

Acquisition System Design Analysis for Improved Cyber Security Performance

Brad R. Naegle

Cyber Warfare: Asynchronous Strategy and Tactics

Types

- Passive
- Active
- Denial of Service
- Spoofing
- Artificial Intelligence

Sources

- Traditional Adversaries
- State Actors
- Non-State Actors
- Domestic Adversaries
- Small Teams & Individuals

Naval Postgraduate School Monterey, CA

Cyber Warfare Implications

- Extraordinary concern due to accelerating incidents, asynchronous nature, effectiveness against US systems, and perceived vulnerability
- US systems dependent on elements known to be potential cyber vulnerabilities: Software, anything that communicates, sensors, and networks
- Developing systems need to minimize and mitigate potential cyber vulnerabilities

The Problem

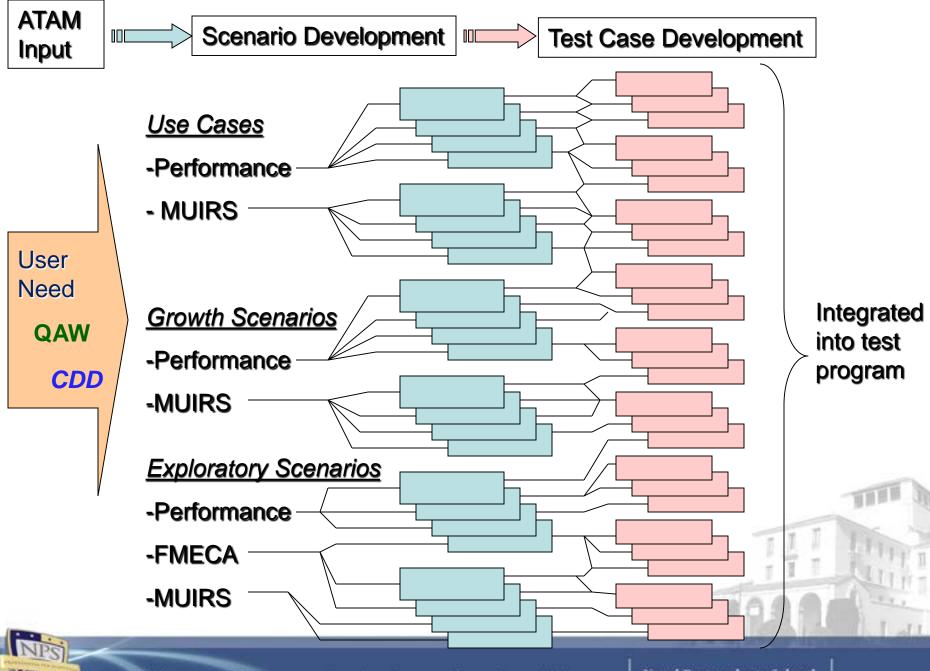
 The Defense Acquisition System cedes significant design control to the contractor and the PM needs visibility and control over design elements with potential cyber vulnerabilities

The Symptoms

- Successful cyber attacks on US systems and assets
- Fielded systems have unknown cyber vulnerabilities
- Reactive, system-level cyber vulnerability testing
- Costly and frustrating Risk Management Framework evaluation and compliance

The Underlying Causes

- The Defense Acquisition System
 - Driven by Capabilities-Based (JCIDS) and Performance-Based requirements (Performance Spec), that are designed to allow the contractor to control the design
 - Purposely vague to garner maximum innovation
 - Likely to omit or poorly define cyber performance needed by the warfighter
 - Provides only a glimpse at the operational environment through the Operational Mode Summary/Mission Profile
 - Cyber Security needs typically not apparent to system designers


Cyber Vulnerabilities Control

- The PM must know and control potential cyber vulnerabilities on their systems
 - Thorough requirements and operational environment analyses to ensure cyber performance & potential vulnerabilities are *known*
 - Design *control* over these elements and designation of potential vulnerabilities as Configuration Items (CI)
 - Control use of COTS components, especially software, in cyber vulnerable subsystems to avoid proprietary and data rights restrictions
 - Establish cyber test protocols for known system vulnerabilities to rapidly respond to new threats

Helpful Tools, Techniques, & Analyses

- SEI's Quality Attribute Workshop (QAW)
 - A more complete inventory of cyber performance requirements
- MUIRS Analysis
 - Analyses of typical cyber vulnerable areas
- SEI's Architectural Trade-off Analysis Methodology sm
 - Clarifies context and drives architectural design
 - Connects user needs to system design to test program
- FMECA
 - Identifies cyber vulnerabilities in critical and non-critical systems

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

Summary

- PMs must *know* and *control* cyber vulnerabilities on their systems, which the DAS does not automatically support
- Using the tools, techniques, and analyses, will help identify and control vulnerabilities and establish testing protocols for new threats
- After gaining the full inventory of system cyber vulnerabilities, the RMF can be more efficiently and effectively supported