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Cyber Testing Challenges
• ICD 503: Manage Risk
• Paradigm Shift: Cyber Failures Are Not Random

– In uncontested environments, failures act like random processes
• Statistical models of risk apply
• Goal is to mitigate expected loss

– In contested environments, adversaries maximize your loss
• Need game theoretic models of risk
• Goal is to mitigate worst case loss

• Risk exposure depends on variable circumstances
– Are we at war?
– How much profit/military advantage/political value would a 

successful attack provide to adversaries?
– Are sufficient resources available for a successful attack?
– How much risk of prosecution or counterattack is there?
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Cyber Testing Challenges
• Causes and Effects Will Be Hidden

– Rice’s theorem: perfect cyber certification is impossible
• Perfect solution processes will not always terminate
• Certification must operate within reasonably short bounded time

– Attacks are designed to make them difficult to find
• Small footprint - one of a huge number of possible conditions. 
• Fragmentation – interaction of widely separated parts of code, 
• Delayed manifestation – no effect behavior until much later
• Timing – correct behavior delayed sufficiently causes failures. 
• Parasitic effects – breaking the model of computation so that 

logically correct source code can produce damaging behavior.

• Consequences are physical
• Threats can morph
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Types of Solutions

• Expand scope of risk management
– Mitigations address both software and adversary
– Make attacks less profitable / more risky

• Improve software analysis
– Use software dependencies to find weaknesses
– Runtime monitoring

• Recover from or mitigate mishaps
– Self healing and fail safe systems

• Incorporate solutions in architecture
– The part of the system that does not change
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Architectural Solutions

• Resiliency via architecture
– Runtime testing and recovery infrastructure
– Monitor code/data integrity and physical effects

• Standardized modular security services
– Authenticated distribution of software updates
– Runtime monitoring of executable code to detect 

unauthorized changes
– Restoring corrupted code 
– Restoring execution state to a valid configuration
– Resuming execution with restored code
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Insider Threats - Turn-Key Malware

• Statistically invisible = 
impossible to detect by 
black box testing

• Clear box testing can do 
better
– Use constraint solvers to 

synthesize test inputs for 
majority of cases
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Outsider Threats –
Runtime Code Modification

• Static and Dynamic Detection
– Software update service analysis
– Architecture conformance checking 
– Memory allocation checking
– Memory reference checking
– Runtime monitoring of executable code
– Runtime monitoring of data integrity constraints
– Runtime monitoring of physical states
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Outsider Threats –
Runtime Code Modification

• Mitigations for defense in depth
– Using pure code segments in read-only hardware
– Restoration of code from ROM
– Disabling reflective language capabilities
– Use garbage collecting programming languages to 

reduce hazards of code and data corruption
– Intensively analyze memory allocation and recycling 

facilities for memory corruption hazards
• compilers, runtime libraries, linkers, loaders, etc. 

– OS and hardware level memory protection
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Architecture Testability Levels
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Level Testability Level Description
0 inadequate Does not meet requirements for any of the higher levels
1 syntactic All services and data elements provided by each procurable component 

have published interfaces/data models that provide names and type 
signatures.

2 semantic Published interfaces include precise definitions of the meaning of the 
services/data, including units, connection to real world objects, and 
requirements on outputs and final states resulting from all services

3 robust Published interfaces include all assumptions and restrictions on inputs 
and states, triggering conditions for all exceptions, and expected results 
after exceptions

4 observable All system attributes relevant to checking the requirements are 
observable either via the published operational interfaces or published 
augmented testing interfaces

5 measurable All properties needed to check the requirements have clearly defined 
measurement and evaluation procedures

6 decidable Pass/fail decisions for all test cases can be made entirely by automated 
procedures, without need for subjective human judgment

7 unbounded Any number of random test inputs can be automatically generated and 
corresponding test results can be automatically checked for all services



QA for Architectures
• QA for architectures should assess their 

testability levels 
– Levels 5-7 appropriate for secure architectures

• Testability levels 6 and 7 can be augmented 
with continuous Built-in-Test capabilities
– Enables checking system integrity in the field
– Corrupted software: e.g. re-image OS
– Prognostics: e.g. replace battery soon
– Device failure: e.g. replace hard drive

• Conform to a TRF for code integrity services
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Conclusions
• No silver bullet for cyber security.

• Best practical solutions integrate a layered set 
of defenses and mitigations

• Need runtime monitoring / recovery in addition 
to static analysis and dynamic testing 

• Security QA procedures for architectures 
should be part of OSA processes.



Recommendations
• Increase the time and effort it will take an 

adversary to compromise our systems.
– Make countermeasures part of OSA/TRF.

• Decrease the time to detect a compromise 
and restore dependable operation.
– Runtime monitoring and self-healing.

• Make system compromise prohibitively 
expensive for potential attackers.
– Integrate software, hardware, network, legal, 

political, and military countermeasures.
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Thank you
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