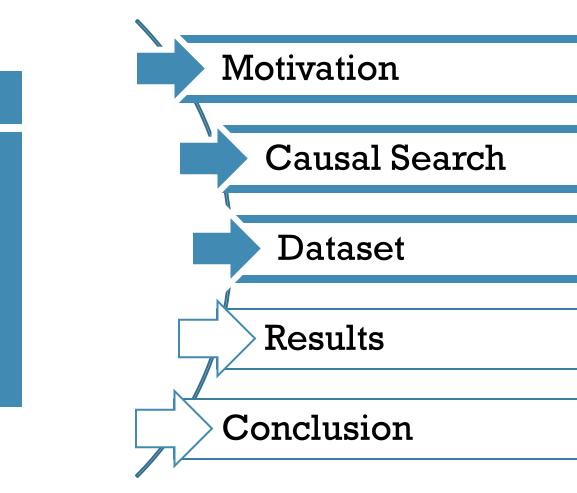


Comparing Causal Search Analyses with Traditional Statistical Methods

Anandi Hira, Barry Boehm

University of Southern California

Robert Stoddard, Michael Konrad


Software Engineering Institute

* This presentation and paper is a follow-up to the paper "Preliminary Causal Discovery Results with Software Effort Estimation Data" presented at Innovations in Software Engineering Conference (ISEC) 2018

Outline

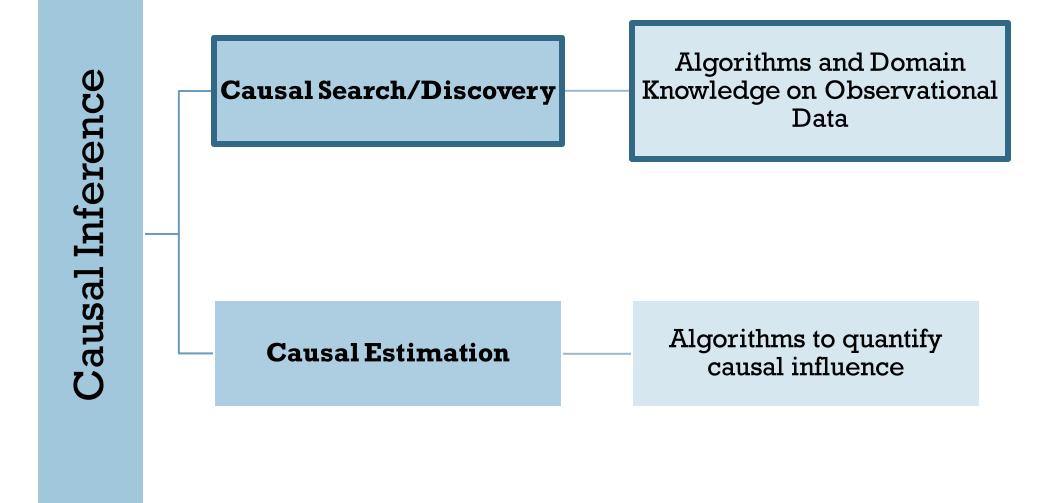
Software Engineering Institute

Parametric Cost

Models

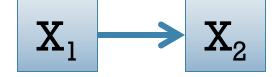
COCOMO® II

$$Effort = 2.94 \times Size^{E} \times \prod_{i=1}^{17} EM_{i}$$


- Input: size, product and personnel attributes
- Effort in Person-Months (PM)
- Size in KSLOC (1000 SLOC)

- Domain Experts
- Data calibration
- No causal analysis

School of Engineering



4

Change in X_1 causes change in X_2

Causal Search Algorithm Results

Insufficient information to select orientation

 $X_1 \longleftrightarrow X_2$

May be common confounder of both variables, missing from dataset

Causal Search

Algorithms

PC SEARCH

- Constraint-based algorithm
- First developed by Peter Spirtes and Clark Glymour
- Highly accurate and scalable

FGES (FAST GREEDY EQUIVALENT SEARCH)

- Score-based algorithm
- Reduces bi-directed edges in output

PC STABLE

- Constraint-based algorithm
- Variant of PC, addressing problem that output depends on order of variables in dataset

