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Abstract 
To a first approximation, acquisition programs never spend what they originally 

said they would spend when they began. In fact, the uncertainty in initial funding profile 
estimates is much larger than is generally understood; the possibility of program 
cancellations, restructurings, truncations, and block upgrades are often not accounted 
for. Worse yet, all of this uncertainty arises in a context in which programs must fit within 
annual budgets—it is not enough to only spend as much as you said you would; you 
must also spend it when you said you would, or problems ensue. 

In 2018, we presented a methodology that uses historical program outcomes to 
characterize the year-by-year development and procurement cost risk associated with a 
major acquisition program. That work used functional regression to characterize 
changes in development profiles, modeled as Weibull curves. This paper improves and 
extends that work, using a novel application of Functional Principal Component Analysis 
(FPCA) to characterize the distributions of future RDT&E and Procurement profiles of 
both new and continuing acquisition programs. 

Introduction—The Research Program 

Recap of Prior Work 

To a first approximation, acquisition programs never spend what they said they 
would when they began. In fact, the error bars around an initial cost estimate are much 
larger than is generally understood once program cancellations, restructurings, 
truncations, and block upgrades have been accounted for. Worse yet, all of this 
uncertainty arises in a context where programs must fit within annual budgets—it is not 
enough to only spend as much as you said you would; you must also spend it when you 
said you would, or problems ensue. 

We have developed a methodology to characterize the year-by-year budget risk 
associated with a major acquisition program. This methodology can be applied to both 
development costs (Research, Development, Test, and Evaluation, or RDT&E) and 
procurement costs, and can be extended to understand the aggregate affordability risk 
of portfolios of programs. The method allows resource managers to estimate annual 
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budget risk levels, required contingency amounts to achieve a specified probability of 
staying within a given budget, and a host of other relevant risk metrics for programs. It 
also allows policy makers to predict the impact on program affordability of proposed 
changes in how contingency funds are managed. 

Many researchers have studied cost growth in major defense programs. The vast 
majority of this work has looked at either the ratio of eventual total cost to the originally 
estimated total cost, or the increase in some unit cost measure. Neither of these 
approaches addresses the problem that funds are authorized year-by-year, and that the 
affordability of a program or portfolio requires having enough obligation authority in each 
year to do the work needed over the next few years. 

In Tate, Coonce, and Guggisberg (2018), we introduced an analytical approach 
for quantifying how likely a given set of programs is to fit within a projected budget over a 
planning horizon. This paper improves and extends that previous work. 

To recap the approach: using historical Selected Acquisition Report (SAR) data, 
we look at how the profile of annual funding changed from initial estimates to actual 
authorized amounts, looking only at programs that are no longer spending. We do this 
separately for RDT&E costs and procurement costs. Our approach is agnostic about 
causes of these changes—the possibility that a program might be cancelled, or that the 
buyer might decide to triple the quantity or modify the design, is treated as part of the 
uncertainty to be accounted for in forecasting future budget demands. Posterior 
estimates of the distribution of possible cost profile outcomes are generated as a 
function of initial budget estimates, attributes of the program (e.g., that it is a joint 
program, or an aircraft program), and environmental conditions (e.g., that overall 
defense budgets are relatively tight at the moment). 

Reminder: Desirable Outputs of a Model 

Given a planned program (or set of programs—we’ll get to that later) and a 
budget, resource managers would very much like to answer questions such as the 
following: 

 What is the distribution of funding the program will receive in year t = 1, 
2, ? 

 What is the probability that the program will receive more funding in year 
t than is currently budgeted, for t = 1, 2, ? 

 How many total contingency dollars would be enough to achieve a given 
probability that the current budget plus the contingency is enough to fund 
the program over the Future Years Defense Plan (FYDP)? 

 What is the probability that the program will receive at least $X less than 
planned over the FYDP, for various values of X? 

The goal of our research is to develop empirical models, based on historical 
program attributes, environments, and outcomes, that will allow us to answer questions 
like these. To do that, we need a few specific tools: 

 A way to describe funding profiles mathematically; 

 A list of program attributes and environmental factors that help predict 
program outcomes; 
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 A statistical model to estimate the probability distribution of final funding 
profile shapes, given the initial or midlife funding profile, environmental 
factors, and other program attributes; 

 A mathematical characterization of how well the shape tends to fit actual 
data; and 

 Historical data on program initial plans, midlife plans/outcomes and final 
outcomes. 

