

Commercial Aircraft Pricing: Application of Lessons Learned

May 8, 2019

Bruce Harmon Institute For Defense Analyses bharmon@ida.org

- How can the USG better estimate the price of commercial aircraft used in weapon systems?
 - Answers to this question have implications for negotiating prices for ongoing programs
- Our research program has evolved to include price negotiation

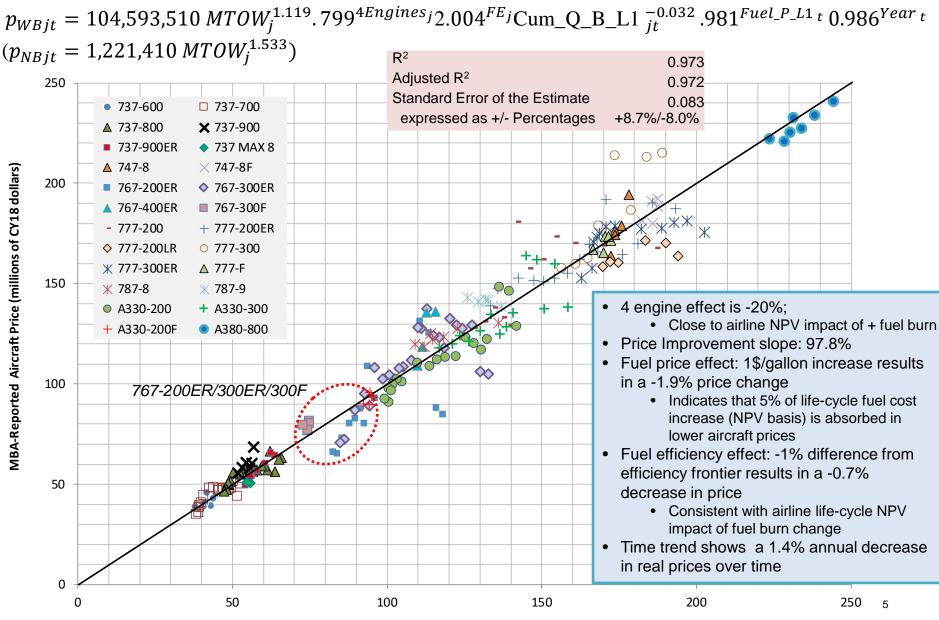
What Lessons can be Applied to the More General Problem of Pricing Commercial Items?

- Characterize drivers of commercial aircraft prices
 - Suggested by economic theory
 - Defined by available price and other data
- Price estimating relationships
 - Airline consultant price data: Morten Beyer and Agnew (MBA)
 - Appraised transaction prices for airline-configured aircraft, 1988-2018
 - Cross-section and panel data regression specifications
 - Model price movements over time as well as differences between aircraft
- Analysis of Boeing financial data: 2004-2018
 - Corroboration of MBA data and price estimating relationships
 - Alternative price escalation
 - Estimated sensitivity to production rates

Apply Analyses to 767-2C (KC-46A platform) Pricing

- 767-2C: 767-200ER-derived with FAA Amended Type Certificate; basis of KC-46A tanker
- Not to exceed (NTE) prices set in 2011 as a result of Tanker competition
 - Competition facilitated price-discovery
 - Possible adjustments in out-years by economic price adjustment (EPA) clause
- However, conditions have changed since 2011
 - Data show real commercial aircraft prices continue to fall
 - Nominal prices are rising less than general price indexes
 - Consistent with Boeing financial data
 - Due to added customer interest in the 767-300F freighter, 767 productions rates will be higher than 2011 expectations