FASK (FAST ADJACENCY SKEWNESS)

- Score-based algorithm
- Makes use of asymmetry in univariate distributions to determine edge orientations

PROJECT DESCRIPTION

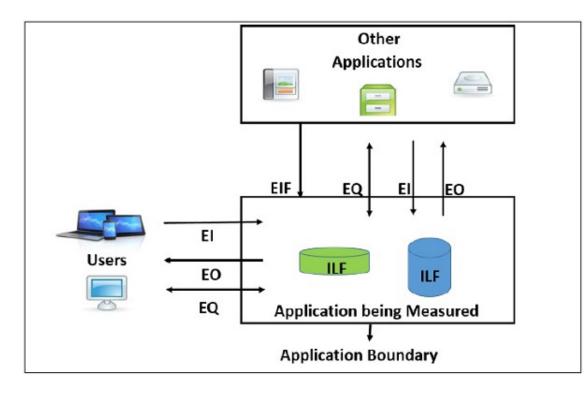
- Code metrics tool (logical SLOC, cyclomatic complexity)
- Maintained at USC
- UCC is released to users across world, primarily used in U.S. Aerospace industry
- Recommended for SLOC-based size input to Software Resources Data Report (SRDR)
- Implemented in C++
- Modularized architecture
- Tasks started and finished between 2010 to 2014

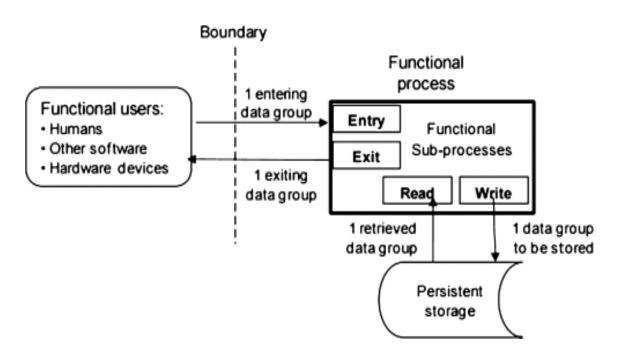
Dataset: Unified Code Count (UCC)

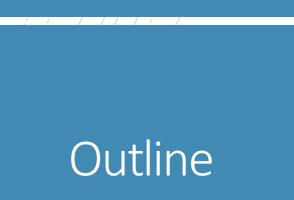
Dataset Attributes

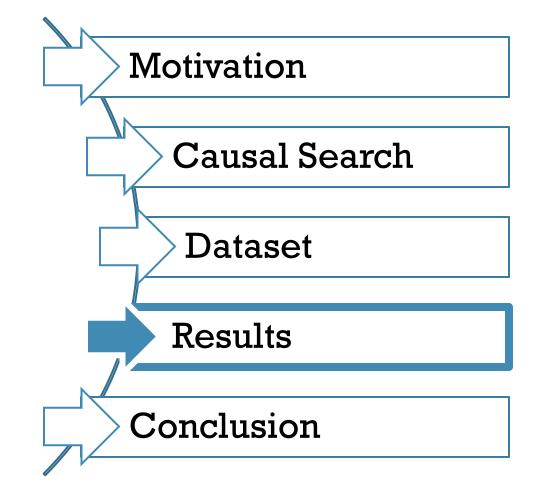
- 1. Equivalent SLOC (ESLOC)
- 2. IFPUG Function Points (FPs)
- 3. IFPUG Software Non-functional Assessment Process (SNAP)
- 4. COSMIC Function Points (CFPs)
- 5. Total Effort

- 6. Applications Experience (APEX)
- 7. Platform Experience (PLEX)
- 8. Use of Software Tools (TOOL)
- 9. Personnel Continuity (PCON)
- 10. Product Complexity (CPLX)
- 11. Analyst Capability (ACAP)
- 12. Programmer Capability (PCAP)
- 13. Documentation Match to Lifecycle Needs (DOCU)




