
[DISTRIBUTION STATEMENT Please copy and paste the appropriate 
distribution statement into this space.]

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA  15213

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Inferring Causality
with Data from
Personal Software Process  

William Nichols
Michael Konrad



[DISTRIBUTION STATEMENT Please copy and paste the appropriate 
distribution statement into this space.]

Click to edit Master 
title style

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Evidence
How do we know?

“You can see a lot by just watching.”

—Yogi Berra
”Science is what we do to keep from 
lying to ourselves.”

—Richard Feynman



4Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Myth vs Reality
Find causation from observational data

Testing hypotheses is hard because
No Controls -Experiments are impractical
Imprecise data constructs - Measures are inconsistent
Incomplete data - Combined data
Every project is different - Explosion of contextual factors
Unknown distributions – do statistical methods apply
Mixed causal systems

Important because, For Software Projects > $15 M

Average cost overrun of 66% Average schedule overrun of 33%
“Delivering Large scale IT projects on time, on budget, and on value”, McKinsey-Oxford, 2010

Staff factors? Testing? Tools? Estimation? What works?
We need better ways, but observations can be deceiving,



5Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Can Causal Algorithms Help?

To control software development, we need factors that
1) Can be selected or manipulated

2) Have a causal effect  (direct or indirect) on desired outcomes

New algorithms and techniques are becoming available
They are related to but distinct from multiple regression, Bayesian 
networks, and Machine Learning. 

The methods have been successful in other domains.
How can we gain confidence when applying to Software 
Engineering?



6Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Considerations for use of Causal Discovery

Data 
• Precisely defined

• Continuous or convertible to continuous (for many algorithms)
• Large sample sizes

• Homogeneous context
• Inputs span a range of values

• Well understood
Additionally, algorithms may use assumptions about

• Gaussian or skewed distributions
• Linear relationships



7Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.7

The PSP Course, 10 Exercises  

PSP0
•Current process
•Basic measures

PSP1
•Size estimating

•Test report

PSP2
•Code reviews

•Design reviews

Team Software 
Process

•Teambuilding 
•Risk management

•Project planning and tracking

PSP2.1
Design templates

PSP1.1
•Task planning

• Schedule planning

PSP0.1
•Coding standard

•Process improvement
proposal

•Size measurement

Introduces process discipline 
and measurement

3 programs

Introduces estimating and 
planning

3 programs

Introduces quality 
management and design

4 programs



8Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

PSP Data

The PSP course has been taught for more than 20 years.

For the same ten-exercises in the course
• 3140 developers and 31,140 programs
• 3,355,882 lines of code
• 123,996.53 hours of work
• 221,346 defects
Each programmer developed the same 10 programs.

A great deal can be learned from analyzing these data.

Course results have been studied and analyzed using traditional methods

Of these, 494 sets of 10 programs are written in “C”.
We will only look at these data. 



9Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

PSP Data has many desirable properties

When using the PSP, developers gather and use data. The data is 
generally of high quality.

Time data
• The time in minutes spent in each main development activity
• Stop-watch time (Interruption time is not included)

Size data
• Product size LOC, (can also use in db elements, pages, etc.)
• Categories: base, added, deleted, modified, reused

Defect data
• All defects removed in compile, test, review, etc.
• Type, phases injected & removed, fix time, description
We will use only continuous values.
We can also apply time based “prior knowledge” based on the process.



10Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Data and Factors
scope # Variable Description

Requirement (i) I 10 AsgAveMin How challenging are the requirements?

Student (j) I 494 StuDAR What is historical developer defect rate?

Student (j) I 494 StuSize What is historical developer Verbosity?

Student (j) I 494 StuEffFactor What is historical developer rate?