Tate et al. (2018) illustrated this approach using Weibull curves to model RDT&E 
cost profiles of major defense acquisition programs (MDAPs). That work used functional 
regression, in which the shape of the realized cost profiles is assumed to have a 
particular functional form. Specifically, we assumed a Weibull distribution for the (scaled) 
initial and final profiles. That approach proved to be unsatisfactory in a couple of ways. 

For one thing, many historical programs have realized RDT&E spending profiles 
that do not look like a single Weibull profile. For example, the Advanced Medium-Range 
Air-to-Air Missile (AMRAAM) and DDG-51 Destroyer programs each consists of a 
sequence of block upgrades (or new developments) of the product. They behave, in 
essence, like multiple sequential acquisition programs under a single funding line. 

Alternatively, some RDT&E programs function more like services contracts than 
like product development contracts, consisting of a level of effort to improve capabilities 
over time, rather than one or more development and production projects with a discrete 
beginning and end. Ballistic Missile Defense System (BMDS) is perhaps the best 
exemplar of this approach, but there are others. The Evolved Expendable Launch 
Vehicle program was originally designed as a program to procure a set number of 
launch vehicles for satellites. Now called the National Security Space Launch program, it 
represents ongoing modernization and improvement of space launch capabilities. Figure 
1 shows annual RDT&E funding for BMDS. 

 

Figure 1. Annual RDT&E Funding for BMDS 



Acquisition Research Program: 
Creating Synergy for Informed Change - 156 - 
Naval Postgraduate School 

Improved Modeling Approach 

In the previous section, we noted that parametric functional families (and Weibull 
curves in particular) lack the flexibility to capture the variety of shapes shown by 
historical funding profiles. Our examination of historical spending patterns suggests that 
this is true not only of RDT&E profiles, but also of procurement profiles. As a result, we 
have adopted a nonparametric approach to characterizing profile shapes. 

Instead of treating the year-by-year outcomes as having some complicated joint 
distribution, we will instead use nonparametric techniques from functional data analysis 
to treat the individual year-by-year outcomes as having been generated by some (noisy) 
underlying set of basic profile shapes, and then think about probability distributions over 
the parameters of those generating functions. Brown et al. (2015) provide a good 
summary of past approaches. Our first attempts (reported in Tate et al., 2018) attempted 
to fit the cost profiles to a pre-specified parametric functional family such as Weibull 
curves. Our revised approach uses a more flexible methodology based on Functional 
Principal Component Analysis (FPCA), described next. 

Functional Principal Component Analysis 

Define the set of programs to be ሼ1,2, … , 𝐼ሽ. Let 𝐶ሺ𝑡ሻ represent the planned 
spending for program 𝑖 in fiscal year 𝑡 as estimated in fiscal year 𝑗. Elements of 𝐶ሺ𝑡ሻ 
reflect predictions if 𝑡  𝑗 or actual spending for year 𝑡 if 𝑡  𝑗. This definition of a 
program can capture all stages of a program’s lifecycle. A program is defined as initial if 
𝐶ሺ𝑡ሻ ൌ 0 for all 𝑡 ൏ 𝑗. A program is defined as completed (possibly cancelled) if 𝐶ሺ𝑡ሻ ൌ
0 for all 𝑡  𝑗. All other programs are considered “midlife”—their cost profiles are partly 
realized, but not yet completed.  

A set of functional observations is notoriously difficult to summarize, since they 
are elements of an infinite dimensional space. One tool for summarizing such collections 
of functions is FPCA. FPCA is the infinite dimensional generalization of Principal 
Component Analysis, which is a methodology that provides an orthonormal basis to 
represent vectors in a finite dimensional Euclidean space. Its principal use in statistics is 
to find transformations of the predictive variables that are approximately independent in 
their effects on the outcomes of interest. 

The FPCA process identifies a mean function 𝜇ሺ𝑡ሻ and a set of 𝐾 eigenfunctions, 
𝜉ሺ𝑡ሻ, for 𝑘 ∈ ሼ1,2, . . . , 𝐾ሽ, that represent recurring patterns of deviation from the mean 
function. The eigenfunctions form an orthonormal basis in the 𝐿ଶ Hilbert space (Yao, 
Müller, & Wang, 2009). The FPCA basis explains more variation than any alternative 
basis expansion when using a fixed 𝐾 number of eigenfunctions.  