School of Engineering


IFPUG

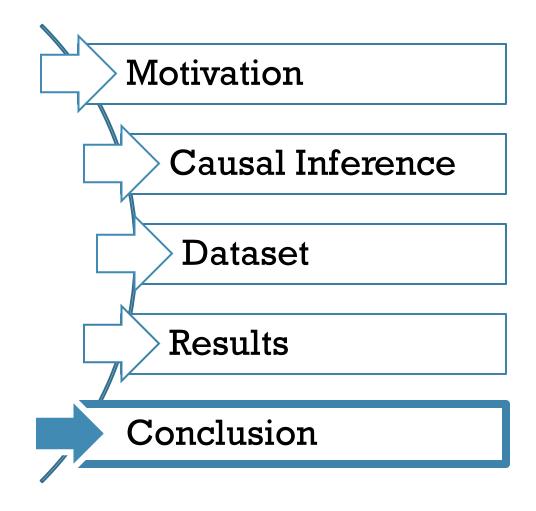


COSMIC

USC Viterbi		Direct Cause of Total Effort								
School of Engineering	Algorithm	ESLOC	FP	SNAP					DOCU	Software Engineering Institute
	PC All Size Metrics				YES			YES		
	PC ESLOC				. 20			YES		
	PC FP							YES		
	PC SNAP			YES				YES		
	PC CFP				YES			YES		
	PC-Stable All Size Metrics				YES					
	PC-Stable ESLOC					YES				
	PC-Stable FP					YES				
	PC-Stable SNAP					YES				
	PC-Stable CFP				YES					
	FGES All Size Metrics				YES			YES		
	FGES ESLOC			1				YES		
	FGES FP							YES		
	FGES SNAP							YES		
	FGES CFP				YES			YES		
	FASK All Size Metrics		YES	YES	YES				YES	
	FASK ESLOC								YES	
	FASK FP		YES						YES	
	FASK SNAP			YES					YES	
	FASK CFP				YES				YES	

Note: Black cells are Not Applicable as factor not present in model

Multiple Regression


	(adj)	(pred)								
1 57.	6 56.1	. 51.0						X		
1 54.	6 53.0	47.9	Х							
2 84.	9 83.8	8 78.3	X					Х		
2 78.	5 76.9	67.4				Х		Х		
3 85.	3 83.6	6 76.1	X					X		Х
3 85.	1 83.4	77.2	X		Х			Х		
4 85.	4 83.0	73.0	X			X		X		Х
4 85.	3 83.0	68.6	X				Х	X		Х
5 85.	4 82.3	61.9	X			X	Х	X		Х
5 85.	4 82.3	67.0	X	Х		Х		X		Х
6 85.	4 81.6	55.2	X	X		X	X	X		Х
6 85.	4 81.6	59.9	X			X	Х	X	Х	x
7 85.	4 80.8	3 53.0	X	Х		X	X	X	Х	X
7 85.	4 80.8	3 52.0	X	X	Х	X	X	X		X
8 85.	4 79.8	3 49.5	X	Х	Х	X	X	X	x	X

R-Sq R-Sq CFPs ESLOC FPs SNAP ACAP PCAP DOCU CPLX

Vars R-Sq

Outline

Threats to

Validity

Small Sample Size

- Conditional independence testing can only detect strong correlational effects
- Resulting in sparsely-connected graphs
- Dataset of convenience UCC
 - Maintained by Masters students
 - UCC is released to users across world, primarily used in U.S. Aerospace industry
 - Continuing study with various datasets

Conclusions

SUMMARY OF RESULTS

- Consistent Results
 - CFP Total Effort
 - SNAP Total Effort
 - PCAP Total Effort

FUTURE WORK

- Run similar analyses on larger and varied cost estimation datasets
- Especially focus on impacts to acquisition cost and schedule
- Datasets including various source code metrics

Acquisition Research Implications

- Expensive, prohibitive experiments of acquisition factors could be obviated by use of causal methods
- Revisit effort factors, potentially reducing number of required dataset characteristics
- Acquisition researchers could integrate causal conclusions for holistic model
- Identify and prioritize research funding towards causal research outcomes worthy of investment in repeatability and reproducibility studies
- Causal research findings more confidently tested by acquisition program interventions with less risk of waste

Thank you for your time!