Assignment (i,j) I 4940 ConstMin Actual assignment design and code 
effort

Assignment (i,j) O 4940 LOC Actual size of program

Assignment (i,j) O 4940 DefectTot Number of program defects

Assignment (i,j) O 4940 MinTot Total effort expended

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖× 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗

Expected Relationships
Size:

Defects:
Effort:



11Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Data  is roughly log-normal, we apply log transforms

Student
(j)

Assignment
(i,j)

Size Effort Defects 



12Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

DAG from PC search

Results, Application of Causal Analysis

1. StuSizeFactor  LOC
2. AsgAveMin  LOC
3. AsgAveMin  MinTot
4. StuEffFactor MinTot
5. AsgAveMin  ConstMin
6. StuEffFactor  ConstMin
7. ConstMin  MinTot
8. MinTot  DefectTot

DAG from FGES search Common Direct 
Causal Edges

Expected Relation (log transformed for linear effects) Edges found PC FGES
ln(𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) = 𝐶𝐶0 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ) + 𝐶𝐶1 ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗) StuSizeFactor  LOC Y Y

AsgAveMin  LOC Y Y

ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖) = 𝐶𝐶2ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ) + 𝐶𝐶3 ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗) AsgAveMin MinTot Y Y

StuEffFactor  MinTot Y Y

ln(𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 )
= 𝐶𝐶4 ln 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐶𝐶5 ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 )

StuDAR -> DefectTot
ConstMin -> DefectTot

Bi
I

Y
I



13Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Discussion

SWE data can have many of the necessary characteristics to apply 
these techniques

• Distinct algorithms found expected relationships
• Algorithms did not contradict each other

Evidence for  “the rest of the story”

• Total effort is driven by product requirements
• Personnel historical rates have a large influence

• Implemented size is driven by requirements
• Personnel factors affect the actual implemented size

• Total defects are driven by requirements
• Personnel and process factors affect defect levels 



14Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Conclusions, Causal algorithms have promise

From observational data
• Separate cause from effect

• Identify common causes or effects
• Recognize intermediate effects or chains of influence

Next Steps

• Refine the selection of causal factors (process, and so forth)
• Examine effect sizes and variation

• Build predictive models using the causal relationships
• Examine factor sensitivities

• Extend to additional data sets



15Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

If you would like to share data or collaborate

Contact Information
William R. Nichols

wrn@sei.cmu.edu
412-268-1727

Michael Konrad

mdk@sei.cmu.edu
412-268-5813

mailto:wrn@sei.cmu.edu
mailto:mdk@sei.cmu.edu


16Inferring Causality with Data from Personal Software Process © 
2018 Carnegie Mellon University

his material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-
US Government use and distribution.

Selected PSP data analysis references

Vallespir, Diego. Analysis of Design Defect Injection and Removal in PSP. In TSP Symposium 2011 (2011) (pp. 1–28). 
Pittsburgh: Carnegie Mellon Univeristy.

Vallespir, Diego, & Nichols, William R. Quality Is Free , Personal Reviews Improve Software Quality at No Cost. 
Software Quality Professional (2016), 18(March), 4–13.

Vallespir, Diego, & Nichols, William. An Analysis of Code Defect Injection and Removal in PSP. In Proceedings of the 
TSP Symposium 2012 (2012). Pittsburgh. 

Valverde, Carolina, Grazioli, Fernanda, & Vallespir, Diego. A Study of the Quality of Data Collected during the Using the 
Personal Software Process (n.d.), 37–44.

Grazioli, Fernanda. An Analysis of Student Performance During the Introduciton of the PSP: An Empirical Cross 
Course Comparrison (2013). Universidad de la Republica.

Paulk, MC. An empirical study of process discipline and software quality (2005). Retrieved from http://d-
scholarship.pitt.edu/8303/

Rombach, Dieter, Münch, Jürgen, Ocampo, Alexis, Humphrey, Watts S., & Burton, Dan. Teaching disciplined software 
development. Journal of Systems and Software (2008), 81(5), 747–763. https://doi.org/10.1016/j.jss.2007.06.004

http://d-scholarship.pitt.edu/8303/

	Inferring Causality�with Data from�Personal Software Process  
	Evidence�How do we know?
	Myth vs Reality�Find causation from observational data
	Can Causal Algorithms Help?
	Considerations for use of Causal Discovery
	The PSP Course, 10 Exercises  
	PSP Data
	PSP Data has many desirable properties
	Data and Factors
	Data  is roughly log-normal, we apply log transforms�
	Results, Application of Causal Analysis
	Discussion
	Conclusions, Causal algorithms have promise�
	If you would like to share data or collaborate
	Selected PSP data analysis references

