Extending an Econophysics Value Model for Early Developmental Program Performance Prediction and Assessment

Raymond D. Jones Thomas Housel, PhD

Background

2007 2008 2009 2010 2011 2012 2013 2014 2015

NAVAL Postgraduate School

Bottom Line Upfront

NAVAL Postgraduate School

Extending econophysics value models and applying them to a typical program scenario provides a better understanding of Defense Programs allowing Program Managers to make more informed risk based decisions.

What is Econophysics

NAVAL Postgraduate School

Econophysics is an interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics.

Program Complexity

NAVAL Postgraduate School

Increasing complexity of programs requires more sophisticated management and control and prediction techniques

Complex Programs

NAVAL Postgraduate

WIN-T JC4ISR

NAVAL Postgraduate School

The Department of Defense manages programs using static cost estimates limiting the program manager from making value based decisions based on volatility.

Managing complex programs is a RISK based process that needs to allow the program manager to manage within a threshold of Return on Investment that balances cost, schedule, and performance

Econophysics will allow the program manager to integrate a revenue metric into the decision making process, providing a pathway for assessing program execution return on investment

Return on Investment

NAVAL Postgraduate School

CPI = BCWP/ACWP (Cost Performance Index) SPI = BCWP/BCWS (Schedule Performance Index)

- BCWP Budgeted cost of work performed
- ACWP Actual cost of work performed
- BCWS Budgeted cost of work scheduled (Performance Measurement Baseline; Desired Value expressed in Cost)

RPI = [(PV)(BCWS)-ACWP]/ACWP (s-ROI Performance Index)*

RPI Provides More Insight into Turbulent Region of a Program and Gives the Program Manager More Options

Proto-value (surrogate revenue)

NAVAL Postgraduate School

Probability of obtaining a specified requirement

Likelihood of completing a specified capability

Total
$$PV_{in} = sum(PV) \Big|_{i}^{n}$$

mass $\{m\}$ -refers to the attraction between program requirements and the customer . **mass** = f[TRL, Risk, Budget, Threat....]dt

Scope and Context of Research

NAVAL POSTGRADUAT

Typical Program Behavior

NAVAL Postgraduate School

Month	Cost Est/ Mo	BCWS	BCWP/mo	BCWP	ACWP/mo	ACWP	R	Ps	PF	PV per Month	Cum PV	RPI	СРІ	SPI
1	10	10	10	10	10	10	10	0.9	10	90	90	8.9	1	1
2	10	20	10	20	10	20	10	0.9	10	90	180	8.9	1	1
3	10	30	10	30	10	30	10	0.9	10	90	270	8.9	1	1
4	10	40	10	40	10	40	10	0.9	10	90	360	8.9	1	1
5	10	50	10	50	10	50	10	0.9	10	90	450	8.9	1	1
6	10	60	10	60	10	60	10	0.9	10	90	540	8.9	1	1
7	10	70	10	70	10	70	10	0.9	10	90	630	8.9	1	1
8	10	80	10	80	10	80	10	0.9	10	90	720	8.9	1	Λ
9	10	90	10	90	10	90	10	0.9	10	90	810	8.9	1	1
10	10	100	10	100	10	100	10	0.9	10	90	900	8.9	1	1
11	10	110	10	110	10	110	10	0.9	10	90	990	8.9	1	1
12	10	120	10	120	10	120	10	0.9	10	90	1080	8.9	1	1
13	10	130	10	130	10	130	10	0.9	10	90	1170	8.9	1	1
14	10	140	10	140	10	140	10	0.9	10	90	1260	8.9	1	1
15	10	150	10	150	10	150	10	0.9	10	90	1350	8.9		1
16	10	160	10	160	10	160	10	0.9	10	90	1440	8,9	1	1
17	10	170	10	170	10	170	10	0.9	10	90	1530	8.9	X	1
18	10	180	10	180	10	180	10	0.9	10	90	1620	8.9	1	1
19	10	190	10	190	10	190	10	0.9	8	72	1692	7.1	1	1
20	10	200	10	200	10	200	10	0.8	~	64	1756	6.3	1	1
21	10	210	10	210	10	210	10	0.8	8	64	1820	6.3	1	1
22	10	220	10	220	11	221	10	0.8	8	64	1884	5.7181818	0.909	1
23	10	230	10	230	п	232	10	0.8	8	64	1948	5.7181818	0.909	1
24	10	240	9	239	11	243	10	0.7	8	56	2004	4.9909091	0.818	0.9
25	10	250	9	248	11	254	10	0.7	7	49	2053	4.3545455	0.818	0.9
26	10	260	9	257	12	266	10	0.7	7	49	2102	3.9833333	0.75	0.9
27	10	270	8	265	12	278	10	0.7	7	49	2151	3.9833333	0.667	0.8
28	10	280	8	273	12	290	10	0.7	7	49	2200	3.9833333	0.667	0.8
29	10	290	8	281	12	302	10	0.7	7	49	2249	3.9833333	0.667	0.8
30	10	300	8	289	14	316	10	0.7	7	49	2298	3.4	0.571	0.8
31	10	310	7	296	14	330	10	0.7	7	49	2347	3.4	0.5	0.7
32	10	320	7	303	14	344	10	0.6	7	42	2389	2.9	0.5	0.7
33	10	330	7	310	14	358	10	0.6	7	42	2431	2.9	0.5	0.7
34	10	340	7	317	15	373	10	0.6	7	42	2473	2.7	0.467	0.7
35	10	350	7	324	15	388	10	0.6	7	42	2515	2.7	0.467	0.7
36	10	360	7	331	15	403	10	0.5	6	30	2545	1.9	0.467	0.7

- 1. Potential Field, PF = (m*N) begins to decline due to declining N
- 2. Mass (m) begins to decline due to reduced confidence in meeting requirements, R
- 3. P_s begins to decline
- 4. PV shows significant reduction
- 5. RPI shows significant reduction
- 6. ACWP reports showing initial increasing cost are published
- 7. CPI shows first significant reduction
- 8. SPI shows first significant reduction

 $PV = (R^*P_s)(m^*N) = ([R^*(1-r)])(m^*N)$ RPI = [(PV)(BCWS)-ACWP]/ACWP

$PV_i = PP_i^*PF_i = (R^*P_s)(m^*N) = ([R_i^*(1-r_i)])(m_i^*N_i)$

0.9

0.8

0.7

0.5

0.3 0.2 0.1

Ps

19 21 23 25 27

29 31

Program Lifecycle Evolution

12

Program Lifecycle Evolution

NAVAL Postgraduate School

RPI shows program performance issues Earlier in the life cycle

What's Next

NAVAL Postgraduate School

- Establish derivatives that describe mass and Probability of success
 - mass = f[TRL, Risk, Budget, Threat....]dt
 - $P_s = f(cost, schedule, TRL, Volatility (<math>\beta$)...)dt
- Develop a measure of Beta that accurately describes the transition region at which programs begin to become turbulent.
- Integrate Beta into Protovalue to capture ancillary variables that effect mass and probability of success
- Code the model and conduct regressive analysis with program data and simulation to validate and converge the predictive nature of the theory.
- Predict and Explain!