Given an observed historical cost profile 𝐶ሺ𝑡ሻ, FPCA represents the profile as a 
weighted sum of the eigenfunctions, plus the mean function:  

 log ቀ𝐶ሺ𝑡ሻቁ ൌ 𝜇ሺ𝑡ሻ   ∑ 𝜔𝜉ሺ𝑡ሻ
ୀଵ  𝜖ሺ𝑡ሻ. 

That is, 𝜔 (usually called “FPCA scores”) function as weights on the 
eigenfunctions for generating log cost profiles in the new basis. The mean function and 
eigenfunctions are common for all programs in all stages of their life. The 𝑘th FPCA 
score is specific to program 𝑖 in fiscal year 𝑗. The discrepancy from using a fixed finite 𝐾 
number of eigenfunctions is represented by 𝜖ሺ𝑡ሻ.  
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We apply FPCA separately to RDT&E and procurement cost profiles, for several 
reasons: 

 RDT&E spending profiles and procurement spending profiles tend to 
have different shapes; 

 RDT&E profiles and procurement profiles are offset in time, with 
procurement spending beginning later; and 

 RDT&E and procurement fall under different “colors of money,” and must 
therefore be separately evaluated against their respective budgets. 

We use 𝐾 ൌ 3 for RDT&E and 𝐾 ൌ 2 for procurement. The value 𝐾 was chosen 
such that the cumulative fraction of explained variation was over 90%. Applying FPCA 
generates mean profiles and principal eigenfunctions for both RDT&E and procurement. 
The shape fits are done using profiles that have been scaled in duration such that they 
begin at time 0 and end at time 1. The mean and principal eigenfunctions are shown in 
Figure 2.. The mean function is in the upper two subplots and the first 𝐾 principal 
eigenfunctions are in the bottom two subplots. Note that while the mean RDT&E profile 
does have a roughly Weibull shape, the FPCA method can also account for more 
complex shapes using different weights on the various eigenfunctions. This is an 
improvement over the previous method, which would force a Weibull shape even where 
not appropriate. 

 

 
Figure 2. Mean Shape and Eigenfunctions for RDT&E and Procurement 

 
The FPCA process was fit to logged spending profiles; these curves have been 

transformed back into dollar units. The first principal eigenfunction is represented by the 
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solid line, the second principal eigenfunction is represented by the dashed line, and the 
third principal eigenfunction is represented by the dotted line. Since eigenfunctions have 
been exponentiated, these represent multiplicative deviations from the mean. If the 
eigenfunction is greater than 1, it induces a positive deviation from the mean; if it is less 
than 1, it is a negative deviation from the mean. The solid red line at 1 represents no 
deviation from the mean response. The scale of the deviation is determined by the 
FPCA scores. The FPCA scores are real-valued; thus, if a score is below zero, the 
eigenfunction flips over the red line (but not symmetrically due to the non-linear 
transformation). 

Identifying Potential Predictor Variables 

Given choices for functional forms, the next challenge is to somehow 
characterize how the distribution of possible actual outcome profiles could be derived for 
a given initial plan. It seems obvious that different kinds of programs involve different 
levels of cost risk. There is a substantial literature attempting to identify specific factors 
that are correlated with program cost and schedule growth. Some factors that have been 
found by past researchers to be correlated with (unit) cost growth and/or total program 
cost growth risk include: 

 Commodity type (e.g., helicopter, satellite, MAIS, missile, or submarine; 
Arena et al., 2006; Drezner et al., 1993; Tyson, Harmon, & Utech, 1994) 

 Acquiring Service (Army, Navy, Air Force, Joint, Department of Energy) 
(Drezner & Smith, 1990; Jessup & Williams, 2015; Light et al., 2017; 
McNicol, 2004) 

 New design vs. modification of existing design (Arena et al., 2006; 
Coonce et al., 2010; Drezner et al., 1993; Jimenez et al., 2016; Marshall 
& Meckling, 1959) 

 New build vs. remanufacture of existing units (Tyson et al., 1989) 

 Budget climate at Milestone B (Asher & Maggelet, 1984; McNicol, 2017) 

 Number of years of spending prior to Milestone B (Jimenez et al., 2016; 
Light et al., 2017) 

 Schedule optimism (Arena et al., 2006; Asher & Maggelet, 1984; 
Glennan et al., 1993; Tate, 2016) 

 Technology maturity of the program (Adoko, Mazzuchi, & Sarkani, 2015; 
GAO, 2006) 

 Investment size (Bliss, 1991; Creedy, Skitmore, & Wong, 2010) 

Because we are not attempting to diagnose causes of cost growth, but are 
instead only trying to understand and characterize risk (on the assumption that the past 
is a reasonable guide to the future), we do not distinguish here among risks arising from 
discretionary choices, environmental factors, or intrinsic program features. 