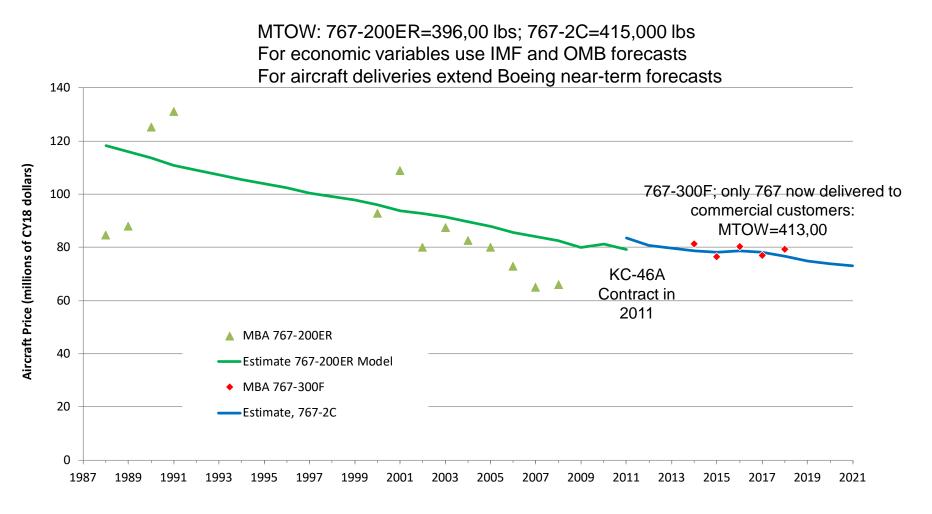
Negotiation Below NTEs?


Price Estimating Relationships: Panel Data Regression Approach

- GDP deflator to normalize MBA price data to constant 2018\$
- Pooled OLS, log-log; each aircraft model is a panel; aircraft j in year t
- Static demand drivers
 - MTOW_j, or Seats and Range (passenger aircraft sample only)
 - 4 engine 1/0 dummy variable;
 - Dummy variables/interaction terms for Wide Body (WB) aircraft
 - Fuel Efficiency (**FE**_j) factor
- Dynamic demand drivers
 - World GDP cycles (% delta from trend) lagged 2 years (WGDPc_L2_t)
 - Real jet fuel price lagged one year (*FuelP_L1_t*)
- Dynamic Supply/Cost drivers
 - Cumulative quantity produced by aircraft family lagged 1 year (CumQ_L1_{it})
 - Time trend (**Year**_t).

Many Specifications reflecting different combinations of price drivers: Apply preferred MTOW/FE model

IDA


Preferred Model

Model-Estimated Aircraft Price (millions of CY18 dollars)

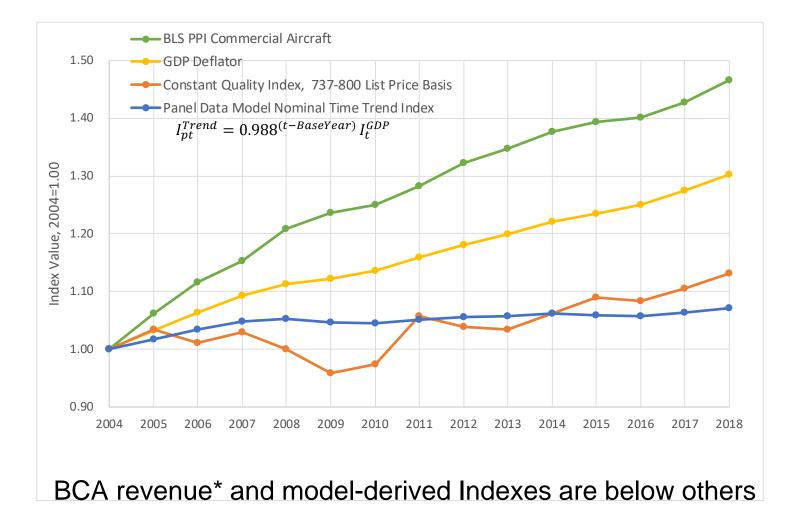
Apply Preferred Model to 767-2C

767-2C estimates do not include additional value of combi and tanker provisions not captured in MTOW

