
1

Automated Methods for 
Cyber Test and Evaluation

V. Berzins

The views presented is this paper are those of the author 
and do not necessarily represent the views of DoD or its Components.



Cyber Testing Challenges
• ICD 503: Manage Risk
• Paradigm Shift: Cyber Failures Are Not Random

– In uncontested environments, failures act like random processes
• Statistical models of risk apply
• Goal is to mitigate expected loss

– In contested environments, adversaries maximize your loss
• Need game theoretic models of risk
• Goal is to mitigate worst case loss

• Risk exposure depends on variable circumstances
– Are we at war?
– How much profit/military advantage/political value would a 

successful attack provide to adversaries?
– Are sufficient resources available for a successful attack?
– How much risk of prosecution or counterattack is there?

2



Cyber Testing Challenges
• Causes and Effects Will Be Hidden

– Rice’s theorem: perfect cyber certification is impossible
• Perfect solution processes will not always terminate
• Certification must operate within reasonably short bounded time

– Attacks are designed to make them difficult to find
• Small footprint - one of a huge number of possible conditions. 
• Fragmentation – interaction of widely separated parts of code, 
• Delayed manifestation – no effect behavior until much later
• Timing – correct behavior delayed sufficiently causes failures. 
• Parasitic effects – breaking the model of computation so that 

logically correct source code can produce damaging behavior.

• Consequences are physical
• Threats can morph

3



Types of Solutions

• Expand scope of risk management
– Mitigations address both software and adversary
– Make attacks less profitable / more risky

• Improve software analysis
– Use software dependencies to find weaknesses
– Runtime monitoring

• Recover from or mitigate mishaps
– Self healing and fail safe systems

• Incorporate solutions in architecture
– The part of the system that does not change

4



Architectural Solutions

• Resiliency via architecture
– Runtime testing and recovery infrastructure
– Monitor code/data integrity and physical effects

• Standardized modular security services
– Authenticated distribution of software updates
– Runtime monitoring of executable code to detect 

unauthorized changes
– Restoring corrupted code 
– Restoring execution state to a valid configuration
– Resuming execution with restored code

5



Insider Threats - Turn-Key Malware

• Statistically invisible = 
impossible to detect by 
black box testing

• Clear box testing can do 
better
– Use constraint solvers to 

synthesize test inputs for 
majority of cases

6



Outsider Threats –
Runtime Code Modification

• Static and Dynamic Detection
– Software update service analysis
– Architecture conformance checking 
– Memory allocation checking
– Memory reference checking
– Runtime monitoring of executable code
– Runtime monitoring of data integrity constraints
– Runtime monitoring of physical states

7



Outsider Threats –
Runtime Code Modification

• Mitigations for defense in depth
– Using pure code segments in read-only hardware
– Restoration of code from ROM
– Disabling reflective language capabilities
– Use garbage collecting programming languages to 

reduce hazards of code and data corruption
– Intensively analyze memory allocation and recycling 

facilities for memory corruption hazards
• compilers, runtime libraries, linkers, loaders, etc. 

– OS and hardware level memory protection

8



Architecture Testability Levels

9

Level Testability Level Description
0 inadequate Does not meet requirements for any of the higher levels
1 syntactic All services and data elements provided by each procurable component 

have published interfaces/data models that provide names and type 
signatures.

2 semantic Published interfaces include precise definitions of the meaning of the 
services/data, including units, connection to real world objects, and 
requirements on outputs and final states resulting from all services

3 robust Published interfaces include all assumptions and restrictions on inputs 
and states, triggering conditions for all exceptions, and expected results 
after exceptions

4 observable All system attributes relevant to checking the requirements are 
observable either via the published operational interfaces or published 
augmented testing interfaces

5 measurable All properties needed to check the requirements have clearly defined 
measurement and evaluation procedures

6 decidable Pass/fail decisions for all test cases can be made entirely by automated 
procedures, without need for subjective human judgment

7 unbounded Any number of random test inputs can be automatically generated and 
corresponding test results can be automatically checked for all services



QA for Architectures
• QA for architectures should assess their 

testability levels 
– Levels 5-7 appropriate for secure architectures

• Testability levels 6 and 7 can be augmented 
with continuous Built-in-Test capabilities
– Enables checking system integrity in the field
– Corrupted software: e.g. re-image OS
– Prognostics: e.g. replace battery soon
– Device failure: e.g. replace hard drive

• Conform to a TRF for code integrity services

10



11

Conclusions
• No silver bullet for cyber security.

• Best practical solutions integrate a layered set 
of defenses and mitigations

• Need runtime monitoring / recovery in addition 
to static analysis and dynamic testing 

• Security QA procedures for architectures 
should be part of OSA processes.



Recommendations
• Increase the time and effort it will take an 

adversary to compromise our systems.
– Make countermeasures part of OSA/TRF.

• Decrease the time to detect a compromise 
and restore dependable operation.
– Runtime monitoring and self-healing.

• Make system compromise prohibitively 
expensive for potential attackers.
– Integrate software, hardware, network, legal, 

political, and military countermeasures.

12



Thank you

13


	Automated Methods for �Cyber Test and Evaluation
	Cyber Testing Challenges
	Cyber Testing Challenges
	Types of Solutions
	Architectural Solutions
	Insider Threats - Turn-Key Malware
	Outsider Threats – �Runtime Code Modification
	Outsider Threats – �Runtime Code Modification
	Architecture Testability Levels
	QA for Architectures
	Conclusions
	Recommendations�
	Slide Number 13