Describing Changes in Cost and Schedule as Changes in Profile Functions 
We can model the change in an initial or midlife profile to a final profile by 

modeling the change in FPCA scores, total spending, and total duration. We saw above 
that we can model development costs or production costs as being generated from a 
basis of eigenfunctions. Define 𝜔

  to be the FPCA scores of the planned or midlife 
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programs and 𝜔
ଵ  to be the FPCA scores of the completed program. Define 𝑇

 to be the 

planned total duration until program completion and 𝑇
ଵ to be the total duration when 

program 𝑖 is actually completed. Define 𝐶
  to be the total cost of an initial or midlife 

program and 𝐶
ଵ to be the total cost of a completed program. Then 𝜃

 ൌ
ሺ𝜔ଵ

 , … , 𝜔
 , 𝑇

, 𝐶
 ) fully characterizes the cost profile of an initial or midlife program 

and 𝜃
ଵ ൌ ሺ𝜔ଵ

ଵ , … , 𝜔
ଵ , 𝑇

ଵ, 𝐶
ଵ) fully characterizes a final cost profile. We estimate the 

conditional (joint) distribution of 𝜃
ଵ  given the appropriate program and environmental 

attributes and the fact that the program’s previous estimate was best fit by the FPCA 
expansion. 

There are several possible approaches to this and many choices of how to 
parametrize the family of curves being fit, but the general method will be the same in all 
cases. We estimate the distribution of 𝜃

ଵ as a function of parameters 𝜃
  and the 

historical program characteristics 𝑋: 

 𝜃
ଵ ൌ  ൫𝑋, 𝜃

 ൯𝛽   𝜂, 

where 𝑋 includes factors such as current estimated cost, Service, budget climate, and 
so forth, and 𝜂 are independent and identically distributed draws from a multivariate 
normal distribution centered at the vector 0 with covariance Σ. The vector 𝑋 gives the 
values of the predictors for historical program 𝑖 in year 𝑗. The vector 𝜃

  contains the 

elements that describe cost profile for program 𝑖 in year 𝑗. The vector ሺ𝑋, 𝜃
 ሻ denotes 

the component-wise concatenation of 𝜃
  onto 𝑋. 

This linear regression model implies a functional fit and distribution over the 
annual cost profile function 𝐶ሺ𝑡ሻ. Rather than attempting to predict eventual actual cost 
as a function of initial estimated cost and other predictors, we instead attempt to predict 
the distribution of the parameters of a function that generates eventual cost, given 
program-specific attributes and the parameters that generate the initial estimate. Note 
that this is a multiple output regression—we are simultaneously estimating all of the 
best-fit parameters 𝜃

ଵ and the covariance matrix that describes how those parameters 
are correlated. 

We use a Bayesian estimation framework, starting with a weakly informative prior 
distribution 𝐹൫𝜃

ଵ൯ and using Markov Chain Monte Carlo (MCMC) estimation to 
derive a posterior distribution 𝐹௦௧൫𝜃

ଵ൯, including the covariance matrix (Chib & 
Greenberg, 1995). We do this separately for RDT&E costs and procurement costs, using 
different families of profile-generating functions, treating their changes in shape and size 
as independent. Treating development and procurement jointly is a potential area for 
future research. 

Regression Methodology 
We compiled original and midlife estimates and actual outcomes for 𝐼 ൌ 1,278 

historical profiles for RDT&E and 𝐼 ൌ 828 for procurement. For each historical program 𝑖 
at year 𝑡, we fit scaled, FPCA scores to the full current profiles (including completed 
programs):  



Acquisition Research Program: 
Creating Synergy for Informed Change - 160 - 
Naval Postgraduate School 

𝐶ሺ𝑡ሻ ൌ 𝜇ሺ𝑡ሻ    𝜔𝜉ሺ𝑡ሻ



ୀଵ

 𝜖ሺ𝑡ሻ. 