IDA Boeing Financial Data: Comparisons and Trends

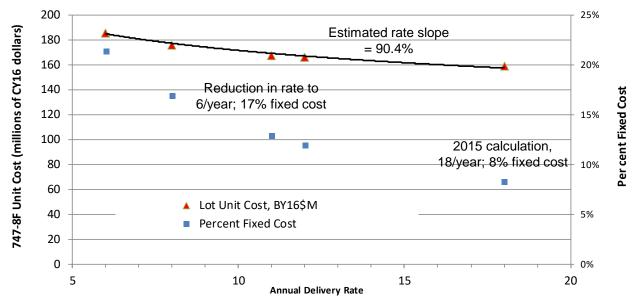
- Boeing Commercial Airplanes (BCA) annual revenue
 - Aircraft sales revenues (*R_t*) are booked when aircraft are delivered
 - Annual delivery quantities available by aircraft model (q_{it})
 - Aircraft list prices (p_{jt}) by aircraft model are published annually
- Compare with MBA and model-estimated prices, 2018 data
 - Weighted discount (D_t) from list prices; BCA revenue: $D_t = \frac{R_t}{\sum \overline{p_t} Q_t} 1 = \frac{60,715}{129,617} 1 = 53.2\%$

• Replace
$$R_t$$
 using MBA and model estimates (\hat{p}) ; $\sum_{j}^{p} P_{jt} q_{jt}$
 $\hat{D}_t = \frac{\sum_{j} \hat{p} q_{jt}}{\sum_{j} \overline{p}_{jt} q_{jt}} - 1 = \frac{59,528}{129,617} - 1 = 54.1\%$ (MBA), $\frac{58,857}{129,617} - 1 = 54.6\%$ (model estimates)


- Create quality-adjusted price index using 2004-2018 data
 - Relative list prices define "737-800 equivalent Index":
 - Calculate equivalent quantities: $Q_t^{737-800_L} = \sum q_{jt} I_{jt}^{737-800_L}$

$$I_{jt}^{737-800_L} = \frac{\bar{p}_{jt}}{\bar{p}_{(737-800)t}}$$

A constant-quality price index is:


$$I_{pt}^{737-800_{L}} = \frac{\frac{R_{t}}{Q_{t}^{737-800_{L}}}}{\binom{R_{BaseYear}}{Q_{BaseYear}^{737-800_{L}}}}$$

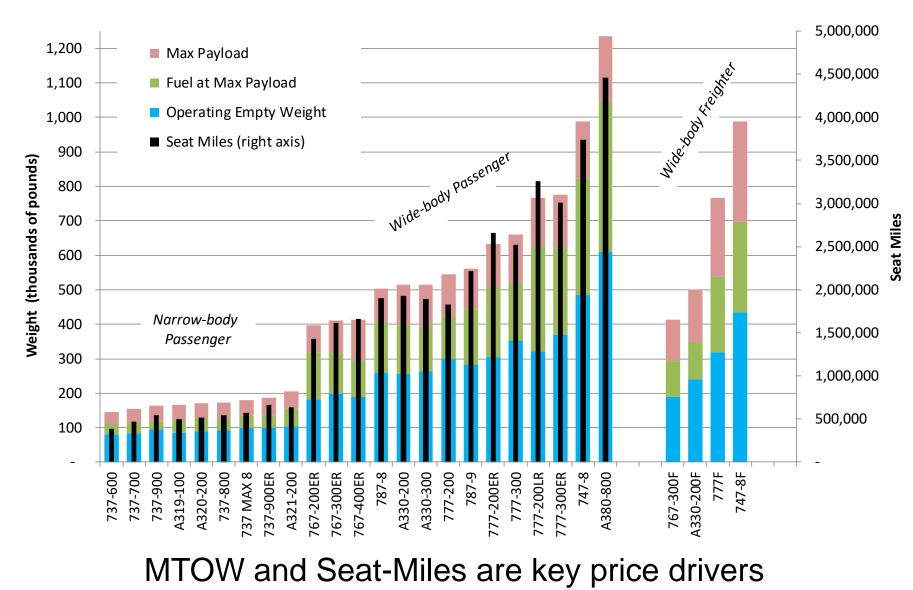
IDA Boeing Financial Data: Production Rate Analyses

- Equilibrium condition (Cournot game) for Airbus/ Boeing duopoly: price is a mark-up on cost for mature program*
- Estimate rate effect on cost using analogous program
 - 747 2015 \$850M reach-forward loss; +2 years for same program quantity
 - Given this, estimated annual fixed cost is \$230M, CY16\$.

