of system requirements, the software
engineer needs to understand them in context of the operations, supportability, and
environments to design a software architecture that is effective. It is not enough to
understand what the software must do; the engineer must understand under what
circumstances, in what environments, and to what standard the function must be performed.

What the DoD needs to improve the acquisition of software-intensive systems are
methodologies that capture and convey quality attribute requirements in an operational
context, within a Systems Engineering Process environment. The Software Engineering
Institute’s Quality Attribute Workshop (QAW) and Architecture Tradeoff Analysis
Methodology SM (ATAM) provide well-suited techniques for developing requirements in
context. The QAW process before contracting helps provide enough requirements
elicitation for more accurate contractor proposals; likewise, the ATAM helps provide the
operational context through scenario and test-case development before the software design
effort. Both products support the SEP, providing methodologies for performing critical SEP
functions.

DoD personnel (user/combat developer and Program Manager/materiel developer)
are key and integral to the development of effective and suitable warfighter capabilities
within predictable cost and schedule parameters. Improving the processes that develop and
convey system quality attribute requirements in context will improve the cost, schedule and
performance predictability of software-intensive systems and will reduce the supportability
costs over the life of the system.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE - 284 -

References

Barbacci, Ellison, Lattanze, Stafford, Weinstock, & Wood. (2003, August). Quality attribute
workshops (QAWs) (3rd ed.). CMU/SEI-2003-TR-016. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Chairman of the Joint Chiefs of Staff. (2005, May). Joint capabilities integration and
development system. (Chairman of the Joint Chiefs of Staff Instruction (CJCSI)
3170.01E).

Defense Acquisition University. (2004, December). Defense Acquisition Guidebook.
Retrieved March 1, 2007, from http://akss.dau.mil/dag/DoD500.asp?view=document.

Department of Defense. (2005, July). Work breakdown structures for defense materiel items
(MIL-HDBK-881A). In Department of Defense handbook. Washington, DC: author.

Kazman, R., Klein, M, & Clements, P. 2000, August). ATAM:SM Method for architecture
evaluation. (CMU/SEI-2000-TR-004). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

Kruchten, P. (2005, March/April). Software design in a postmodern era. IEEE Software,
18(2), 17.

Naegle, B.R. (2006, September). Developing software requirements supporting open
architecture performance goals in critical DoD system-of-systems. Acquisition
Research Sponsored Report Series (NPS-AM-06-035). Monterey, CA: Naval
Postgraduate School.

Pietrasanta, A.M. (1998). Current methodological research. In ACM National Conference
(pp. 341-346). New York: ACM Press.

Software Engineering Institute/Carnegie Mellon Software Architecture. (2007). The
importance of software architecture. Retrieved March 1, 2007, from
www.sei.cmu.edu/architecture/index.html.

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE

2003 - 2006 Sponsored Acquisition Research Topics
Acquisition Management

 Software Requirements for OA

 Managing Services Supply Chain

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard
Planning Processes

 Portfolio Optimization via KVA + RO

 MOSA Contracting Implications

 Strategy for Defense Acquisition Research

 Spiral Development

 BCA: Contractor vs. Organic Growth

Contract Management

 USAF IT Commodity Council

 Contractors in 21st Century Combat Zone

 Joint Contingency Contracting

 Navy Contract Writing Guide

 Commodity Sourcing Strategies

 Past Performance in Source Selection

 USMC Contingency Contracting

 Transforming DoD Contract Closeout

 Model for Optimizing Contingency Contracting Planning and Execution

Financial Management

 PPPs and Government Financing

 Energy Saving Contracts/DoD Mobile Assets

 Capital Budgeting for DoD

 Financing DoD Budget via PPPs

 ROI of Information Warfare Systems

 Acquisitions via leasing: MPS case

 Special Termination Liability in MDAPs

Logistics Management

 R-TOC Aegis Microwave Power Tubes

 Privatization-NOSL/NAWCI

 Army LOG MOD

 PBL (4)

 Acquisition Research: CREATING SYNERGY FOR INFORMED CHANGE

 Contractors Supporting Military Operations

 RFID (4)

 Strategic Sourcing

 ASDS Product Support Analysis

 Analysis of LAV Depot Maintenance

 Diffusion/Variability on Vendor Performance Evaluation

 Optimizing CIWS Lifecycle Support (LCS)

Program Management

 Building Collaborative Capacity

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to Aegis and SSDS

 Business Process Reengineering (BPR) for LCS Mission Module Acquisition

 Terminating Your Own Program

 Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research within the Acquisition
Research Program are available on our website: www.acquisitionresearch.org

Acquisition research Program
Graduate school of business & public policy
Naval postgraduate school
555 DYER ROAD, INGERSOLL HALL
MONTEREY, CALIFORNIA 93943

www.acquisitionresearch.org

Research
Question 5
Work Team

Performance
(External

Assessment)

Average
Work
Team

Strategi

H5 H6b H6f