Let 𝜃  ൌ  ሺ𝜔ଵ, … , 𝜔, , 𝐶, 𝑇
ሻ be the parameters of those best-fit curves. Then 𝜃

  are 

the best fit parameters to the initial and midlife profiles and 𝜃
ଵ are the best fit parameters 

to the actual completed profiles. We further decompose 𝐶
  into ሺ𝐶

, 𝐶
ሻ to be the 

actual spending that has already occurred (if any) and the planned spending yet to 
occur. We model the distribution of 𝜃

ଵ as a function of 𝜃
  and a set of predictor variables 

𝑋 simultaneously over all programs, where 𝑋 includes the program-specific and 
environmental factors previously listed. Parametric linear models are simultaneously fit 
to obtain a predictive model for the final profile parameters 𝜃

ଵ. The models are as 
follows: 

 ω୧ଵ
ଵ  ൌ ሺ𝑋; 𝜃

 ሻ𝛽ఠభ
 𝜂ఠభ

, 

 ⋮ 

 ω୧
ଵ  ൌ ሺ𝑋; 𝜃

 ሻ𝛽ఠే
 𝜂ఠే

,  

 ඥC୧
ଵ ൌ ൫𝑋; 𝜃

 ൯𝛽  𝜂 , 

 log ሺT୧
ଵሻ ൌ ሺ𝑋; 𝜃

 ሻ𝛽்  𝜂், 

where the error terms ሺ𝜂ఠభ
, … , 𝜂ఠ಼

, 𝜂, 𝜂்ሻ are assumed to be jointly normally 
distributed. The covariates 𝑋 include information about previously finished programs 
that had initial planned spending profiles and actual final profiles. Using these historical 
data, the model is fit to predict final actual profiles using only information available from a 
program’s Milestone B date. The parameters 𝛽 ൌ ሺ𝛽ఠభ

, , 𝛽ఠ಼
, 𝛽, 𝛽்ሻ are jointly estimated 

using a Bayesian Seemingly Unrelated Regressions model with prior distributions on the 
parameters 𝐸ൣ𝜃

ଵ|𝑋൧ ≡ 𝛽 and 𝑉𝑎𝑟ൣ𝜃
ଵ|𝑋൧ ≡ 𝛴.  

The prior for 𝛽 has a multivariate normal distribution, calibrated such that prior 
belief is that there is no change in the profile from the current estimate to final actual 
profile and no other traits of the initial profile are predictive of the final actual profile. This 
prior belief is fairly strong in order to induce regularization. This prior choice balances the 
bias-vs.-variance tradeoff to produce better out-of-sample predictions. 

The prior for 𝛴 has an inverse Wishart distribution, chosen such that the 
equations are uncorrelated and the prior variance is 1. 

The joint posterior distribution of 𝛽 and 𝛴 incorporates the prior beliefs and the 
historical data to arrive at an updated posterior belief. The Bayesian machinery is 
especially useful for our purposes because it allows us to obtain random draws from the 
posterior distribution of 𝛽 and Σ, which in turn allows us to generate random draws of a 
final profile distribution 𝜃

ଵ for any program with known initial profile characterized by 
covariates 𝑋 and 𝜃

 . This lets us estimate the complete (posterior) distribution of final 
profiles, rather than just a point estimate and variance measure. We sample from the 
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posterior with an MCMC Gibbs algorithm from Rossi, Allenby, and McCulloch (2005). 
We draw 400,000 MCMC samples, keep every fourth draw, and discard the first 1,000, 
leaving us with a Monte Carlo sample of 99,000 draws. Keeping every fourth draw is 
called “thinning” and reduces the MCMC autocorrelation; discarding the first 1,000 draws 
is called “burn-in” and ensures we utilize draws after the MCMC algorithm has 
converged to the posterior distribution. 

Regression Data 
The data for the regression are the initial estimate and final actual cost profiles 

for completed historical MDAPs. The earliest program in the data set passed Milestone 
B in 1982. The data are taken from SARs, together with compiled attributes and 
environmental factors (as enumerated above) for each program. We apply this method 
to both development (RDT&E) cost risk and procurement cost risk models, which differ 
only in which predictor values are used, the number of eigenvectors fitted, and the 
eigenvector shapes resulting from the estimation.  