• \$520M 2 yr delay effect; remainder is estimated pricing delta

- Apply these findings to increased 767 production rates
 - Cost/price effects can be estimated using rate slope

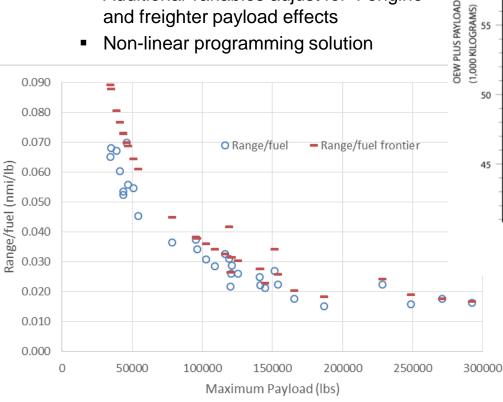
* R Baldwin and P. Krugman. "Industrial Policy and International Competition in Wide-Bodied Jet Aircraft" 2004

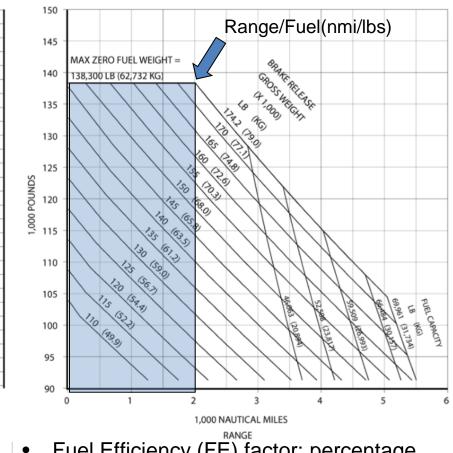


- Understand the market in which the seller operates. This would go beyond "market research" and should address market dynamics as described by economic theory.
- Model market prices as they relate to both supply (cost) and demand (utility) side drivers.
 - This will be challenging in that most commercial items bought by DoD and subject to price negotiation will not be as homogenous as commercial aircraft.
- Make use of the seller's publicly available financial data to put available pricing data into perspective, and to better understand the seller's business model.

Backups

Aircraft Data Sample: Maximum Take off Weight (MTOW) and Seat-Miles

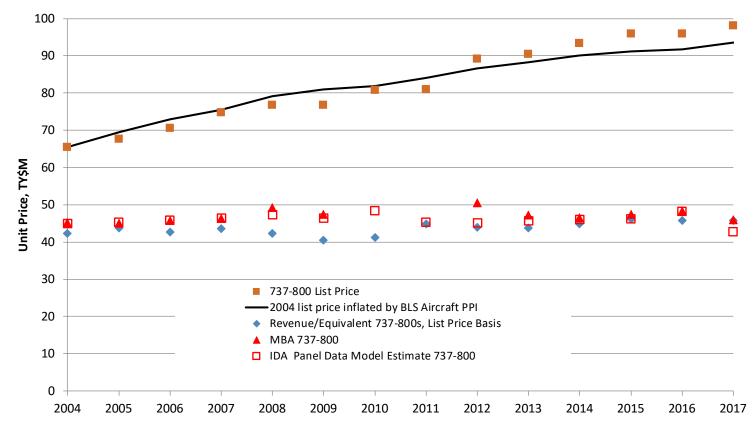



Define aircraft technology frontier with respect to fuel efficiently

65

60

- Range(nmi)/Fuel(lbs) at Max Payload and MTOW
- Technological frontier defined for a given Max Payload
 - Reflects economies of scale
 - Additional variables adjust for 4 engine and freighter payload effects
 - Non-linear programming solution



- Fuel Efficiency (FE) factor: percentage difference between observed values and frontier: range is 0% to -28%
- Newest aircraft (787-9 and Max 8) are on the frontier (FE=0%) 13

737-800 Side Bar

• Compare unit prices for equivalent 737-800, $\frac{R_t}{Q_t^{737-800_L}}$, with 737-800 prices from other sources

- Transaction price values track one another well
- BLS PPI inflation aligns more closely with list price inflation