The following are the specific predictor variables used in this paper: 

 𝜔ଵ—the first FPCA score 
 𝜔ଶ—the second FPCA score 
 𝜔ଷ—the third FPCA score 

 ට𝐶
 ൌ ට∑ 𝐶ሺ𝑡ሻ

௧ୀ —square root of actual spending 

 ට𝐶
 ൌ ට∑ 𝐶ሺ𝑡ሻஶ

௧ୀାଵ —square root of planned spending 

 log ሺ𝑇
ሻ—natural log of the planned number of future spending years 

 The Service overseeing the program (Navy, DoD, Air Force, Army, 
Department of Energy) 

 A commodity type (Air; Command, Control, Communications, 
Computers, Intelligence, Surveillance, and Reconnaissance [C4ISR]; 
Ground; Ordnance; Sea; Space; other)1 

 A measure of relative Service budget tightness compared to two years 
ago 

 A measure of relative Service budget tightness over the last 10 years 
 A measure of budget optimism—planned spending divided by the mean 

historical actual spending for this commodity type 
 A measure of schedule optimism—planned duration divided by the mean 

historical actual duration for this commodity type 
 Whether the program is based on a modification of a preexisting design 

(binary) 

The measures of relative budget tightness were based on the year the program 
passed Milestone II/B. The measures of budget and schedule optimism reflect the 

                                            
 

 

1 More precise commodity categories—e.g., distinguishing helicopters from fixed-wing aircraft—
might be useful, given enough data. We found that increasing the sample size in each category 
led to better results than increasing the precision of the categories. 
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empirical observation that the average behavior of programs in a given commodity class 
is a better predictor of cost and schedule than early cost and schedule estimates of 
individual programs in that class. 

Monte Carlo Risk Analysis 

General Approach 

Suppose that we have budgeted a program at some level, possibly different from 
its predicted cost profile. Let 𝐵ሺ𝑡ሻ be the budgeted funds in year t, and let 𝐶ሺ𝑡ሻ be the 
predicted cost that will be incurred in year 𝑡. There are many questions we might wish to 
ask about the program’s affordability risk: 

 In how many years will the program exceed the planned budget?  

 How many total dollars over budget will the program spend? 

 What is the probability of exceeding the budget at least once over the 
FYDP?  

 How much contingency funding would be needed to achieve 90% 
confidence of staying within budget, depending on whether unspent 
contingency carries over to the next year? 

These are all questions of potential interest to both program managers and resource 
managers. Using the posterior final profile distribution derived from the original profile 𝐶, 
we can perform many counterfactual Monte Carlo analyses to answer these kinds of 
questions. The general pattern for these analyses is as follows: 

1. Given the initial development estimate for a program … 

2. Define a yearly budget level 𝐵ሺ𝑡ሻ, and a contingency fund size (if any). 

3. Use the regression described above to determine the posterior distribution on 
the parameters of the best fit to the final actual development profile for the 
program. 

4. Define outcomes or events of interest—e.g., exceeding the budget in some 
year, or staying within the budget through the entire FYDP, or having planned 
funds at least as large as spent funds in year 7. 

5. For s = 1,…,S (indexing over iterations of the Monte Carlo algorithm): 

a. “Draw” random parameter vector 𝜃ଵሺ௦ሻfrom the posterior distribution. 

b. Compute the corresponding yearly values by evaluating the best fit curve 

at 𝑡 = 1, …, 𝑇ଵሺ௦ሻ and computing exp ሺ𝐶ଵሺ௦ሻሻ
ୣ୶୮൬ఓሺ௧ሻା∑ ఠೖ

భሺೞሻయ
ೖసభ ஞሺ୲ሻ൰

∑ ୣ୶୮భሺೞሻ
సభ ൬ఓሺ௧ሻା∑ ఠೖ

భሺೞሻయ
ೖసభ ஞሺ୲ሻ൰

.  

c. Evaluate and store any events or outcomes of interest. 

Note that the value of 𝑇ଵሺ௦ሻ used in step 5b is determined as part of 𝜃ଵሺ௦ሻ in step 5a. 

After S iterations, calculate the statistics of interest over the stored events or 
outcomes. For example, count the number of times N that 𝐶ଵሺ௦ሻሺ𝑡ሻ ൏ 𝐵ሺ𝑡ሻ for 𝑡 = 1…5, 

and compute 
ே

ௌ
. This is the estimated probability of staying within budget for the first five 

years. The Monte Carlo framework can also allow comparison of different management 
policies. For example, one could compare the effect of pre-allocating contingency to 
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specific program years, versus maintaining a contingency fund to be spent down over 
time as needed. 

In general, we would do this not only for development profiles, but also for 
procurement spending. In that case, policy makers might be interested in how much 
difference it would make to be able to manage both RDT&E and procurement using a 
single combined budget and/or a single program contingency fund, rather than having to 
manage separate budgets and contingency amounts due to “color of money” 
prescriptions. 

Figure 3 shows an example of applying this method to a new program, using 
actual RDT&E cost estimates for a current MDAP. The vertical red line marks the date of 
the analysis, which is the boundary between past actual funding and projected future 
funding. The green line shows actual past annual funding; the dashed blue line shows 
the program estimate of annual future funding. The solid black line is the mean projected 
funding derived from the FPCA Monte Carlo methodology; the dashed lines mark upper 
and lower 10% prediction interval bounds2 year by year as determined using the 
weighted Monte Carlo.  

 

 
Figure 3. Predicted Future RDT&E Spending for a New Program 

Midlife Programs 

The method we described in Tate et al. (2018) applies specifically to programs 
that are just beginning, using an estimate of their future spending profiles. In practice, 
however, most acquisition programs in any given year are already partially complete, 
and part of their realized spending profiles is known. We need a method that accounts 

                                            
 

 

2 That is, the 10% and 90% quantiles of the estimated distribution of possible funding in each 
year. 
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for those actual costs to date, and generates profile distributions for the future that are 
conditioned on that history. 

Statistically, it would be difficult to perform conditional FPCA regressions to 
predict the remaining profiles for RDT&E and procurement, taking the actual costs to 
date as input factors. Not only would the power of the regressions be greatly reduced 
(due to paucity of historical programs with a specific cost history), but also the 
characterization of shapes of actual spending would be at least as complicated as for 
overall profiles. In the worst case, we would need a separate set of FPCA eigenfunctions 
for programs with one year of actuals, programs with two years of actuals, and so forth. 
Fortunately, the Monte Carlo framework for generating posterior empirical distributions 
provides an alternative that is both computationally efficient and effective. 

We implement this method as follows. The original Monte Carlo method as 
described in Tate et al. (2018) weighs all random draws from the posterior distribution 
equally, in order to produce year-by-year empirical spending distributions for the 
program. We modify the method for midlife programs using unequal weighting of these 
random draws. Instead of weighing all draws equally when estimating the distribution of 
future profiles, we instead give higher weight to those draws that more closely match the 
observed history of the program to date. This is comparable to a Nadaraya-Watson 
estimator (Nadaraya, 1964), and has the effect of conditioning the Monte Carlo–based 
future estimates on the observed history. The exact weighting scheme can be adjusted 
to balance between computational efficiency and strict enforcement of the conditioning 
on the past. 

Figure 4 shows an example of this method, applied to a different actual MDAP. 
Note how the model predicts mean funding levels below the planned level, but with 
significant uncertainty (including some chance of program cancellation). 

 
Figure 4. Prediction Intervals for Future Funding of an Ongoing Program 
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Portfolios: More Than One Program at a Time 
We have shown how our model can characterize the affordability risk of a single 

program’s development budget. We noted in Tate et al. (2018) that it would be even 
more useful to be able to characterize the affordability risk of a group of projects or 
programs being managed with a common contingency pool. If the conditional outcomes 
of these programs were approximately independent, this would not be much more 
complicated than the single-program case. In practice, we know that funding levels 
among programs within a portfolio are negatively correlated; this is a potential area for 
future research. For the moment, we treat programs as if they were independent, and 
incorporate current funding tightness as a predictor of outcomes. This does not affect the 
mean outcome for each program but does increase the variance. 

If we have estimated the 𝐹௦௧ሺθଵሻ distributions for each of a set of programs, 
we can apply the same kind of Monte Carlo analysis to the sum of their annual costs, 
compared against a collective portfolio budget and contingency fund. This could be done 
separately for RDT&E and procurement, each with its own budget, or it could be done 
using a combined investment budget. This would enable true affordability analysis of 
portfolios as envisioned by the Better Buying Power initiatives,3 but with considerably 
more realism than current affordability analyses that are based on point-estimate cost 
profiles assuming fixed program content and quantities. 

One potential use of such a model would be to quantify the benefits of portfolio-
level contingency funding versus program-level contingency funding. It is well known in 
the project management world that allocating reserve funds to specific cost areas before 
you actually know where the cost growth is going to occur leads to less efficient use of 
those reserve funds. However, it has historically been difficult to protect funds that are 
not part of the base budget for some cost element. In the DoD, apart from a highly 
limited ability to reprogram funds from one program element or line item to another, 
there is currently no ability to reserve funds for contingency use outside of a specific 
program’s budget. The recent report of the Section 809 Panel specifically recommended 
expanding the ability of the DoD to reprogram funds across programs and manage 
contingency at the portfolio level. This research provides some analytical support for 
those recommendations. 

Potential Criticisms of the Method 
We noted in Tate et al. (2018) that the utility of these methods assumes, among 

other things, that historical patterns of cost growth and schedule stretch will persist into 
the future. This is a conservative assumption, given that observed patterns of cost and 
schedule growth in major programs have persisted across multiple acquisition systems 
and regulatory regimes over the past decades. A more nuanced concern is that if 
resource managers were to actually use these methods to manage portfolios of 
programs more efficiently, the resulting changes in program outcomes ought to 
invalidate the models, at least until a new collection of historical outcomes under the new 
regime could be assembled.  

                                            
 

 

3 Department of Defense, Better Buying Power, http://bbp.dau.mil/index.html. 
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We also noted that these methods offer no insights into why costs and schedules 
deviate from their original estimates (or how this could be “fixed”), and that these 
methods explicitly model how much funding a program will receive in a given year—not 
how much it needs, or ought to receive, or would receive if there were more money to go 
around. As such, the model data incorporate the history of negotiations between the 
Services, the Office of the Secretary of Defense, and the Congress regarding how much 
to fund programs year by year, and when to cancel them. If there were to be a 
fundamental change in the dynamic of how those decisions are made, then that, too, 
might invalidate the link between historical outcomes and future program outcomes, at 
least until enough new data could be collected. 

Finally, we note that the current portfolio modeling approach treats individual 
program funding levels as independent draws from their respective posterior 
distributions. This is known to be a weak assumption and is a potential area for future 
research. 

Conclusions 

Quantifying Annual Resource Risks for a Program or Portfolio 

We have developed a methodology to characterize the year-by-year budget risk 
associated with a major acquisition program. This methodology can be applied to both 
development costs and procurement costs, and can be extended to understand the 
aggregate affordability risk of portfolios of programs. The method allows resource 
managers to estimate annual budget risk levels, required contingency amounts to 
achieve a specified probability of staying within a given budget, and a host of other 
relevant risk metrics for programs. It also allows policy makers to predict the impact on 
program affordability of proposed changes in how contingency funds are managed. 

Research Program Status 

The switch from functional regression using parametric curve families to FPCA 
using nonparametric eigenfunction kernels has significantly improved both the fidelity of 
the curve fits and the flexibility of the predictive aspects of our approach. We have 
established that FPCA methods can accurately reproduce historical funding profile 
shapes for both RDT&E and procurement profiles, and that it is possible to characterize 
the uncertainty in future spending profiles using the outputs of FPCA and weighted 
Monte Carlo techniques to sample from the distribution of overall funding profiles while 
accounting for actual program history to date. This represents a significant improvement 
in the state of the art; we are not aware of any other technique that has been proposed 
that can predict time-phased cost and schedule growth distributions for any kind of 
defense acquisition program, much less a general approach that potentially can be 
applied to all programs. 

Future Research 

This technique is currently in the prototype stage and is based on a relatively 
sparse set of historical program outcome data. There is still much work to be done on 
establishing the ideal number of eigenfunctions to use in fitting initial and final RDT&E 
and procurement profiles (respectively), characterizing the distribution of residuals 
around the best-fit functional curve and utilizing a more flexible mean function in the 
SUR regression. Additionally, we would like to assess the model’s predictive power with 
an out-of-sample prediction exercise. However, measures for out-of-sample predictive 
accuracy of functional distributions is an unexplored topic in statistical methodology. 
There is also a great deal to be learned about how managers could best use the 
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information provided by this method to manage actual programs and portfolios, and what 
the implications might be for recommending policy changes to acquisition law and 
regulations. As noted in the Portfolios: More Than One Program at a Time and the 
Potential Criticisms of the Method sections, the current portfolio modeling approach 
treats program outcomes as independent. It would be useful to extend this approach to 
account for correlations among funding levels within a portfolio, or to explicitly model 
priorities among programs. 
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